Guidebook for ARRA Smart Grid Program Metrics and Benefits

June 2010

DOE wants to work in partnership with the recipients of Smart Grid Demonstration Program and Renewable and Distributed System Integration awards^{*} to determine what information is required and how best to gather it for developing and reporting metrics and benefits. This Guidebook serves as a way to begin a dialogue. In the coming months, DOE will work with each grant recipient to finalize the best approach for accomplishing this task.

*This Guidebook has been modified from the Guidebook for SGIG projects issued December 7, 2009 to tailor to both Smart Grid Demonstration Program and Renewable and Distributed System Integration projects.

Table of Contents

1.0 Context	1
2.0 Approach	2
2.1 Process for Gathering and Reporting Project Information 2.2 Process for Developing the Metrics and Benefits Reporting Plan	
3.0 Gathering Information	7
3.1 Measurement of Smart Grid Progress – How Much Have We Built? Monetary Investments	
Electricity Infrastructure Assets	9
Policies and Programs	. 12
Job Creation and Marketplace Innovation	. 13
3.2 Measurement of Smart Grid Impact – What was the Outcome?	16
4.0 Analyzing & Communicating Results	19
4.1 Investments4.2 Transformation of the Electric Power SectorElectricity Customer Empowerment	21
Advanced Grid Functionality	. 21
4.3 Results Job Creation and Marketplace Innovation	
Peak Demand and Electricity Consumption	. 23
Operational Efficiency	. 24
Grid Reliability and Resilience	. 25
Distributed Energy Resources and Renewable Energy	. 26
Carbon Dioxide Emissions	. 27
Appendix A: Data Collection and Reporting Templates	
Appendix B: Group Names for Department of Labor Job Categories	

Appendix C: Methodology for Analyzing Smart Grid Functions, Energy Storage Applications, and Benefits

1.0 Context

The United States Department of Energy (DOE) has been charged with leading national efforts for the modernization of the electric grid. The Office of Electricity Delivery and Energy Reliability (OE) is responsible for heading this effort. In recent years, DOE's research and energy policy programs have been responsible for coordinating standards development, guiding R&D, and convening industry stakeholders involved in the implementation of the smart grid. The American Recovery and Reinvestment Act (ARRA) has placed an unprecedented funding resource in the hands of DOE, resulting in both the Smart Grid Investment Grant Program (SGIG) and the Smart Grid Demonstration Program (SGDP), which includes regional and energy storage demonstrations (i.e., Smart Grid Programs). The DOE's National Energy Technology Laboratory (NETL) will manage both the SGDP and Renewable and Distributed Systems Integration (RDSI) program demonstration projects.

As part of the Smart Grid Programs, DOE will award approximately \$4 billion to utilities, equipment suppliers, regional transmission organizations, states, and research organizations to jump-start smart grid deployment and demonstration on a massive scale. The projects to be undertaken by these Recipients will support critical national objectives including:

- Number and percentage of customers using smart-grid enabled energy management systems;
- Number and percentage of distribution system feeders with distribution automation; and
- Number and percentage of transmission lines instrumented with networked sensors used to assess and respond to real-time grid disturbances (i.e., time-synchronized situational awareness capability).

As the steward of this tremendous public trust, DOE is duty bound to make sure that the money awarded to Recipients is invested in a way that maximizes the public benefit in both the near and long terms. The American taxpayers, their representatives, and DOE expect this, and will ask tough questions about the development of the smart grid. To answer these questions, Technical Project Officers (TPOs) from NETL's Energy Delivery Technologies Division will manage the SGDP and RDSI projects, and the Data Analysis Team¹ will analyze the information from each of the Recipients to determine the progress of smart grid implementation and the resulting impacts. DOE is particularly interested in six areas, including:

- 1. Job Creation and Marketplace Innovation;
- 2. Peak Demand and Electricity Consumption;
- 3. Operational Efficiency;
- 4. Grid Reliability and Resilience;
- 5. Distributed Energy Resources and Renewable Energy; and

¹ The Data Analysis Team includes NETL's Integrated Electric Power Systems Division, its support contractors, and Sandia National Laboratory (for the energy storage demonstrations).

6. Carbon Dioxide Emissions.

The Guidebook for ARRA SGDP/RDSI Metrics and Benefits ("Guidebook") describes the type of information to be collected from each of the Recipients and how it will be used by DOE to communicate overall conclusions to the public.

2.0 Approach

The scale, complexity, and variety of the smart grid projects being undertaken across the country require an approach to data collection, analysis, and communication that is structured, but flexible. It should be sufficiently prescriptive without stifling creativity and learning. It should provide the information that leads to insight, not just data to be warehoused. Therefore, the Data Analysis Team will analyze information submitted to the TPO that will help answer some key questions, including:

- What infrastructure, equipment and devices were deployed?
- What functionality or capability was envisioned or sought?
- What programs, policies and business concepts were tried?
- What happened, and why?
- What were the benefits derived?

As shown in Figure 1, DOE's approach involves three basic steps: gather information from Recipients; analyze the information; and communicate the results to the public.

Figure 1. Approach

The Data Analysis Team will analyze the data provided by Recipients to determine the impacts of the SGDP and RDSI programs. As mentioned previously, these impacts will be communicated within six topic areas. Communicating results will be done at the project and Program level, and proprietary information from Recipients will not be disclosed.

2.1 Process for Gathering and Reporting Project Information

Recipients are expected to gather information and report it to their TPOs using "Build Metrics" and "Impact Metrics." Build Metrics track what the Recipients spent their money on, and

measure progress toward a smart grid. These metrics will comprise hardware and software, and the programs that will leverage these investments. It will include what utilities bought (e.g., smart meters) and what customers bought (e.g., smart appliances). DOE is also interested in the number of customers that are participating in demand management programs, or installed capacity of renewable distributed generation leveraging smart grid technology.

Impact Metrics measure how, and to what extent, a smarter grid is affecting grid operations and performance, or how it is enabling customer programs once the project is operational. When projects become operational, the impacts should become measureable. For example, a Recipient that has implemented distribution automation may see a significant reduction in customer outage minutes. Another Recipient may show a drop in peak demand from a Critical Peak Pricing program.

Recipients must also provide baseline Build and Impact Metrics. Baseline values should reflect the parameter values of the Recipient's smart grid or energy storage initiatives without the SGDP or RDSI project, analogous to "business as usual" in a business case analysis. Baseline data can include historical performance data on the circuit(s) or data collected on the circuit(s) during the project prior to the operation of the smart grid or storage systems.

Actual data to be captured, the rate of capture², on-site data archive capability³, and duration of baseline data collection will be determined in collaboration with the Data Analysis Team. For the energy storage demonstrations, Recipients must provide baseline data at the storage system's grid connection point or other mutually agreed upon point of connection. At a minimum, data should include power output characteristics (e.g., current, voltage, and power factor) sufficient to demonstrate performance.

For projects that include demonstration of storage technologies, Recipients must provide the following information on the Data Acquisition System (DAS) prior to purchase and installation:

- 1. 1-line schematic of DAS, which will include meter location(s) on grid and all relevant hardware needed to download data to TPO; and
- 2. Specifications for DAS components.

For energy storage demonstrations targeting technology performance, Recipients should address the following at a minimum⁴:

• Deliver a prototype system that can be grid connected and electrically charged and discharged with a plan for scaling the system to utility power levels

² Rate of capture refers to whether data is collected in real-time, as an average over a specified period of time, or periodically. For energy storage demonstrations, rate of capture is dictated by the application.

³ On site data archive capability is required to ensure that data is not lost in the event of any problems with the clearinghouse data depository. In general, it can be assumed that data will need to be saved in the on-site DAS for one year minimum.

⁴As listed in the sub-area 2.5 Demonstration of Promising Technologies for energy storage in the original Funding Opportunity Announcement DE-FOA-0000036

- Identify and describe elements of electric storage systems that the project will significantly improve (i.e. cost, storage capacity or density, lifetime, environmental impact, safety, etc.) through the demonstration
- Describe targeted market applications for the proposed new energy storage solution and provide an analysis of the value proposition for various stakeholders
- Describe anticipated performance and installed cost targets over time
- Address potential environmental impacts of the proposed system
- Contain a demonstration plan with multiple milestones, at appropriate points, in the development cycle
- Propose a project capable of being ready for operation within 4 years of project award

For energy storage demonstrations, Recipients should submit a list of applications (i.e., uses) and technical performance data required to evaluate each application (see Table C-2 and Sandia National Laboratory's *Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide*⁵). At a minimum, technical performance data shall capture round-trip efficiency and waveforms upstream and downstream of storage to measure its effect on the grid, and will be based on the application(s) of the storage system.

Finally, Recipients need to both determine and report "Project" and "System" level Build and Impact Metrics. "Project" data pertains to the specific scope of the project funded by ARRA and Recipient cost share. "System" data pertains to all the utility's assets within its service territory for transmission, distribution, AMI, Distributed Energy Resources, etc. For the Build Metrics, "System" data is intended to include any non-SGDP funded (neither ARRA nor Recipient cost share) equipment or systems (IT, communication, etc.) installed by Recipients which may facilitate the functionality of Smart Grid assets under the SGDP project. For example:

- 1. Recipient installs automated feeder switches on feeders in addition to those that are part of the SGDP project. Recipient should capture the automated feeder switches installed by the SGDP under the Build Metric "Project" level and all other automated feeder switches installed in the distribution system under the Build Metric "System" level.
- 2. Recipient demonstrates voltage optimization by installing automated capacitor banks funded by the SGDP and using automated regulators that either already exist or are being installed in a non-SGDP funded project. Recipient should capture automated capacitors under the Build Metric "Project" level and automated regulators under the Build Metric "System" level.
- 3. Recipient installs smart meters in an unrelated project. AMI may not affect the functionality of the SGDP-funded project but it may affect reliability or customer electricity use optimization. Since DOE does not want to overstate the impact of SGDP-related assets, it is important to identify system assets that will affect Impact Metrics

⁵ SAND2010-0815, February 2010 http://www.smartgrid.gov/sites/default/files/resources/energy_storage.pdf

measured at the system level. To the extent possible, DOE would like to capture all the material Smart Grid activities within the system even if they are not funded by SGDP.

Structured templates for Build and Impact Metrics, including baseline values, will be completed as part of a Draft Metrics and Benefits Reporting Plan (which describes the methods and resources used to gather Build Metrics, collect field data, and calculate Impact Metrics and overall project benefits), to be submitted to TPOs within 90 days after Recipients receive awards.

Recipients will report Build Metrics to TPOs within 30 days of the end of each calendar quarter. Recipients will report Impact Metrics to TPOs in interim and final Technology Performance Reports (TPR) with frequency agreed upon on a project-by-project basis and outlined in the Metrics and Benefits Reporting Plan. The TPRs should also include the status of cost-benefit data and analyses with respect to the baseline system configuration and the demonstrated system configuration, as applicable. If the project contains more than one distinct technology or groups of technologies, Recipients will prepare a TPR for each. All applicable data should be reported to the Recipients' TPOs, and a select subset will be further analyzed and consolidated with data from other SGDP and RDSI projects through Smartgrid.gov, the data information hub for all federal activities related to Smart Grid.

Table 1 summarizes the two kinds of information that Recipients will be required to provide with baseline at the "Project" and/or "System" level and the reporting interval for each.

