

2012 TECHNICAL UPDATE

The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program: Phase 2 Supplemental Information

The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program: Phase 2 Supplemental Information

EPRI Project Manager G. Horst

3420 Hillview Avenue Palo Alto, CA 94304-1338 USA

PO Box 10412 Palo Alto, CA 94303-0813 USA

> 800.313.3774 650.855.2121

askepri@epri.com

1024865 Technical Update, February 2012

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.

THE FOLLOWING ORGANIZATIONS, UNDER CONTRACT TO EPRI, PREPARED THIS REPORT:

Electric Power Research Institute (EPRI)

Christensen Associates Energy Consulting LLC

R. Boisvert, Consultant

This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of continuing research, a meeting, or a topical study. It is not a final EPRI technical report.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2012 Electric Power Research Institute, Inc. All rights reserved.

Acknowledgments

The following organizations prepared this report:

Electric Power Research Institute (EPRI) 3420 Hillview Avenue Palo Alto, CA 94304

Principal Investigators M. Wakefield G. Horst B. Neenan

Christensen Associates Energy Consulting LLC 800 University Bay Drive, Suite 400 Madison, WI 53705

Principal Investigators S. Braithwait D. Hansen M. Hilbrink L. Kirsch

R. Boisvert, Consultant Warren Hall Cornell University Ithaca, NY 14853

This report describes research sponsored by EPRI.

This publication is a corporate document that should be cited in the literature in the following manner:

The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program: Phase 2 Supplemental Information. EPRI, Palo Alto, CA: 2012. 1024865.

Product Description

This report provides appendices that support EPRI report 1023644, which describes the Phase 2 (final) analysis of residential customers' response to Commonwealth Edison's Customer Application Program (CAP). The report contains technical materials that describe in detail the methods employed in conducting the Phase 2 analysis and presents the results of the application of additional data and methods in Phase 2.

Background

The Phase 2 analysis of the CAP extends the methods and updates the results of the earlier analysis documented in the Phase 1 report (1022703) and Phase 1 appendices (1022761). It addresses an important part of determining how the Smart Grid can best facilitate demand response motivated by residential pricing structures. The report is part of a series of studies contributed by the Electric Power Research Institute (EPRI) to help the power industry exploit technological advances to increase reliability and reduce costs while adapting to increased environmental constraints on the ways that the industry provides its services to customers.

Objectives

Demand response is becoming increasingly important as an adaptation to the rising costs of building new generation plants, siting new transmission and distribution facilities, and dealing with a host of environmental issues, notably including climate change. Improvements in communications and controls reduce costs and extend the range of potentially responsive loads. Many regulators are pressing utilities to fully utilize a range of demand response solutions. An analysis of the efficacy of Smart Grid technologies in facilitating demand response is essential to determining how these technologies should be used.

Approach

This report describes the methods by which EPRI researchers are evaluating the efficacy of Smart Grid technologies in providing demand response to Commonwealth Edison, and provides the results from this evaluation.

Results

The main purpose of the analysis described in these appendices and the associated report is to determine the extent to which residential customers' consumption of electricity is affected by various combinations of innovative rate design and Smart Grid enabling technologies. This report serves as a technical document that supports the Phase 2 final analyses presented in EPRI report 1023644. It describes the model and methods that were deployed to test the hypotheses (described in detail in EPRI report 1022266) established to guide the development and evaluation of the CAP.

Applications, Value, and Use

The wide range of issues addressed in the CAP required the use of several methods to test hypotheses and produce data that characterize how customers responded to the applications that were administered. The Phase 1 analysis, which was conducted in the late fall of 2010, utilized metered and other CAP program data for the months June– August 2010. Because that period was designed for implementing high prices for critical peak pricing (CPP), peak-time rebate (PTR), and real-time pricing (RTP), it focused on quantifying impacts for these three dynamic rate options. Accordingly, the most relevant elements of this report are those that discuss how CAP participants reacted to those prices, and the corresponding results of their applications. Additional applications were also tested in Phase 1 and confirmed or furthered in the Phase 2 analysis utilizing data through the end of the experiment in May of 2011.