Information Type	Description	
Build Metrics	Build metrics refer to the monetary investments, electricity infrastructure assets, policies and programs, marketplace innovation and jobs data that are part of smart grid projects.	Quarterly
Impact Metrics	Impact metrics refer to smart grid capabilities enabled by projects and the measurable impacts of smart grid projects that deliver value.	Varies by project

Table 1. Type of Information to	be Collected
---------------------------------	--------------

2.2 Process for Developing the Metrics and Benefits Reporting Plan

Table 2 outlines the process for finalizing this plan:

- 1. After receiving an award, each Recipient will have 90 days to submit a Draft Metrics and Benefits Reporting Plan.
- 2. The Data Analysis Team will work with each Recipient to customize the data collection and reporting requirements for each project, using the structured templates included in Appendix A.
- 3. The TPO will review the Draft Metrics and Benefits Reporting Plan and provide comments to the Recipient.
- 4. Recipients will provide a Final Metrics and Benefits Reporting Plan upon TPO's review and approval of the Draft Plan.

Metrics and Benefits Reporting Plan Schedule							
Reporting Plan Activities 1 month 2 months 3 months 4 months							
Award Definitized							
Hold Kick-Off Meeting							
Discussions with Data Analysis Team							
Draft and Submittal			\sim				
Review / Edit							
TPO Approval of Reporting Plan							

Table 2. Type of Information to be Collected

The Data Analysis Team expects to work collaboratively with Recipients to develop consistency and quality in the methods used to calculate metrics and develop appropriate baselines. However, it is the Recipients' responsibility to collect and assemble data required to produce the metrics and benefits. In addition, Recipients shall be available to answer questions that the TPO or Data Analysis Team may have regarding how the metrics were developed. The TPO and Data Analysis Team will provide guidance and assistance regarding these issues on an asneeded basis.

3.0 Gathering Information

3.1 Measurement of Smart Grid Progress - How Much Have We Built?

Section 1302 of Title XIII of the Energy Independence and Security Act of 2007 requires that a *Smart Grid System Report*⁶ be prepared and submitted to Congress biennially to describe "the status of smart grid deployments nationwide." In order to measure the progress of smart grid deployment, the *Smart Grid System Report* identifies fifteen Build Metrics. These metrics were distilled down from the list developed during the DOE Smart Grid Implementation Workshop.⁷ The framework described here uses Build Metrics to measure progress toward a smart grid organized into five categories, as presented in Table 3. The Data Analysis Team will work with the Recipients to identify data requirements that pertain to each category, which are discussed in the following sections.

Metric Type	Description
Monetary Investments	Total project costs (ARRA plus Recipient cost share) by category and smart grid classification
Electricity Infrastructure Assets	Transmission and distribution equipment and energy resources that, when assembled together, comprise smart grid project equipment
Policies and Programs	Policies and programs that determine the commercial and operational rules for utilities and their customers (e.g., pricing programs)
Job Creation	New jobs created and retained as a result of projects by category and smart grid classification
Marketplace Innovation	New products, services and programs associated with projects by category and smart grid classification

Table 3: Build Metric Definitions

Monetary Investments

This reporting is required by both the Office of Management and Budget (OMB) and DOE. The guidance below is specific to DOE reporting requirements. DOE requests that Recipients:

- Report or if needed estimate Monetary Investments for the installed cost of equipment in accordance with Table 4
- Provide installed costs which only include direct labor costs (i.e. construction, installation, integration, testing, and commissioning), recognizing that estimates may be required to calculate direct labor costs based on the Recipients' accounting practices
- Segment ARRA and Recipient cost share amounts for installed costs
- Recognize monetary investments related to assets when they are deployed and become property records or company assets (not when they are received from a supplier)

⁶ U.S. Department of Energy, July 2009 <u>http://www.smartgrid.gov/sites/default/files/resources/systems_report.pdf</u>

⁷ "Metrics for Measuring Progress toward Implementation of the Smart Grid," DOE Smart Grid Implementation Workshop, June 20-21, 2008

-

-

- -

- -

AMI				Customer System	IS				
Monetary Investment	AMI Back Office Systems	Communication Equipment	AMI Smart Meters	Customer Back Office Systems	Customer Web Portals	In Home Display	Smart Appliances	Programmable Controllable Thermostats	Participating Load Control Device
ARRA	-				-		-		
Cost Share	-				-		-		
Total	-				-		-		
Other Assets	and Costs that do	not align with the c	ategories listed ab	ove:					
Electric Dist	ribution								
Monetary Investment	Back Office Systems	Distribution Management System	Communications Equipment / SCADA	Feeder Monitor / Indicator	Substātion Mon i tor	Automated Feeder Switches	Capacitor Automation Equipment	Regulator Automation Equipment	Fault Current Limiter
ARRA	-	-	-		-		-	-	-
Cost Share	-				-		-		-
Total	-				-		-		-
Other Assets	and Costs that do	not align with the c	ategories listed ab	ove:					
Electric Distr	ribution Distribut	ed Energy Resourc	es (DER)						
Monetary Investment	DER Interface / Control Systems	Communication Equipment	DER <u>/</u> DG Interconnection Equipment	Distributed Generation (DG)	Renewable DER	Stationary Electricity Storage	Plug-in-Electric Vehicles		
ARRA	-	-	-		-		-		
Cost Share	-				-		-		
Total	-				-		-		
	and Costs that do	not align with the c	ategories listed ab	ove:					
Electric Tran	smission								
Monetary Investment	Back Office Systems	Advanced Applications (Software)	Dynamic Rating Systems	Communication Equipment	PDC	PMU	Line Monitoring Equipment		
ARRA	-	-	-		-		-		
Cost Share	-				-		-		
Total	-				-		-		
<u></u>		not align with the c	atogorios listod ab						

-

-

-

Table 4. Installed Cost (\$000) Smart Grid Program Equipment

-

-

-

Electricity Infrastructure Assets

Assets refer to transmission and distribution equipment that when assembled together provide smart grid functionality. Smart grid assets improve the ability to automate and remotely control grid operations, and also provide customers with real-time data so that they can make informed decisions about their energy consumption. For instance, AMI gives the utility the ability to conduct real-time load measurement and management, and it gives the customer the real-time data required to optimize their electricity use in order to reduce cost.

Furthermore, assets can include energy resources that either deliver electricity or contribute to load reduction. Energy resources that will interact with the grid include: distributed generation, stationary electricity storage, plug-in electric vehicles, and smart appliances. These resources can communicate and make operating decisions based on signals from the grid or customers. TPOs will collect information regarding the deployment of these types of devices. Potential data requirements are described in Table 5.

Asset Type	Description of Information	Illustrative Examples
Transmission & Distrib		
AMI Systems	Number of customer end points included in a network involving smart meters, communications and data management systems designed to collect electricity usage and related information from customers and deliver information to customers. This information is reported by customer class, and would include the general features or capability of the devices. It should also be reported as a percentage of service territory covered.	 50,000 residential smart meters that record electricity consumption in 15- minute intervals. Meters include remote connection/disconnection capability. (10% of service territory covered) A wireless mesh communications network covering 100 square miles Meter data management system
Customer Display Device or Portal	Number of customer end points that have devices or portals through which energy and related information can be communicated to and from utilities or third party energy service providers. This information would be reported by customer class and include the general features or capability of the devices. Connection to other appliances included.	 10,000 residential energy displays including real-time and historical consumption and pricing information Web-based energy information portal available to 100,000 residential and small commercial customers
Distribution Automation	Number of automated distribution feeders or DA devices that can be used to perform automatic switching, reactive device coordination, or other feeder operations/control.	 20 automated distribution feeders 40 advanced fault detectors Integration with Distribution Management System for feeder optimization Equipment health sensors
Advanced Interrupting Switches	Number of switches or technology that can detect and clear faults more quickly or without reclosing.	 10 advanced feeder switches
Power Quality Monitors	Number of devices monitoring power quality within the distribution system. This capability could also be included as a smart meter feature.	 100 PQ monitors deployed along 10 distribution feeders
Substation Automation	Number of substations or substation devices employing advanced sensors, communications, information processing or actuators. This could include equipment loading and health monitors.	 Five automated substations, including LAN and gateway hardware, breaker controls and online transformer monitoring - Common Information Model (CIM) compliant
Phasor Measurement Units (PMUs)	Number of PMUs deployed, and or the scope of the power system being monitored. This information could also include data concentrators, information management systems, or analytical tools for utilizing phasor data. Integration with NASPInet.	 10 PMUs 3 phasor data concentrators Software to analyze phasor data and identify abnormal conditions
Transmission Line Monitors	Number of monitoring devices that can measure transmission line loading, operating temperature, ground clearance, or other parameters that would affect capability.	 25 monitors installed on 345 kV transmission lines providing dynamic line ratings to grid operators
Substation Transformer Monitors	Number of substation transformers with monitoring devices that measure station transformer loading, operating temperature, oil condition, or parameters that affect capability.	• 10 monitors installed on 345/115 kV substation transformers monitoring operating temperature and oil condition
Controllable/ Regulating Inverters	Number of inverters that can be coordinated or managed collectively, or provide grid support.	 500 regulating PV inverters to manage feeder voltage

Table 5. Build Metrics – Electricity Infrastructure Assets	

Asset Type	Table 5. Build Metrics – Electricity Infrastruct	Illustrative Examples
Fault Current Limiter	Number of fault current limiting devices. This information would include the nature of the application.	 Three fault current limiters applied in transmission substations to avoid breaker overloading
Advanced Analysis/Visualization Software	Systems installed to analyze grid information or help human operators.	 Phasor data management systems Wide area monitoring and control systems
High Temperature Superconductor (HTS) Cable	Number of HTS cable systems. These could be used for capacity or applications such as Very Low Impedance (VLI) to control impedance and power flow.	 Two HTS cable systems, including length and capacity
Energy Resources		
Distributed Generation	The amount of DG installed as part of the project, including resource type, capacity (total MW), number of units, ownership, expected capacity factor, regulating capability, and point of interconnection	 50 MW of PV installed on commercial rooftops, interconnected behind the meter but can export to the grid; 250 kW to 500 kW typical system size; no regulating capability from inverters; expected capacity factor of 15%.
Large Scale Renewable Energy	The amount of large scale renewable energy (e.g., wind farms, solar)	 250 MW of concentrating solar power interconnected on transmission; expected capacity factor of 27% 350 MW wind farm interconnected on transmission; expected capacity factor of 25%
Stationary Electricity Storage	The amount of stationary electricity storage installed as part of the project, including resource type, capacity (MVA), energy stored (MWh), number of units, and point of interconnection	 10 MW of neighborhood energy storage (100 units at 100 kW each) connected to primary distribution 15 MW energy storage system located at a 34 kV substation
Plug-in Electric Vehicles	The number of PEVs in operation, along with a description of the charging points	 100 customer-owned PEVs charged at residences at customer discretion 50 commercially owned PEVs charged at fleet charging stations at night
Smart Appliances/Devices	Number of appliances/devices by type (type refers to the class of appliance that can be controlled or receive pricing data. For example, thermostats, pool pumps, clothes washers/dryers, water heaters, etc.)	 1,000 smart refrigerators that can be cycled by the utility or a third party energy service provider 10,000 residential thermostats that can respond to pricing and load control signals from the utility
Load Served by Microgrids	The number of customers and aggregate load (by class) served by microgrids. Microgrids are defined as electrical systems that include multiple loads and distributed energy resources that can be operated in parallel with the grid or as an electrical island.	 200 residential and small commercial customers with a total peak load of 10 MW, served by a neighborhood microgrid including distributed PV and energy storage An institutional campus with a peak load of 5 MW, served by a combined heat and power generator and energy storage

Policies and Programs

There are also policies and programs that may be implemented along with smart grid assets in order to obtain the maximum benefits possible. For example, customers with access to dynamic pricing programs have an incentive to use the information provided by AMI/smart meters. TPOs will collect information regarding the deployment and adoption of these types of policies and programs. Examples of these policies and programs include, but are not limited to:

- Demand Response;
- Dynamic Pricing;
- Critical Peak Pricing;
- Distributed Resource Interconnection Policy; and
- Policy/Regulatory Progress for Rate Recovery.