Keywords

Advanced metering infrastructure (AMI) Alternative electricity price structures Critical peak pricing Peak-time rebates Real-time pricing Opt-in and opt-out

Abstract

Based on the analysis plan described in detail elsewhere, these appendices support the accompanying report on the findings of EPRI's evaluation of the various impacts attributable to Commonwealth Edison's Customer Application Program (CAP) pilot. The overall objective of the evaluation is to determine the effects on customers' energy consumption patterns of various rate treatments, behavioral factors, and enabling technology applications. Many of the anticipated CAP effects are addressed in a series of hypotheses, derived from the CAP design, regarding the effects of the various rate, technology, and education treatments featured in the pilot. These findings complete Phase 2 of the evaluation, and they are based on an analysis of data for the entire duration of the CAP pilot (June 2010 through April 2011). The findings support some of the hypotheses and do not support other hypotheses. Phase 2 of the analysis is based on participants' electricity consumption and price data for the entire year of the CAP pilot, as well as data collected through a survey of CAP participants.

Table of Contents

Appendix A: Details of the Cap Hypothesis Tests.....A-1 The Main Model

	A -Z
Meter Type	A-4
Rate Treatments	
Enabling Technology	A-14
Enabling Technology Acquisition	A-26
Bill Protection	A-29
Customer Education	A-33
Customer Experience – Observable Steps	A-39
Customer Experience – Opt-Out Enrollment	A-42
Customer Experience – Comparisons	A-45
Drop-out rates	A-46
Rate Comparisons	A-50
Normative Comparisons	A-51
Customer Experience – Notifications	A-52
Customer Experience – Customer Support	A-57
Appendix B: Technical Summaries	B-1
Variable Definitions	B-1
Dependent Variables	B-1
Independent Variables	В-2
Data Filtering	B-5
Phase 2 Report Tables	B-7
Appendix A Tables	В-23
Appendix C: Responses to Final Survey	C-1

Appendix D: NCES Customer Demand Model	D-1
Model Specification	D-1
Implementation	

List of Figures

Figure A-1 Applications by Rate Type and Enabling	
TechnologyA-	2

List of Tables

Table A-1 Impacts of Rate Type on Opt Outs	A-6
Table A-2 Impacts of Rate Type on Electricity Usage	A-8
Table A-3 Impacts of Rate Type on Summer Peak Load	A-9
Table A-4 Impacts of Rate Type on Peak to Off-Peak Load Ratios	A-12
Table A-5 Impacts of Rate Type of Customer Satisfaction	A-14
Table A-6 Impacts of Technology on Implementation Rates	A-16
Table A-7 Impacts of Technology on Adoption Rates	A-17
Table A-8 Impacts of Feedback Solutions on Electricity Usage	A-18
Table A-9 Impacts of Technology on Electricity Usage	A-21
Table A-10 Usage of Cells Relative to Cell F3	A-23
Table A-11 Impacts of Technology on Customer Satisfaction	A-26
Table A-12 Acquisition, Implementation, and Adoption ofFree and Purchased Technology	A-28
Table A-13 Usage Comparisons by Method of Obtaining Technology	A-29
Table A-14 Impact of Bill Protection on Opt-Out Rates	A-30
Table A-15 Usage Comparisons by Notification of Bill Protection	A-32
Table A-16 Impact of Bill Protection on Customer Satisfaction	A-33
Table A-17 Impact of Customer Education on Usage	A-35
Table A-18 Impact of Technology and Customer Education Usage	A-36
Table A-19 Impact of Technology and Customer Education on Usage	A-38
Table A-20 Impact of Customer Education on Customer Satisfaction	A-39

≺ xiii ≻

Table A-21 Impact of Small Observable Steps on Electricity Usage	A-41
Table A-22 Count of Dropouts by Rate and Month (March2010 to February 2011)	A-47
Table A-23 Opt-Out Reasons	A-48
Table A-24 Impact of Notification on Usage	A-53
Table A-25 Impact of Multiple Notification Methods on Usage	A-55
Table A-26 Impact of Customer Contacts on Usage	A-59
Table A-27 Impact of Rate on Number of Customer Contacts	s A-62
Table A-28 Impact of Rate and Technology on Call Duration	A-63
Table A-29 Impact of Technology on Number of Customer Contacts	A-64
Table A-30 Impact of Rate and Technology on Call Duration	A-65
Table A-31 Impact of Rate and Technology on Customer Satisfaction with Customer Support Center	A-66
Table B-1 Number of Customers Filtered from Electricity Usage Data	В-6

Appendix A: Details of the Cap Hypothesis Tests

EPRI and ComEd established a set of 47 hypotheses to guide the CAP analysis. The purpose of the hypotheses, numbered from H1 through H7w and grouped according to topic, was to construct concise statements of what quantifiable effects might be expected from the CAP applications.

This appendix is organized into sub-sections corresponding to each topic. For each sub-section each hypothesis is stated, the analytical method used to test the hypothesis is discussed, and results of the hypothesis test are summarized. In instances where hypotheses could not be tested, an explanation of data issues hindering the analysis is provided. Hypotheses that require the use of electricity consumption data are separated into summer (June 11, 2010 through September 30, 2010, excluding August 3, 2010) and non-summer (October 2, 2010 through April 27, 2011) time periods, and the results are presented separately.¹

Throughout the discussion in this appendix, we make numerous references to specific treatment cells that contain the groups of customers whose behavior relates to the hypotheses being tested. These cells are referenced by the alphanumeric IDs found in Figure A-1 below.² These IDs are descriptive of the experimental design in terms of rate and enabling technology treatments. In the tables in this appendix, many of these treatments are further identified with variable names, which are defined in Section 8 of the Phase 2 report.³

¹ The data indicate an outage for customers in only some of the rate treatments on August 3, 2010, and as such, this date is omitted from the summer ANOVA analyses. This was likely due to a technical error in data collection rather than an actual outage.

² See also; *The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program: Phase 2 Final Analysis.* EPRI, Palo Alto, CA: 2011. 1023644.

³ See p. 8-1 of EPRI 1023644.

		Enabling Technology Type					
		None	Removed	Enhanced Web (eWeb)	eWeb+ Basic IHD (BIHD)	eWeb+ Advanced IHD (AIHD)	eWeb+PCT /IHD (AIHD/PCT)
	Flat Rate Existing Meter No Education	Control F1 N=450					
Flat Rate	Flat Rate Existing Meter Education			Application F2 N=225			
Type N = 1,650	Flat Rate AMI Meter Basic AMI Education			Control F3 N=225			
	Flat Rate AMI Meter Education		Application F4 N=0	Application F5 N=225	Application F6 N=300	Application F7 N=225	
Energy Efficiency Rate Type N = 750	IBR Rate AMI Meter Education			Application E1 N=225	Application E2 N=300	Application E3 N=225	
Demand Response	CPP/DA- <u>RTP</u> Rate AMI Meter Education			Application D1 N(a)=525 N(b)=225	Application D2 N=525	Application D3 N=525	Application D4 N=525
Rate Type N = 3,525	PTR/DA-RTP Rate AMI Meter Education			Application D5 N=225	Application D6 N=525	Application D7 N=225	Application D8 N=225
Load Shifting	DA- <u>RTP</u> Rate AMI Meter Education			Application L1 N(a)=225 N(b)=225	Application L2 N=525	Application L3 N=225	
Rate Type N = 2,625	TOU Rate AMI Meter Education			Application L4 N=225	Application L5 N(a)=525 N(b)=225	Application L6 N(a)=225 N(b)=225	
N = 8,550		N = 450	N = 0	N = 2,550	N = 2,925	N = 1,875	N = 750
Primary Application Not Used							