Potential data requirements are described in Table 6.

	Table 6. Build Metrics – Policies	and Programs
Policy/Program	Description of Information	Illustrative Examples
Pricing and Load Management	Program information by customer class. Also include information about participation rates.	 Real-time pricing Direct load control Critical Peak Pricing
Distributed Energy Resources (DER) Interconnection Standard	Standard process for interconnection requests and approval. This could vary by size and DER type.	 DER interconnection standard for inverter based resources less than 1 MW DER interconnection standard for resources greater than 1 MW
Net Metering for DER	Policy that allows for bidirectional metering and credit for DER export.	 Net metering policy with credits for residential DERs with capacity less than 20 kW
DER Export Pricing Tariff	Retail tariff that pays DER owners for electricity produced and exported.	 DER production tariff for residential and commercial systems less than 20 kW
Feed-in Tariff	Information about feed-in tariffs for renewable energy that may apply, including resource characteristics and pricing.	 Feed-in tariff for clean energy resources at a rate of 35 cents per kWh with a per customer cap of 1 MW.
Renewable Portfolio Standard	Information about renewable portfolio standards that may apply.	 RPS target of 20% by 2020, with information about qualifying resources.
Energy Efficiency Resource Standard	Information about energy efficiency resource standards that may apply.	• EERS target of 10% of demand growth by 2015, with program details.
Rate Decoupling	Information describing rate decoupling or similar structures designed to eliminate utility disincentives associated with reduced electricity sales.	 Retail rate decoupling program details. True-up mechanism for fixed costs.
Financial Investments	Total annual private equity and venture- capital funding of smart-grid startups located in the U.S.	 \$5B of public equity issued by companies \$2B of private equity investment in smart grid startup companies
Smart Grid R&D	R&D programs related to smart grid, including annual program budgets.	 \$200M in smart grid R&D between federal and state research organizations
Rights to Customer Data	State law requires that customer usage information is available to third parties.	 Hourly data for 7,000 customers is shared with two third party energy providers

Table 6. Build Metrics – Policies and Programs

Job Creation and Marketplace Innovation

The *Smart Grid System Report*⁸ suggests that new jobs, products, services, and markets will develop in response to the growth of the smart grid. Smart grid investments can enable new products and services by providing the basis for a system where all customers are dynamically connected, much like the Internet. Predicting all the possible innovation will be difficult, but like the Internet, the smart grid will be a foundation which can spur potentially endless innovation once the key infrastructure is in place. The measurement of marketplace innovation will be qualitative, and the measurement of job creation and retention will be quantitative.

Recipients will report new programs and joint ventures with suppliers, as well as novel methods of taking advantage of the functionality that the smart grid provides. Potential data requirements are listed in Table 7.

Market Category	Measure	Regional Demonstration	Energy Storage Demonstration	RDSI
Products	Number of Products	-	-	-
	Customers with Access	-	-	-
	Customers Adopting	-	-	-
	Number of Services	-	-	-
Services	Customers with Access	-	-	-
	Customers Adopting	-	-	-
Pricing Programs	Number of Programs	-	-	-
	Customers with Access	-	-	-
	Customers Participating	-	-	-

Table 7. Build Metrics – Marketplace Innovation

DOE issued jobs reporting guidance in February 2010, which is addressed in the rest of this section.⁹ The OMB requires Recipients to report a subset of jobs created by ARRA funds on FederalReporting.gov within 10 business days of the end of each calendar quarter. In order to capture comprehensive job figures, DOE requires SGDP/RDSI Recipients to report additional jobs created and retained (below) to their TPOs within 30 business days of the end of each calendar quarter.

- OMB requires Recipients of Federal contracts to report jobs created by prime entities only. DOE requires Recipients to report jobs created at both the prime recipient/contractor and sub-recipient/subcontractor level.
- DOE requires Recipients to report jobs created from both ARRA and non-ARRA funds.
- Appendix B provides the Department of Labor defined job categories that have been combined to create the eight higher level categories in Table 8.

⁸ U.S. Department of Energy, July 2009 <u>http://www.smartgrid.gov/sites/default/files/resources/systems_report.pdf</u>

⁹ http://www.oe.energy.gov/SGIG Corporate Reporting Guidance-FNL.pdf

Tuble 6. Dulla Med	iles jobs cicalea ana	ite tuille a	
Job Category	Regional Demonstration	Energy Storage Demonstration	RDSI
Managers	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Engineers	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Computer-related Occupations	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Environmental and Social Scientists	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Construction, Electrical, and Other Trades	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Analysts	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Business Occupations	-	-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-
Recording, Scheduling, Computer Operator	_	-	_
Occupations		-	-
Prime Recipient	-	-	-
Sub-Recipient	-	-	-
Vendor	-	-	-

Jobs reported to DOE will encompass all direct jobs created during the reporting timeframe as a result of ARRA funding. Jobs created and retained before receiving ARRA funds should not be included. In addition, DOE will allow Recipients to report indirect jobs¹⁰ created or retained on a voluntary basis. DOE will verify job data reported against other reported data from Recipients, including invoices and financials. If Recipient's reported data cannot be verified, then DOE will work with the Recipients to resolve job data issues. Jobs created and retained

¹⁰ Indirect jobs are the "employment impact on materials suppliers and central service providers." OMB Memo M-09-21, June 22, 2009 <u>http://www.whitehouse.gov/omb/assets/memoranda_fy2009/m09-21.pdf</u>

should be reported in full-time equivalents (FTEs). Jobs reported to TPOs should be expressed in OMB's measurement of quarterly FTEs.

DOE has identified formulas (below) for calculating FTEs and for calculating the cost share percentage for the project.

- <u>FTEs from ARRA Funds:</u> ARRA-funded FTE = Total Hours Worked in Jobs Created from ARRA Funds / Number of Hours in Sector Specific Full-time Schedule
- <u>Total FTEs</u> (from ARRA + non-ARRA funds) <u>from ARRA-Supported Project:</u> Total FTE = Total Hours Worked on ARRA-Supported Project / Number of Hours in Sector Specific Full-time Schedule
- <u>Cost Share:</u> Cost Share = (Total Cost of ARRA-Supported Project – ARRA Funds) / Total Cost of ARRA-Supported Project Or in other terms, Cost Share = Non-ARRA funds invested in ARRA-Supported Project

For example, Table 9 assumes the Recipient is preparing its second report and defines a full time schedule as 2080 hours per year or 520 hours worked per quarter.

ARRA Funded Employees	Period 2 (10/1 – 12/31)			
Employee 1	520			
Employee 2	520			
Employee 3	260			
Total:	1,300			
Full Time Schedule per Employee	520			
	Funded FTEs:			
1300/520	= 2.5 JOBS			
Non-ARRA Funded Employees	Period 2 (10/1 – 12/31)			
Employee 1	520			
Employee 2	520			
Employee 3	260			
Employee 4	52			
Total:	1,352			
Full Time Schedule per Employee	520			
Total Non-ARRA FTEs:				
1352/520 = 2.6 JOBS				
<u>Total FTEs:</u> 2.5 ARRA Funded FTEs + 2.6 non-ARRA Funded FTEs = 5.1				
Total Cumulative Headcount = 7				
3 ARRA Funded Headcount + 4 Non-ARRA Funded Headcount				

Table 9. Example of Job Calculations for internal DOE Reporting

DOE jobs reporting requires Recipients to provide a 'Total Cumulative Head Count' on a

monthly basis. Total Cumulative Head Count allows DOE to accurately reflect the direct impact of ARRA funds on the American workforce. This metric reflects the number of unique individuals that have been compensated for work under ARRA *since the inception of an ARRA project* (i.e. full-time, part-time, or temporary). This number will be the number of unique workers that worked the" total hours worked in jobs created from ARRA funds," which is used in the FTE calculations. Total unique head count for any performance period will be greater than or equal to the FTE figure reported to DOE.

Recipients are to report the number of cumulative head-count based on the number of unique identifiers in payroll systems indicating the number of people paid using ARRA funding. Examples of unique identifiers may include social security numbers or work permit numbers. While these unique identifiers will not be collected by the DOE, Recipients should maintain payroll records with unique identifiers that track the number of distinct individuals that received compensation. In the case of an audit, Recipients will be expected to demonstrate that the number of distinct identifiers exists in their payroll records.

• <u>Total Cumulative Head Count</u> = Cumulative number of employees hired on a full-time, part-time or temporary basis to work on an ARRA supported project

3.2 Measurement of Smart Grid Impact - What was the Outcome?

The Impact Metrics described in Table 10 are measurements of how the smart grid works. Electricity infrastructure assets in conjunction with the policies and programs will activate smart grid functionality that will modernize the grid and provide enhanced sensing, communication, information processing, and control to the utility. The new functionality will provide benefits which can be quantified and monetized to determine the value of the project or the overall program. The Data Analysis Team will use the Impact Metrics to conduct a quantitative cost-benefits analysis.

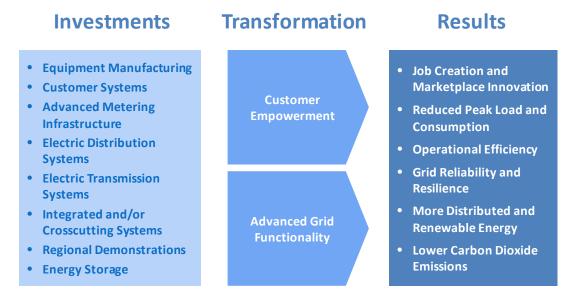
In order to ensure consistent reporting, quantification, and monetization of benefits, the Data Analysis Team will apply a benefit analysis framework (see Appendix C). This framework serves as the starting point for a dialogue between the Data Analysis Team and each Recipient to determine the best approach for calculating benefits based on each project's advanced grid functionality. DOE's algorithms for determining these benefits are in the report *Methodological Approach for Estimating the Benefits and Costs of Smart Grid Demonstration Projects.*¹¹

These algorithms will be customized so that the Impact Metrics finalized between the Data Analysis Team and each Recipient can be used to most appropriately calculate project benefits. The Data Analysis Team expects to iterate with each of the Recipients to establish consistency among the projects with respect to calculating benefits.

The framework (summarized in Appendix C) identifies the assets implemented as part of the project, the functionality that is activated due to those assets, and the benefits that can be realized as a result of new functionality.

¹¹ Co-funded by DOE and Electric Power Research Institute (EPRI), January 2010 <u>http://www.smartgrid.gov/teams</u>

N destant e	Table 10. Impact Meth	
Metric	Description of Information	Illustrative Examples
Customer	Load data and electricity cost by customer	 Hourly load data by customer
Electricity Usage	class, including tariff and/or SIC code	Monthly customer electricity costs
Utility O&M Costs	Activity based cost for relevant utility costs	 Meter reading Distribution operations and maintenance Transmission operations & maintenance Substation operations and maintenance Customer care/call center operations
Equipment Failures	Incidents of equipment failure within the project scope	 Line transformer failures due to winding deterioration Circuit breaker bushing failure Underground cable failure
Power Quality Incidents	The number of incidents that power quality exceeded set tolerances (e.g., voltage surges sags, voltage impulses, or harmonic distortion). Incidents could be measured by the project or reported by customers.	 Incidents of low voltage on distribution reported by smart meters Customer complaints of equipment tripping
Reliability Indices	IEEE Std 1366 [™] -2003 IEEE reliability indices including SAIDI, SAIFI, CAIDI, MAIFI	 SAIDI, SAIFI, CAIDI, MAIFI for the project infrastructure
Substation Load	Substation loads for those substations involved in the project (Projects demonstrating Smart Grid benefits at the feeder and/or substation level need to monitor the effects at the level at which they could be measured.)	 Hourly readings for real and reactive power
Substation Overloads	Incidents when substation equipment load exceeded normal ratings	 Hours that the total transformer loading exceeded normal nameplate rating Percentage of time that the substation load exceeded planning criteria
Transmission Line Load	Transmission line loads for those lines involved in the project	 Hourly readings for real and reactive power for lines involved in the project
Transmission Line Overloads	Incidents when transmission line load exceeded normal rating	 Hours that the total line loading exceeded normal rating Percentage of time that the line load exceeded criteria
Deferred Transmission Capacity Investment	The new transmission capacity deferred as a result of smart grid information or operations	 A \$10 million transmission line upgrade was deferred two years due to dynamic line rating A \$500 thousand substation transformer upgrade was deferred for a year by implementing demand response
Distribution Feeder Load	Hourly feeder loads (real and reactive) for those feeders involved in the project	 Hourly readings for real and reactive power for those feeders involved in the project
Distribution Feeder Overloads	Incidents when distribution feeder load exceeded normal rating	 Hours that the total line loading exceeded normal rating Percentage of time that the line load exceeded planning/operations criteria


Table 10. Impact Metrics

Metric	Description of Information	Illustrative Examples
Deferred	The new distribution capacity deferred as a	• A \$1 million distribution feeder upgrade
Distribution	result of smart grid information or	was deferred for two years due to better
Capacity	operations	managing voltage along the feeder
Investment		 A distribution substation upgrade was
		avoided due to real-time load transfer to a
		neighboring substation during peak times
T&D Losses	Electricity losses of infrastructure within	 Transmission line losses were reduced by
	the project scope	5% by implementing conservation voltage reduction
		 Feeder peak losses reduced by dispatching energy storage during peak times
Power Factor	Power factor of the system within the	Distribution feeder power factor improved
	project scope	to 0.99 following voltage regulation by
		DERs
Generation	Capacity factor of electricity generation	 Generation capacity factor of 33%
Capacity Factor	relevant to the project and its area	
Deferred	MW of generation capacity deferred, along	 350 MW natural gas peaker plant
Generation	with estimated cost, and total generation	deferred; capital carrying charge of \$60
Capacity	investment deferred	million per year
Investment		
Energy Supplied	MWh of electricity produced by renewable	• 1.5 GWh of electricity from wind
from Renewable	sources	generation
Resources		300 MWh of electricity from rooftop PV
Energy Supplied	MWh of electricity produced by distributed	• 200 MWh of electricity from combined
from Distributed	sources	heat and power generation
Resources	Identification of mater tempering and (or	• Meters with retential terrorarian
Electricity Theft	Identification of meter tampering and/or electricity theft	Meters with potential tampering
Vahiela Emissione	· ·	Meters with suspect readings
Vehicle Emissions	Reduction in polluting emissions from utility service fleet vehicles, and reduction	 Reduction in vehicle miles travelled associated with automation and
	in vehicle miles travelled associated with	
	operational efficiency gains and	operational efficiency
	automation	
L	uutomutom	

Table 10. Impact Metrics (cont.)

4.0 Analyzing & Communicating Results

The Smart Grid Programs are expected to transform how customers interact with their utility and how utilities operate the grid, delivering several important results (Figure 2).

Figure 2. Smart Grid Program Investments, Transformation, and Results

The Data Analysis Team will use the data collected from Recipients to track investments, monitor and measure transformation, and report the results of the smart grid demonstrations. The Data Analysis Team will analyze the individual project data and a combination of data from all the projects to build a foundation of reliable facts and insights for the public. The information will be grouped by project type allowing the results to be examined on a programmatic basis.

DOE will communicate the impact of the smart grid investments in separate topics, namely:

- 1. Job Creation and Marketplace Innovation;
- 2. Peak Demand and Electricity Consumption;
- 3. Operational Efficiency;
- 4. Grid Reliability and Resilience;
- 5. Distributed Energy Resources and Renewable Energy; and
- 6. Carbon Dioxide Emissions.

For example, if the public is interested in how much carbon dioxide (CO₂) was reduced, DOE will be able to share the results for that particular topic. Those interested in investing in the smart grid can use these topic results to understand where other investments or demonstrations should focus. These topics will also help substantiate the impact of the nascent smart grid technologies and help DOE understand how and why the projects accomplished the results that they achieved from the smart grid technologies that were deployed.

4.1 Investments

The Data Analysis Team will track the total investment (ARRA and Recipient cost share) for SGDP/RDSI projects over the next five years (Table 11).

SGDP/RDSI	Investment in millions					
30077031	2010	2011	2012	2013	2014	Total
Regional Demonstration	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Energy Storage Demonstration	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
RDSI	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -

Table 11. Investments by Smart Grid Project Categories

The investments will fund the deployment of technologies and tools that contribute to the development of a modernized transmission and distribution system, and enable the active participation of customers. The SGDP/RDSI projects will accelerate the spread of these customer-related and grid-related assets throughout the U.S. (Figure 3). The Data Analysis Team will measure the penetration rates of smart grid technologies, tools and techniques resulting from SGDP/RDSI projects.

Customer		Key Assets	Penetration Rate
Empowerment	Nu	mber of in-home energy displays	- %
Over XX million	Nu	mber of customer web portals	- %
 vy different pricing	Nu	mber of customers with smart appliances	- %
programs tested	Nu	mber of PEV charging stations	- %
• Over \$X billion in	Nu	mber of smart meters	- %
related investment	Nu	mber of meter data management systems	- %
	_		
Advanced Grid		Key Assets	Penetration Rate
and the second se			
Functionality	Ę	Number of substations with automation	- %
	ution	Number of substations with automation Number of feeders with sensing/automation	- % - %
 Over XX,000 advanced grid devices deployed 	stribution		
 Over XX,000 advanced grid devices deployed YY grid management 	Distribution	Number of feeders with sensing/automation	- %
 Over XX,000 advanced grid devices deployed YY grid management systems in operation 		Number of feeders with sensing/automation Number of distribution management systems	- % - %
 Over XX,000 advanced grid devices deployed YY grid management systems in operation 		Number of feeders with sensing/automation Number of distribution management systems Number of advanced feeder switches	- % - % - %
 YY grid management systems in operation Over \$X billion in 	Transmission Distribution	Number of feeders with sensing/automation Number of distribution management systems Number of advanced feeder switches Number of phasor measurement units	- % - % - %

Figure 3: Assets Deployed for Customer Empowerment and Advanced Grid Functionality

4.2 Transformation of the Electric Power Sector

Assets deployed as part of the Smart Grid Programs will help empower electricity customers and enable advanced grid functionality for utilities (Figure 3 above). Both sides of the supplydemand relationship will gain a significant degree of information and control with which to increase the value of electricity.

Electricity Customer Empowerment

Many projects will be aimed at enabling smart grid functions on the customer-side-of-the-meter. Energy displays, information portals, smart appliances and distributed energy resources will provide customers with the information and energy management capability they need to become empowered energy partners rather than passive electrical load. Customers will be able to make informed decisions about when and how to satisfy their energy needs. They will also be positioned to participate actively in new energy programs and markets. The Data Analysis Team will work with SGDP/RDSI Recipients to identify data requirements that will allow for an aggregate assessment of how consumers, as a whole, altered their consumption, as well as a more categorical reporting of response at a disaggregated level of detail.

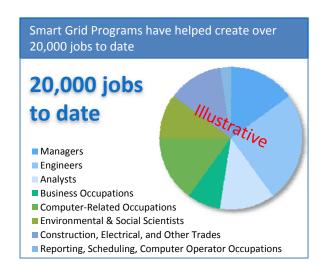
Advanced Grid Functionality

In addition to customer empowerment, the Data Analysis Team will monitor the transformation of the grid in terms of the advanced functionality realized and the related benefits. The Data Analysis Team will apply a standard methodology to identify functions and benefits for each of the projects. For instance, two projects might share a common idea of deploying smart metering and communications along with a dynamic electricity pricing program. Team A might call this a "real time load management program", and that term will have a rich meaning to Team A. Team B might say "this is part of our automated demand response program." On the surface, the two teams might appear to be talking about two different things. However, upon closer inspection, both projects involve the same kinds of assets (e.g., smart meters, communications, and portals) and a program where they are sending pricing signals or commands to customers. Using the framework described in Appendix C, both projects would involve "Real Time Load Measurement & Management" as a function. Both of the projects would also involve a policy/program that the Data Analysis Team would categorize as "Demand Response."

4.3 Results

The customer empowerment and advanced grid functionality supported by the Smart Grid Programs will deliver results that DOE will communicate within six topics. These are illustrated in the following sections.

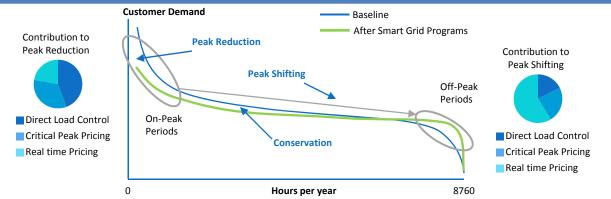
Job Creation and Marketplace Innovation

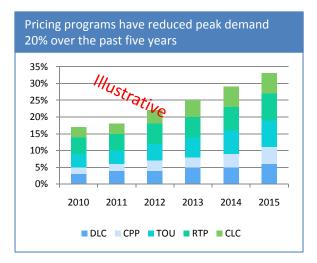

Key metrics track the economic impact of the Smart Grid Programs		
Total Jobs Created and Retained (number)	x,xxx,xxx	
New Programs and Policies (number)	xx	
Customers with Access to New Pricing Products (number)	x,xxx,xxx	
 Retail Infrastructure: number of DG Interconnections number of Customer Portals number of Smart Appliances number of PEV Charging Stations 	XXX,XXX XXX,XXX XXX,XXX XXX,XXX	

Electricity transactions in new markets is growing for all types of pricing programs Electricity Transacted in New Markets (kWh) PEV Charging Stations Smart Appliances DG Interconnections - 1,000 2,000 3,000 CPP TOU RTP DLC

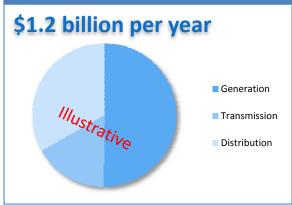
The Smart Grid Programs will create jobs and support the deployment of new products and services. The implementation of technology and infrastructure, and the associated transformation of electricity as a service will stimulate innovation in the marketplace. New offerings will emerge to help customers manage electricity use. New resources such as distributed renewable generation and plug-in electric vehicles will require new sales channels, installation, maintenance and management services.