Figure A-2

Applications by Rate Type and Enabling Technology

The Main Model

The models used to analyze hypotheses H2b, H2c, and H2d form the foundation for analyzing several subsequent hypotheses. Therefore, throughout this appendix, the models presented for hypotheses H2b, H2c, and H2d will be referred to collectively as the *main model*. The main model is an ordinary least squares (OLS) linear regression containing 13 independent variables (plus a constant term) that represent different rates, experimental treatments, and customer housing characteristics.⁴ Depending upon the measure of usage that is to be tested by the hypothesis, the model uses one of four dependent variables:

⁴ As used throughout this document, ANOVA generally includes analyses of variance and covariance, and may be undertaken using standard protocols or through an equivalent regression-based approach.

- 1. Average kWh usage during all hours (referred to as "All Hours" in results tables);
- 2. Average kWh usage during peak hours, 1:00 to 5:00 p.m. on non-holiday weekdays (referred to as "Peak Hours" in results tables)
- 3. Average kWh usage during peak hours, 1:00 to 5:00 p.m. on event days (referred to as "Event Hours" in results tables); and
- 4. Average kWh usage during peak hours divided by average hourly kW usage during off-peak hours for non-holiday weekdays (i.e., peak to off-peak ratios, referred to as "P/O Ratios" in results tables).

Each of these "four main measures" of usage is calculated over two separate timeframes covering the data available in the Measurement and Validation Database (MVBD):

- 1. The summer timeframe includes June 11, 2010 through September 30, 2010 (excluding August 3, 2010); and
- The non-summer timeframe includes October 2, 2010 through April 27, 2011.

Because no events took place between October 2010 and April 2011, nonsummer models are not specified using the Event Hours measure of usage.

The main model is most frequently used to analyze hypotheses claiming that a particular treatment "*will achieve greater energy efficiency, demand response, and load-shifting benefits than*" than another treatment, which could be viewed as joint hypotheses related to the four main measures of electricity consumption discussed above. However, rather than treat the joint nature of these hypotheses directly, we specify four summer regression models and three non-summer regression models, where each model uses one of the four main measures of usage to address a portion of the hypothesis:

- 1. The All Hours model addresses greater energy efficiency.
- 2. The Peak Hours and Event Hours models address demand response.
- 3. The P/O Ratio model addresses load shifting benefits.

The independent variables in the main model can also be rearranged or augmented to suit the particular hypothesis at issue. For instance, the treatment categories *not* shown in the results table identify the control group for each model. The control group in the main model is made up of customers on the flat rate (FLR) with eWeb technology and basic education (i.e. treatment cell F3) residing in a single-family home with non-space heating (SFNS). However, if a hypothesis is meant to compare the effects of, say, a basic in-home device (BIHD) relative to other technologies, then the independent variables in the model can be changed so that FLR customers with BIHDs (i.e. treatment cell F6) residing in SFNS homes make up the control group. Further, independent variables can be added to the model to measure additional treatment effects. Throughout this appendix, coefficient estimates appear in bold if they are statistically significant at the 5% level.

Meter Type

H1: Meter type has no effect on electricity usage behaviors.

This hypothesis is designed to isolate the effect of the installation of an AMI meter. To conduct the test, it would have been necessary to compare usage between customers in cell F2 (who have standard meters) and customers in group F5 (who have AMI meters). Unfortunately, as explained in the Phase 1 and Phase 2 reports, customers in groups F2 and F5 are not drawn from the same geographic region at the same time. During an initial examination of the data, it became apparent that the two groups represent very different populations. Thus, we are unable to test this hypothesis.

Rate Treatments

The hypothesis tests related to the rate treatments are based upon comparisons of means of the data across the various treatment and control groups. The models are designed to test differences in the several measures of usage (e.g., average hourly usage) as a function of indicator variables that encompass the full range of treatment and control characteristics, including:

- Each rate treatment;
- Each technology treatment;
- Whether or not the customer was notified of bill protection;
- Whether the customer was offered the opportunity to purchase technology or was given the technology for free;
- Whether the customer received only basic AMI education or received the full education; and
- The type of housing unit each customer resides in, categorized in combinations of single or multi-family (SF or MF) units and space heat or non-space heat (SH or NS) usage.