The Smart Grid Programs have the potential to contribute to long term growth in economic activity associated with smart grid. Key aspects of this growth will be reflected in continued investment by utilities in smart grid equipment and services, venture capital investments in related start-ups and economic activity associated with new products and services. Utilities, contractors, equipment manufacturers, and energy services providers will have new jobs to be filled by a skilled and highly technical workforce.

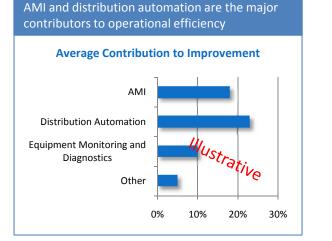



Peak Demand and Electricity Consumption

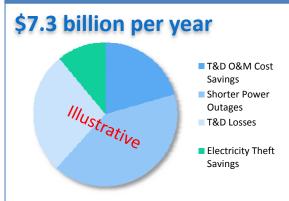
Key Assets and Customer Devices that will contribute to Demand Management		
Smart meters (units)	x,xxx,xxx	
Customer energy displays or customers with portal access (number)	x,xxx,xxx	
Distribution Automation Systems (number)	x,xxx	
Grid-responsive, non-generating demand-side devices purchased (units)	x,xxx,xxx	


Smart meters, energy displays and portals, and smart appliances will help customers make informed decisions about the electricity they use. These technologies, combined with new pricing programs and load control techniques will help utilities manage peak power demand and improve the utilization of generation, transmission and distribution assets. Customers will benefit from being able to manage their electricity consumption in ways consistent with their personal and business priorities, considering factors such as total cost, convenience, and resource composition.

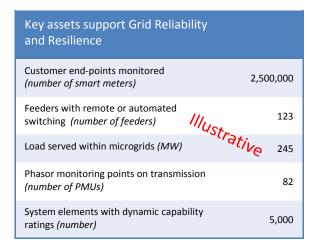
Demand management has enabled deferral of \$1.2 billion in capital upgrades each year


June 2010

Operational Efficiency



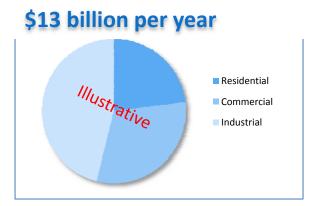
Smart Grid Programs are supporting significant reductions in operating costs and response time **Key Operational Improvements** 100% 80% 60% 40% 20% 0% T&D O&M Restoration T&D Losses Electricity Time Theft Cost Baseline After Smart Grid Programs


Large portions of today's electricity infrastructure require a high degree of manual operation. The advanced sensing, communications, information processing and control created by the Smart Grid Programs will help utilities gain efficiencies that can be leveraged to help reduce operating costs and improve responsiveness to customers. New technologies such as advanced metering infrastructure, distribution automation and phasor measurement units will help utilities and grid operators build, operate and maintain an electricity infrastructure that is more resource efficient, reliable and environmentally friendly, creating significant value for stakeholders over the long term. The data and metrics for this area will show how the ARRA-funded projects have supported this.

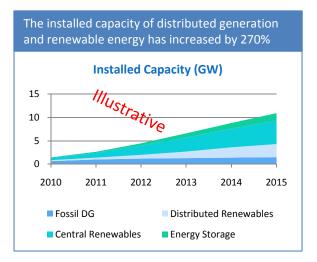
Operational efficiency gains have produced \$7.3 billion worth of value each year



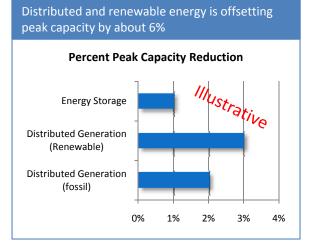
Grid Reliability and Resilience


Smart Grid Programs have shown reliability improvements of about 20%

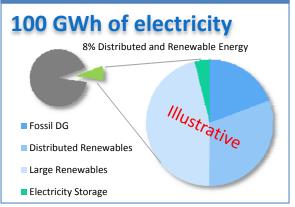
Power interruptions have a significant economic impact on electricity customers, resulting in billions of dollars in lost productivity each year. Improving the reliability and resilience of electric transmission and distribution systems will reduce the frequency and duration of power interruptions experienced by customers. This reliability improvement will translate to economic value as customers from the residential, commercial and industrial classes face fewer and shorter disruptions to their lives and businesses. The economic value preserved is determined based on the studies that have estimated the value of lost production due to the impact and duration of power interruptions on specific customer classes.



Reliability improvements have prevented \$13 billion in lost economic value each year

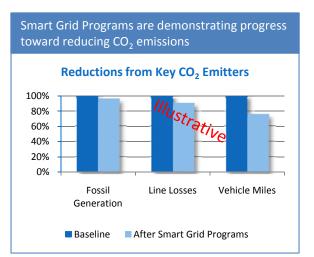

Distributed Energy Resources and Renewable Energy

The number of distributed and renew resources is growing	able energy
DG Systems Installed (number)	XXX,XXX
Renewable Energy Systems Installed (number)	xxx,xxx
DER Interconnections (number)	x,xxx,xxx
Plug in Electric Vehicle Interconnections (number)	хх,ххх

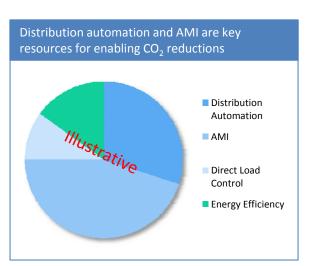


The monitoring, coordination and control capabilities supported by smart grid technologies will enable power grids to accommodate an increased number and variety of generation (including distributed renewable energy and combined heat and power, and central and remote renewable energy systems) and storage options. Integrating these resources efficiently and reliably provides various benefits such as lower peak power demand, flatter load curves, and lower electricity losses – all of which contributes to lower costs for utilities and their customers.

The contribution of renewable energy to meeting our overall electricity needs is expected to grow rapidly over the coming years. Distributed fossil generation and energy storage will contribute proportionally more to reducing peak capacity from central sources than will renewable energy. Smart grid systems will allow the full benefits of this wide variety of generation options to be captured.



Distributed and renewable energy has produced 100 GWh of electricity this year


Carbon Dioxide Emissions

Key Metrics that contributed to lower (Emissions	CO ₂
Reduced Fossil Generation (MWh)	х,ххх,ххх
Reduced Line Losses (MWh)	x,xxx,xxx
Reduced Vehicle Miles Traveled (miles)	x,xxx,xxx
Plug in Electric Vehicle (PEV) Interconnections (number)	xx,xxx

The smart grid will play a key role in facilitating the reduction of carbon dioxide (CO_2) emissions. This will be accomplished by enabling higher penetrations of renewable energy, reducing utility vehicle emissions through automation, improving the ability of utilities to manage demand thereby reducing power plant operations, and by increasing the energy efficiency of the transmission and distribution system. By supporting the adoption of plug-in electric vehicles, the smart grid will also contribute to reductions in fossil-based transportation fuels.

Grid-related technologies such as advanced metering infrastructure and distribution automation, combined with customerrelated technologies such as energy information systems and smart appliances, will help deliver significant reductions in CO₂.

Appendix A: Data Collection and Reporting Templates

Build Metrics and Impact Metrics will be reported for all projects. However, Recipients will be expected to report only those metrics that are relevant for their project.

Tables A-1. Build Metrics

Generally Not Applicable to SGDP Energy Storage Projects

			0,0000		
A 1.1. BUILD METRICS: AMI and Customer System Assets					
Metric	Project Value	System Value	Remarks		
End-Points (meters)	#	#	Total meters in planned implementation		
Portion of Customers with AMI	•	•			
Residential	%	%			
Commercial	%	%	Customers with AMI by class		
Industrial	%	%			
Metering Features					
Interval Reads of 1 hour or Less	Interval	Interval	Indicate the read interval of meters		
Remote Connection/Disconnection	Yes/No	Yes/No			
Outage Detection/Reporting	Yes/No	Yes/No	Indicate if meters will be used for this		
Power Quality Monitoring	Yes/No	Yes/No	purpose		
Tamper Detection	Yes/No	Yes/No			
Backhaul Communications Network	Description	Description	Network characteristics from collectors to head-end		
Meter Communications Network	Description	Description	Network characteristics from collectors to meters		
Headend system	Description	Description	Characteristics of system		
Meter Data Management System	Description	Description	Characteristics of system		
Meter Data Analysis Systems	Description	Description	Software for analyzing and manipulating meter data		
Enterprise Systems Integration					
Billing	Yes/No	Yes/No			
Customer Information System	Yes/No	Yes/No			
Outage Management System	Yes/No	Yes/No	Indicate if AMI will be integrated with		
Distribution Management System	Yes/No	Yes/No	system		
Others	Yes/No	Yes/No			
Home Area Network	Description	Description	Network characteristics within customer premise		
In-Home Displays	#	#	Number of customers with a dedicated energy display		
Web Portal	#	#	Number of customers with access to a web portal		
Energy Management Devices/Systems	#	#	Number of customers with an energy management device or system		

Guidebook for ARRA SGDP/RDSI Metrics and Benefits

A 1.1. BUILD METRICS: AMI and Customer System Assets				
Metric	Project Value	System Value	Remarks	
Direct Load Control Devices	#	#	Number of devices that can be cycled or controlled by a utility or third party	
Programmable Controllable Thermostat	#	#	Number of customers with a device	
Smart Appliances	#	#	Number of appliances that can be programmed or can respond to pricing signals or schedules	
	#/	#/	Numbers of other customer devices or	
Other Customer Devices	Description	Description	systems	

A 1.2. BUII	LD METRICS: Pricing	g Programs	
Policy/Program	Project Value	System Value	Remarks
Retail Rate Design and Rate Level			
Flat	Yes/No	Yes/No	
Flat with Critical Peak Pricing	Yes/No	Yes/No	
Flat with Peak-Time Rebate	Yes/No	Yes/No	
Tier	Yes/No	Yes/No	
Tier with Critical Peak Pricing	Yes/No	Yes/No	
Tier with Peak-Time Rebate	Yes/No	Yes/No	
Time-of-Use	Yes/No	Yes/No	 Include program
Variable Peak Pricing	Yes/No	Yes/No	characteristics, customers
Time-of-Use with Critical Peak Pricing	Yes/No	Yes/No	with access, and
Time-of-Use with Peak-Time Rebate	Yes/No	Yes/No	participation rates
Real-Time Pricing	Yes/No	Yes/No	
Real-Time Pricing with Critical Peak Pricing	Yes/No	Yes/No	
Real-Time Pricing with Peak Time Rebate	Yes/No	Yes/No	
Pre-Pay Pricing	Yes/No	Yes/No	1
Net Metering	Yes/No	Yes/No	1
Rate Decoupling	Yes/No	Yes/No	1
Other Programs	Yes/No	Yes/No	1

	A 1.3. BUILD METRICS: Distributed Energy Resources				
Metric	Project Value	System Value	Remarks		
Distributed Generation	#; MW; MWh	#; MW; MWh	Number of units, total installed capacity and total energy delivered		
Energy Storage	#; MW; MWh	#; MW; MWh	Number of units, total installed capacity and total energy delivered		
DG Interface	Description	Description	Characteristics of DG interface or interconnection, including information and control capability for utility		
PEV Charging Points	#	#	# charging points, capacity, total energy transacted		

A 1.4. BUILD METRICS: Electric Distribution System Assets					
Metric	Project Value	System Value	Remarks		
Portion of System with SCADA	%	%	Including distribution substation and feeder monitoring/control		
Portion of System with Distribution Automation (DA)	%	%	Including feeders, substations, and key equipment		
DA Devices			1		
Automated Feeder Switches	#	#			
Automated Capacitors	#	#	Locally or centrally coordinated/operated		
Automated Regulators	#	#	1		
Feeder Monitors	#	#	Including voltage and current sensors		
Remote Fault Indicators	#	#	Detection and reporting of fault location		
Transformer Monitors (line)	#	#	Loading and/or equipment health		
Smart Relays	#	#	Settings can be coordinated with other devices		
DA Communications Network	Description	Description	Characteristics of system, including integration or dependencies with other networks (e.g., AMI)		
Other DA devices	#	#	Characteristics of DA devices		
DA System Features/Application	s				
Fault Location, Isolation and Service Restoration (FLISR)	Yes/No	Yes/No			
Voltage Optimization	Yes/No	Yes/No	Indicate if DA will be used for these		
Feeder Peak Load Management	Yes/No	Yes/No	purposes		
Microgrids	Yes/No	Yes/No			
Other Applications	Yes/No	Yes/No			
Distribution Management System			1		
Integration with AMI	Yes/No	Yes/No	Including loading, voltage and power quality sensing and reporting from meters		
Integration with Outage Management System	Yes/No	Yes/No	Includes outage detection and reporting from OMS		
Integration with Transmission Management System	Yes/No	Yes/No	Interface with high voltage energy management system		
Integration with Distributed Energy Resources	Yes/No	Yes/No	Interface with customer energy management systems and DERs		
Fault Current Limiter	#	#			
Other Distribution Devices	#	#	Characteristics of Distribution devices		

Generally Not Applicable to SGDP Energy Storage Projects

A 1	.5. BUILD MET		nsmission System Assets
Metric	Project Value	System Value	Remarks
Portion of Transmission System Covered by Phasor Measurement Systems	%	%	Including lines, transmission substations, and key equipment
Phasor Measurement System	s	1	
PMUs	#/ Description	#/ Description	Make and model, security measures, consistency with NASPI and synchrophasor standards, substation name, location, nominal voltage level, settings, CEII designation, PT/VT and CT transducer make and model
Phasor Data Concentrators	#/ Description	#/ Description	Make and model, security measures, consistency NASPI and synchrophasor standards, number of PMUs networked
Communications Network	Description	Description	Type and characteristics
Advanced Transmission Appli	cations		Applications utilizing phasor data or other Smart Grid information for transmission operations and planning
Angle/Frequency Monitoring	Yes/No	Yes/No	
Post-mortem Analysis (including compliance monitoring)	Yes/No	Yes/No	
Voltage Stability Monitoring	Yes/No	Yes/No	
Thermal Overload Monitoring	Yes/No	Yes/No	Indicate if Phasor Measurement Systems will be used for these purposes
Improved State Estimation	Yes/No	Yes/No	
Steady-State Model Benchmarking	Yes/No	Yes/No	
DG/IPP Applications	Yes/No	Yes/No	
Power System Restoration	Yes/No	Yes/No	
Dynamic Capability Rating Sys	stems		Systems designed to determine real-time ratings
Transmission lines	#	#	Based on line loading, temperature, sag or other operating parameters
Station Transformers	#	#	Based on equipment loading, temperature, oil condition, or other operating parameters
Other Transmission Equipment	#	#	Other equipment that could benefit from a real- time rating
Other Transmission Devices	#	#	Characteristics of transmission devices

Tables A-2. Impact Metrics

Generally Not Applicable to SGDP Energy Storage Projects

A 2.1. IMPACT METRICS: AMI and Customer Systems				
Metric	Project	System	Remarks	
	Value	Value		
Metrics Related Primarily to	o Economic Be	nefits		
Hourly Customer	kWh	Not	Hourly electricity consumption information (kWh) and	
Electricity Usage	\$/kWh	Applicable	applicable retail tariff rate. The nature of this data will be negotiated with DOE.	
Monthly Customer	kWh	Not	Monthly electricity consumption information (kWh)	
Electricity Usage	\$/kWh	Applicable	and applicable retail tariff rate. The nature of this data will be negotiated with DOE.	
Peak Generation and Mix	MW Mix	MW Mix	Specify intermittent generation by type and amount	
	MW	MW		
Peak Load and Mix	Mix	Mix	Specify controllable load by type	
Annual Generation Cost	\$	\$	Total cost of generation to serve load	
Hourly Generation Cost	\$/MWh	\$/MWh	Aggregate or market price of energy in each hour	
Annual Electricity Production	MWh	MWh	Total electricity produced by central generation	
Ancillary Services Cost	\$	\$	Total cost of ancillary services	
		Not	Includes operations, maintenance, reading and data	
Meter Operations Cost	\$	Applicable	management	
Truck Rolls Avoided	#	Not	Could include trips for meter reading, connection/	
	#	Applicable	disconnection, inspection and maintenance	
Metrics Related Primarily to	o Environment	al Benefits		
Meter Operations Vehicle Miles	Miles	Not Applicable	Total miles accumulated related to meter operations	
CO2 Emissions	Tons	Tons	Could be modeled or estimated	
Pollutant Emissions (SOx, NOx, PM-10)	Tons	Tons	Could be modeled or estimated	
Metrics Related Primarily to	o AMI System I	Performance		
Motor Data Completeness	%	Not	Portion of meters that are online and successfully	
Meter Data Completeness	70	Applicable	reporting in	
Meters Reporting Daily by 2AM	%	Not Applicable	Portion of daily meter reads received by 2AM the following day	

	A 2.2. IMPACT METRICS: Electric Distribution Systems			
Metric	Project Value	System Value	Remarks	
Metrics Related Primarily to	Economic Be	enefits		
Hourly Customer	kWh	Not	Hourly electricity consumption information (kWh) and	
Electricity Usage*	\$/kWh	Applicable	applicable retail tariff rate	
Annual Storage Dispatch*	kWh	Not Applicable	Total number of hours that storage is dispatched for retail load shifting	
Average Energy Storage Efficiency*	%	Not Applicable	Efficiency of energy storage devices installed	
Monthly Demand	\$/kW-	Not		
Charges*	month	Applicable	Average commercial or industrial demand charges	
Distribution Feeder or Equipment Overload Incidents	#	Not Applicable	The total time during the reporting period that feeder or equipment loads exceeded design ratings	
Distribution Feeder Load	MW MVAR	Not Applicable	Real and reactive power readings for those feeders involved in the project. Information should be based on hourly loads	
Deferred Distribution Capacity Investments	\$	Not Applicable	The value of the capital project(s) deferred, and the time of the deferral	
Equipment Failure Incidents	#	Not Applicable	Incidents of equipment failure within the project scope, including reason for failure	
Distribution Equipment Maintenance Cost	\$	Not Applicable	Activity based cost for distribution equipment maintenance during the reporting period	
Distribution Operations Cost	\$	Not Applicable	Activity based cost for distribution operations during the reporting period	
Distribution Feeder Switching Operations	#	Not Applicable	Activity based cost for feeder switching operations during the reporting period	
Distribution Capacitor Switching Operations	#	Not Applicable	Activity based cost for capacitor switching operation during the reporting period	
Distribution Restoration Cost	\$	Not Applicable	Total cost for distribution restoration during the reporting period	
Distribution Losses	%	Not Applicable	Losses for the portion of the distribution system involved in the project. Modeled or calculated.	
Distribution Power Factor	pf	Not Applicable	Power factor for the portion of the distribution system involved in the project. Modeled or calculated.	
Truck Rolls Avoided	#	Not Applicable	Estimate of the number of times a crew would have been dispatched to perform a distribution operations or maintenance function	
Metrics Related Primarily to	Reliability Be	enefits		
SAIFI	Index	Not Applicable	- As defined in IEEE Std 1366-2003, and do not include	
SAIDI/CAIDI	Index	Not Applicable	major event days. Only events involving infrastructure that is part of the project should be included.	
MAIFI	Index	Not Applicable		
Outage Response Time	Minutes	Not Applicable	Time between outage occurrence and action initiated	

	A 2.2. IMPACT METRICS: Electric Distribution Systems			
Metric	Project Value	System Value	Remarks	
Major Event Information	Event Statistics	Not Applicable	Information should including, but not limited to project infrastructure involved (transmission lines, substations and feeders), cause of the event, number of customers affected, total time for restoration, and restoration costs.	
Number of High Impedance Faults Cleared	#	Not Applicable	Faults cleared that could be designated as high impedance or slow clearing	
Metrics Related Primarily to	Environment	al Benefits		
Distribution Operations Vehicle Miles	Miles	Not Applicable	Total mileage for distribution operations and maintenance during the reporting period	
CO2 Emissions	Tons	Tons	Could be modeled or estimated	
Pollutant Emissions (SOx, NOx, PM-10)	Tons	Tons	Could be modeled or estimated	

*These metrics are only applicable to energy storage demonstrations.

	A 2.3. IMPAC	T METRICS: El	ectric Transmission Systems
Metric	Project Value	System Value	Remarks
Metrics Related Primarily to	Economic Be	nefits	
Annual Storage Dispatch*	MWh	MWh	Total number of hours that storage is dispatched for wholesale energy markets or ancillary services
Capacity Market Value*	\$/MW	\$/MW	Capacity value
Ancillary Services Price*	\$/MWh	\$/MWh	Ancillary service price during hours when Storage was dispatched
Annual Generation Cost	Not Applicable	\$	Total cost of generation to serve load
Hourly Generation Cost	Not Applicable	\$/MWh	Aggregate or market price of energy in each hour
Peak Generation and Mix	Not Applicable	MW Mix	Specify intermittent generation by type and amount
Peak Load and Mix	Not Applicable	MW Mix	Specify controllable load by type
Annual Generation Dispatch	Not Applicable	MWh	Total electricity produced by central generation
Ancillary Services Cost	Not Applicable	\$	Total cost of ancillary services
Congestion (MW)	MW	Not Applicable	Total transmission congestion during the reporting period
Congestion Cost	\$	Not Applicable	Total transmission congestion cost during the reporting period
Transmission Line or Equipment Overload Incidents	#	Not Applicable	The total time during the reporting period that line loads exceeded design ratings
Transmission Line Load	MW MVAR	Not Applicable	Real and reactive power readings for those lines involved in the project. Information should be based on hourly loads

	A 2.3. IMPACT	METRICS: El	ectric Transmission Systems		
Metric	Project Value	System Value	Remarks		
Deferred Transmission	\$	Not	The value of the capital project(s) deferred, and the		
Capacity Investments	Ş	Applicable	time of the deferral		
Equipment Failure	#	Not	Incidents of equipment failure within the project		
Incidents		Applicable	scope, including reason for failure		
Transmission Equipment	\$	Not	Activity based cost for transmission equipment		
Maintenance Cost	÷	Applicable	maintenance during the reporting period		
Transmission Operations Cost	\$	Not Applicable	Activity based cost for transmission operations during the reporting period		
Transmission Restoration Cost	\$	Not Applicable	Total cost for transmission restoration during the reporting period		
Transmission Losses	%	Not Applicable	Losses for the portion of the transmission system involved in the project. Could be modeled or calculated		
Transmission Power Factor	pf	Not Applicable	Power factor for the portion of the transmission system involved in the project. Could be modeled or calculated		
Metrics Related Primarily to	Transmission	Reliability			
BPS Transmission Related Events Resulting in Loss of Load (NERC ALR 1-4)	#	Not Applicable	BPS Transmission Related Events Resulting in Loss of Load (NERC ALR 1-4)		
Energy Emergency Alert 3 (NERC ALR 6-2)	#	Not Applicable	Energy Emergency Alert 3 (NERC ALR 6-2)		
Metrics Related Primarily to	Environment	al Benefits			
Transmission Operations Vehicle Miles	Miles	Not Applicable	Total mileage for transmission operations and maintenance during the reporting period		
CO ₂ Emissions	tons	tons	Could be modeled or estimated		
Pollutant Emissions (SOx, NOx, PM-10)	tons	tons	Could be modeled or estimated		
Metrics Related Primarily to	Energy Secur	ity Benefits			
Event Capture and Tracking		-			
Number, Type ,and Size	Events Cause Load Lost	Not Applicable	Causes could include line trips, generator trips, or other large disturbances		
Duration	Minutes/ Hours	Not Applicable			
PMU Dynamic Data	PMU Data	Not Applicable	From related PMUs		
Detection	Application	Not Applicable	Application that detected the event		
Events Prevented	#	Not Applicable	Include reason for prevention		
Metrics Related Primarily to	Metrics Related Primarily to PMU/PDC System Performance				
PMU Data Completeness	%	Not Applicable	Portion of PMUs that are operational and successfully providing data		
Network Completeness	%	Not Applicable	Portion of PMUs networked into regional PDCs		
PMU/PDC Performance	Reliability Quality	Not Applicable			

	A 2.3. IMPACT METRICS: Electric Transmission Systems				
Metric	Project Value	System Value	Remarks		
Communications Performance	Availability	Not Applicable			
Application Performance	Description	Not Applicable	Usefulness of applications, including reliability improvements, markets and congestion management, operational efficiency		

*These metrics are only applicable to energy storage demonstrations.

Appendix B: Group Names for Department of Labor Job Categories

SGP Group	Departmer	nt of Labor Occupation Category
Managers		
	11-1011	Chief executives
	11-1021	General and operations managers
	11-2020	Marketing and sales managers
	11-3011	Administrative services managers
	11-3021	Computer and information systems managers
	11-3031	Financial managers
	11-3051	Industrial production managers
	11-3061	Purchasing managers
	11-3071	Transportation, storage, and distribution managers
	11-9021	Construction managers
	11-9041	Engineering managers
Analysts		
•	13-1081	Logisticians
	13-1111	Management analysts
	13-1199	Business operation specialists, all other
	13-2011	Accountants and auditors
Computer-Rel		
•	15-1011	Computer and information scientists, research
	15-1021	Computer programmers
	15-1030	Computer software engineers
	15-1031	Computer software engineers, applications
	15-1032	Computer software engineers, systems software
	15-1041	Computer support specialists
	15-1051	Computer systems analysts
	15-1061	Database administrators
	15-1071	Network and computer systems administrators
	15-1081	Network systems and data communications analysts
	15-1099	Computer specialists, all other
	15-2031	Operations research analysts
	15-2041	Statisticians
	15-2090	Miscellaneous mathematical science occupations
Engineers		
	17-2051	Civil engineers
	17-2061	Computer hardware engineers
	17-2070	Electrical and electronics engineers
	17-2071	Electrical engineers
	17-2072	Electronics engineers, except computer
	17-2081	Environmental engineers
	17-2112	Industrial engineers
	17-2141	Mechanical engineers
	17-2199	Engineers, all other
	17-3022	Civil engineering technicians
	17-3023	Electrical and electronic engineering technicians
	17-3024	Electro-mechanical technicians
	17-3025	Environmental engineering technicians
	17-3026	Industrial engineering technicians
	17-3027	Mechanical engineering technicians
	17-3029	Engineering technicians, except drafters, all other
	17-3031	Surveying and mapping technicians
SGP Group	Departmen	nt of Labor Occupation Category

Environment	al and Social So	cientists
	19-2040	Environmental scientists and geoscientists
	19-3011	Economists
	19-3020	Market and survey researchers
	19-4061	Social science research assistants
	19-4090	Other life, physical, and social science technicians
Business Occ	upations	
	23-1011	Lawyers
	27-1024	Graphic designers
	27-3031	Public relations specialists
	27-3040	Writers and editors
	33-1000	First-line supervisors/managers, protective service workers
	41-4011	Sales representatives, wholesale and manufacturing, technical and scientific products
	41-4012	Sales representatives, wholesale & manufacturing, except technical & scientific products
	43-1000	Supervisors, office and administrative support workers
	43-2000	Communications equipment operators
	43-3000	Financial clerks
	43-4000	Information and record clerks
Recording, Sc	heduling, Com	puter Operator Occupations
	43-5000	Material recording, scheduling, dispatching, and distributing occupations
	43-5041	Meter readers, utilities
	43-5061	Production, planning, and expediting clerks
	43-5071	Shipping, receiving, and traffic clerks
	43-5081	Stock clerks and order fillers
	43-6011	Executive secretaries and administrative assistants
	43-9011	Computer operators
	43-9020	Data entry and information processing workers
	43-9061	Office clerks, general
	43-9071	Office machine operators, except computer
	43-9081	Proofreaders and copy markers
	43-9111	Statistical assistants
	43-9199	Office and administrative support workers, all other
Construction	, Electrical, and	l Other Trades
	47-1011	First-line supervisors/managers of construction trades and extraction workers
	47-2061	Construction laborers
	47-2070	Construction equipment operators
	47-2111	Electricians
	47-2150	Pipelayers, plumbers, pipefitters, and steamfitters
	47-3010	Helpers, construction trades
	47-4011	Construction and building inspectors
	49-2092	Electric motor, power tool, and related repairers
	49-2094	Electrical and electronics repairers, commercial and industrial equipment
	49-2095	Electrical and electronics repairers, powerhouse, substation, and relay
	49-9040	Industrial machinery installation, repair, and maintenance workers
	49-9051	Electrical power-line installers and repairers
	49-9052	Telecommunications line installers and repairers
	49-9069	Precision instrument and equipment repairers, all other
	49-9099	Installation, maintenance, and repair workers, all other
	51-2020	Electrical, electronics, and electromechanical assemblers
	51-2022	Electrical and electronic equipment assemblers
	51-2023	Electromechanical equipment assemblers

Appendix C: Methodology for Analyzing Smart Grid Functions, Energy Storage Applications, and Benefits

As described in Section 3, electricity infrastructure assets can be implemented to modernize the delivery and use of electricity through thirteen functions defined in Table C-1. For energy storage demonstrations, Recipients will submit a list of applications (i.e., uses) and technical performance data required to evaluate each application (see Table C-2 and Sandia National Laboratory's *Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide*¹²).

To determine the impact of the smart grid, DOE identified benefits associated with each of the functions. The energy resources that are enabled by smart grid functions can also provide benefits. DOE identified a list of potential benefits that are categorized as Economic, Reliability, Environmental or Security (see Table C-3). To determine the value of these benefits, they are first quantified in terms of their physical units (e.g., MWh) and then monetized. Table C-4 presents the linkage between assets and functions. Table C-5 shows the relationship between the functions and the benefits realized. All benefits will require an approach for calculating the baseline to be used for comparison and Recipients will be required to report this baseline data.

Quantifying the benefits refers to measuring the effects or outcomes that the project will show. For example, a project may try to minimize peak demand on a feeder. The Recipients could report the demand measured on the feeder before the project was implemented and the demand measured on the feeder after the project was in operation. In most cases, the Recipients will be required to collect and assimilate raw data and then report the outcome as project benefits to the TPO and Data Analysis Team. However, in a few predetermined cases, the Recipient will be required to report raw data, and the Data Analysis Team will process it to determine the outcome. The Data Analysis Team will use a standardized approach to monetize the value, for those benefits that are not in the economic category. In this example, the value of peak load reduction is based on the amount of money saved by eliminating the need to build a new peaker plant.

¹² SAND2010-0815, February 2010 <u>http://www.smartgrid.gov/sites/default/files/resources/energy_storage.pdf</u>

Function	Definition
Fault Current Limiting	Fault current limiting can be achieved through sensors, communications, information processing, and actuators that allow the utility to use a higher degree of network coordination to reconfigure the system to prevent fault currents from exceeding damaging levels.
Wide Area Monitoring, Visualization, & Control	Wide area monitoring and visualization requires time synchronized sensors, communications, and information processing that make it possible for the condition of the bulk power system to be observed and understood in real-time so that action can be taken.
Dynamic Capability Rating	Dynamic capability rating can be achieved through real-time determination of an element's (e.g., line, transformer etc.) ability to carry load based on electrical and environmental conditions.
Power Flow Control	Flow control requires techniques that are applied at transmission and distribution levels to influence the path that power (real & reactive) travels. This uses such tools as flexible AC transmission systems (FACTS), phase angle regulating transformers (PARs), series capacitors, and very low impedance superconductors.
Adaptive Protection	Adaptive protection uses adjustable protective relay settings (e.g., current, voltage, feeders, and equipment) in real time based on signals from local sensors or a central control system. This is particularly useful for feeder transfers and two-way power flow issues associated with high DER penetration.
Automated Feeder Switching	Automated feeder switching is realized through automatic isolation and reconfiguration of faulted segments of distribution feeders via sensors, controls, switches, and communications systems. These devices can operate autonomously in response to local events or in response to signals from a central control system.
Automated Islanding and Reconnection	Automated islanding and reconnection is achieved by automated separation and subsequent reconnection (autonomous synchronization) of an independently operated portion of the T&D system (i.e., microgrid) from the interconnected electric grid. A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources which, as an integrated system, can operate in parallel with the grid or as an island.
Automated Voltage & VAR Control	Automated voltage and VAR control requires coordinated operation of reactive power resources such as capacitor banks, voltage regulators, transformer load-tap changers, and DG with sensors, controls, and communications systems. These devices could operate autonomously in response to local events or in response to signals from a central control system.
Diagnosis & Notification of Equipment Condition	Diagnosis and notification of equipment condition is defined as on-line monitoring and analysis of equipment, its performance and operating environment to detect abnormal conditions (e.g., high number of equipment operations, temperature, or vibration). Automatically notifies asset managers and operations to respond to conditions that increase the probability of equipment failure.
Enhanced Fault Protection	Enhanced fault protection requires higher precision and greater discrimination of fault location and type with coordinated measurement among multiple devices. For distribution applications, these systems will detect and isolate faults without full-power re-closing, reducing the frequency of through-fault currents. Using high resolution sensors and fault signatures, these systems can better detect high impedance faults. For transmission applications, these systems will employ high speed communications between multiple elements (e.g., stations) to protect entire regions, rather than just single elements. They will also use the latest digital techniques to advance beyond conventional impedance relaying of transmission lines.
Real-time Load Measurement & Management	Provides real-time measurement of customer consumption and management of load via AMI systems (smart meters, two-way communications) and embedded appliance controllers that help customers make informed energy use decisions via real-time price signals, TOU rates, and service options.
Real-time Load Transfer	Real-time load transfer is achieved through real-time feeder reconfiguration and optimization to relieve load on equipment, improve asset utilization, improve distribution system efficiency, and enhance system performance.

Table C-1. Definitions of Functions

Function	Definition
Use Optimization	Customer electricity use optimization is possible if customers are provided with information to make educated decisions about their electricity use. Customers should be able to optimize toward multiple goals such as cost, reliability, convenience, and environmental impact.

Table C-2. Overview of Energy Storage Applications

Application	Overview
Electric Energy Time Shift	Involves purchasing inexpensive electric energy, available during periods when price is low, to charge the storage plant so that the stored energy can be used or sold at a later time when the price is high (i.e., arbitrage).
Electric Supply Capacity	Depending on the circumstances in a given electric supply system, energy storage could be used to defer and/or to reduce the need to buy new central station generation capacity and/or to 'rent' generation capacity in the wholesale electricity marketplace.
Load Following	Storage is well-suited to load following for several reasons. First, most types of storage can operate at partial output levels with relatively modest performance penalties. Second, most types of storage can respond very quickly (compared to most types of generation) when more or less output is needed for load following. Consider also that storage can be used effectively for both load following up (as load increases) and for load following down (as load decreases), either by discharging or by charging.
Area Regulation	Most thermal/baseload generation used for regulation service is not especially well-suited to provide regulation, because generation is not designed for operation at part load or to provide variable output. Storage may be an attractive alternative to most generation-based load following for at least three reasons: 1) in general, storage has superior part-load efficiency, 2) efficient storage can be used to provide up to two times its rated capacity (for regulation), and 3) storage output can be varied rapidly (e.g., output can change from none/full to full/none within seconds rather than minutes).
Electric Supply Reserve Capacity	Generation resources used as reserve capacity must be online and operational (i.e., at part load). Unlike generation, in almost all circumstances, storage used for reserve capacity does not discharge at all – it just has to be ready and available to discharge if needed.
Voltage Support	Distributed storage may be especially attractive because reactive power cannot be transmitted efficaciously over long distances. Many major power outages are at least partially attributable to problems related to transmitting reactive power to load centers. So, distributed storage – located within load centers where most reactance occurs – provides voltage support.
Transmission Support	Energy storage used for transmission support improves T&D system performance by compensating for electrical anomalies and disturbances such as voltage sag, unstable voltage, and sub- synchronous resonance. The result is a more stable system with improved performance (throughput).
Transmission Congestion Relief	Storage could be used to avoid congestion-related costs and charges, especially if the charges become onerous due to significant transmission system congestion. Storage systems would be installed at locations that are electrically downstream from the congested portion of the transmission system. Energy would be stored when there is no transmission congestion, and it would be discharged (during peak demand periods) to reduce transmission capacity requirements.
T&D Upgrade Deferral	Consider a T&D system whose peak electric loading is approaching the system's load carrying capacity (design rating). In some cases, installing a small amount of energy storage downstream from the nearly overloaded T&D node will defer the need for a T&D upgrade.

Application	Overview
Substation Onsite Power	There are at least 100,000 battery storage systems at utility substations in the U.S. They provide power to switching components and to substation communication and control equipment when the grid is not energized. The vast majority of these systems use lead-acid batteries, mostly vented and to a lesser extent valve-regulated, with 5% of systems being powered by NiCad batteries. Apparently, users are generally satisfied, though reduced need for routine maintenance, improved reliability, and longer battery life would make alternatives attractive, especially if the cost is comparable to that of the incumbent technologies.
Time-of-Use Energy Cost Management	Involves storage used by energy end users (utility customers) to reduce their overall costs for electricity. Customers charge the storage during off-peak time periods when the electric energy price is low, and discharge the energy during times when on-peak TOU energy prices apply. Although similar to electric energy time-shift application, this application's electric energy prices are based on the customer's retail tariff vs. the prevailing wholesale price.
Demand Charge Management	Energy storage could be used by electricity end users (i.e., utility customers) to reduce the overall costs for electric service by reducing demand charges, by reducing power draw during specified periods, normally the utility's peak demand periods.
Electric Service Reliability	In the event of a complete power outage lasting more than a few seconds, the storage system provides enough energy to ride through outages of extended duration; to complete an orderly shutdown of processes; and/or to transfer to on-site generation resources.
Electric Service	Involves using energy storage to protect on-site loads downstream (from storage) against short-
Power Quality	duration events that affect the quality of power delivered to the load.
Renewables Energy Time Shift	Many renewable energy generation resources produce a significant portion of electric energy when that energy has a low financial value (e.g., at night, on weekends, during holidays - off-peak times). Energy storage used in conjunction with renewable energy generation could be charged using low-value energy from the renewable energy generation so that energy may be used to offset other purchases or sold when it is more valuable.
Renewables Capacity Firming	Applies to circumstances involving intermittent output from renewable energy-fueled generation. The objective is to use storage to 'fill in' so that the combined output from renewable energy generation plus storage is somewhat-to-very constant.
Wind Generation, Grid Integration, Short Duration	As wind generation penetration increases, the electricity grid effects unique to wind generation will also increase. Storage could assist with orderly integration of wind generation (wind integration) by managing or mitigating the more challenging and less desirable effects from high wind generation penetration. Short duration applications include: reduce output volatility and improve power quality.
Wind Generation, Grid Integration, Long Duration	Long duration applications include: reduce output variability, transmission congestion relief, backup for unexpected wind generation shortfall, and reduce minimum load violations.

Benefit Category	Benefit Sub category	Benefit									
		Arbitrage Revenue (consumer)									
	Market Revenue*	Capacity Revenue (consumer)									
		Ancillary Service Revenue (consumer)									
		Optimized Generator Operation (utility/ratepayer)									
	Improved Asset	Deferred Generation Capacity Investments (utility/ratepayer)									
	Utilization	Reduced Ancillary Service Cost (utility/ratepayer)									
		Reduced Congestion Cost (utility/ratepayer)									
		Deferred Transmission Capacity Investments (utility/ratepayer)									
Economic	T&D Capital Savings	Deferred Distribution Capacity Investments (utility/ratepayer)									
		Reduced Equipment Failures (utility/ratepayer)									
		Reduced Distribution Equipment Maintenance Cost (utility/ratepayer)									
	T&D O&M Savings	Reduced Distribution Operations Cost (utility/ratepayer)									
		Reduced Meter Reading Cost (utility/ratepayer)									
	Theft Reduction	Reduced Electricity Theft (utility/ratepayer)									
	Energy Efficiency	Reduced Electricity Losses (utility/ratepayer)									
	Electricity Cost Savings	Reduced Electricity Cost (consumer)									
	Liectherty Cost Savings	Reduced Electricity Cost (utility/ratepayer)*									
		Reduced Sustained Outages (consumer)									
	Power Interruptions	Reduced Major Outages (consumer)									
Reliability		Reduced Restoration Cost (utility/ratepayer)									
	Power Quality	Reduced Momentary Outages (consumer)									
		Reduced Sags and Swells (consumer)									
Environmental	Air Emissions	Reduced Carbon Dioxide Emissions (society)									
Linnointental		Reduced SO _x , NO _x , and PM-10 Emissions (society)									
Security	Energy Security	Reduced Oil Usage (society)									
Jecunty	Lineigy Security	Reduced Wide-scale Blackouts (society)									

 Table C-3. Benefits Potentially Realized by Smart Grid Demonstrations

*These benefits are only applicable to energy storage demonstrations.

	Functions													
Smart Grid Assets	Fault Current Limiting	Wide Area Monitoring, Visualization, and Control	Dynamic Capability Rating	Power Flow Control	Adaptive Protection	Automated Feeder Switching	Automated Islanding and Reconnection	Automated Voltage and VAR Control	Diagnosis & Notification of Equipment Condition	Enhanced Fault Protection	Real-Time Load Measurement & Management	Real-time Load Transfer	Customer Electricity Use Optimization	
Advanced Interrupting Switch										•				
AMI/Smart Meters								•			•		•	
Controllable/regulating Inverter							•	•						
Customer EMS/Display/Portal													•	
Distribution Automation					•	•	•	•				•		
Distribution Management System			•		•	•	•	•			•	•		
Enhanced Fault Detection Technology										•				
Equipment Health Sensor			•						•					
FACTS Device				•										
Fault Current Limiter	•													
Loading Monitor			•						•			•		
Microgrid Controller							•							
Phase Angle Regulating Transformer				•										
Phasor Measurement Technology		•	•	•	•		•	•		•				
Smart Appliances and Equipment (Customer)													•	
Software - Advanced Analysis/Visualization		•	•											
Two-way Communications (high bandwidth)		•			•	•	•	•			•	•		
Vehicle to Grid Charging Station													•	
VLI (HTS) cables				•										

Table C-4. Smart Grid Assets that Provide Functions

				Functions													Energy Resources		
	Benefits					Power Flow Control	Adaptive Protection	Automated Feeder Switching	Automated Islanding and Reconnection	Automated Voltage and VAR Control	Diagnosis & Notification of Equipment Condition	Enhanced Fault Protection	Real-Time Load Measurement & Management	Real-time Load Transfer	Customer Electricity Use Optimization	Distributed Generation	Stationary Electricity Storage	Plug-in Electric Vehicles	
	Market	Arbitrage Revenue															•		
	Revenue	Capacity Revenue															•		
	Revenue	Ancillary Services Revenue															•		
	Improved Asset Utilization	Optimized Generator Operation		•													•	•	
		Deferred Generation Capacity Investments													•	٠	•	•	
		Reduced Ancillary Service Cost		•						•			•		•	٠	•	•	
		Reduced Congestion Cost		•	•	•			1						•	٠	•	٠	
	T&D Capital	Deferred Transmission Capacity Investments	٠	•	٠	•									•	٠	•	•	
Economic		Deferred Distribution Capacity Investments			•								•	•	•	•	•	•	
		Reduced Equipment Failures	•		•						•	•							
	T&D O&M	Reduced Distribution Equipment Maintenance Cost									•								
	Savings	Reduced Distribution Operations Cost						•		•									
	Savings	Reduced Meter Reading Cost											•						
	Theft Reduction	Reduced Electricity Theft											•						
	Energy	Reduced Electricity Losses								•			•	•	•	٠	•		
	Electricty Cost Savings	Reduced Electricity Cost													•	•	•	•	
	Dowor	Reduced Sustained Outages					•	•	•		•	•	•			٠	•	٠	
	Power	Reduced Major Outages		•					•				•	٠					
Reliability	Interruptions	Reduced Restoration Cost					•	•			•	•							
		Reduced Momentary Outages										•					•		
	Power Quality	Reduced Sags and Swells										•					•		
Environmental	Air Emissions	Reduced CO ₂ Emissions				•		•		•			•		•	٠	•	٠	
Linnonnentar	AIT EITIISSIUIIS	Reduced SO _x , NO _x , and PM-10 Emissions				•		•		•			•		•	٠	•	•	
Gannit	F ara and G ara 11	Reduced Oil Usage (not monetized)						•			•		•					•	
Security	Energy Security	Reduced Widescale Blackouts		•	•														

Table C-5. Smart Grid Benefits Realized by Functions and Enabled Energy Resources