These models facilitate comparisons between treatment and control groups and also between different treatment groups.

H2a: The IBR rate is most easily adopted by customers.

Ease of adoption is measured by the rates at which customers do not opt out of the CAP program anytime over the test year (i.e. stay enrolled). A logistic regression model, in which the dependent variable takes on a value of unity if the customer opted out, and zero otherwise, is used to predict differences in opt-out rates for each of the rate treatments.

Table A-1 contains the results of this estimated model, in which the independent variables are indicator (dummy) variables for the rate treatments, technology, bill

protection, education, housing type, and purchase characteristics. The estimated coefficients from these types of models can be used to simulate the probability that a customer with a particular set of treatments will opt out of the pilot. The constant coefficient indicates that customers on the IBR rate, with no technology, in a single-family home with non-space heating, and who were not notified of bill protection, have a 0.38% probability of opting out of the pilot.⁵ For the other rate treatments, the probability of opting out is derived from the sum of the constant coefficient plus the coefficient for the dummy variable associated with that rate and/or other treatment. For example, the probability of opting out increases to 3.77% for a customer on the CPP rate.⁶ Note that the z-statistic of 3.93 on the CPP coefficient indicates that the difference in the probability of opting out for CPP customers compared with IBR customers is statistically significant.⁷

Based on these results, the statistically significant positive coefficients for the three dynamic rate treatments support the hypothesis that the IBR customer optout at rate is significantly lower than that of customers on all other rates, except for those on the flat rate. Since the absolute value of the z-statistic for the coefficient on the dummy variable associated with flat rate is well below the critical value of 2.0, the probability of customers in the flat rate treatment not opting out of the pilot is not significantly different from the probability that customers in the IBR treatment opt out.⁸

 $^{^5}$ For this customer type, based upon the -5.578 coefficient, the equation for calculating the probability of opt-out is exp(-5.578)/[1+exp(-5.578)].

⁶ 3.77% equals exp(-5.578+2.337)/[1+exp(-5.578+2.337)].

⁷ For a coefficient to be statistically different from zero at the 5% level of significance, the z-statistic must be greater than 2.0 in absolute value.

⁸ Very similar results were found for an alternate specification that included only the rate dummies.

Table A-1 Impacts of Rate Type on Opt Outs⁹

Variable	Coef.	(S.E.)	z	Prob
Constant	-5.578	(0.611)	-9.12	0.38%
СРР	2.337	(0.594)	3.93	3.77%
RTP-DA	1.532	(0.624)	2.46	1.72%
FLR	-0.318	(0.916)	-0.35	0.27%
PTR	1.860	(0.611)	3.05	2.37%
TOU	1.713	(0.620)	2.76	2.05%
BIHD	0.486	(0.233)	2.09	0.61%
AIHD	0.098	(0.268)	0.37	0.42%
PCT	0.096	(0.304)	0.31	0.41%
Bill Protection	0.293	(0.364)	0.80	0.50%
Purchase	0.117	(0.385)	0.30	0.42%
Educ./Notif.	(omitted)			
SFSH	0.447	(1.006)	0.44	0.59%
MFNS	-0.360	(0.185)	-1.94	0.26%
MFSH	0.471	(0.437)	1.08	0.60%
Observations	6,434			
R-squared	0.0439			

H2b: The IBR rate causes the greatest reduction in overall electricity usage during the year.

As described in Section 4 of the Phase 2 report, because customers selected for the IBR treatment had to have at least five years of billing history, customers with lower usage are seriously under-represented in the IBR treatment. For this reason, it was not possible to make meaningful comparisons of the impacts on usage between customers on the IBR rate with those on the other rates. However, it is still important to understand differences in the impacts of the other rate treatments on electricity usage. Therefore, the test is redesigned to compare the impacts on usage among all the other rate treatments, and the tests are performed using the main model. As discussed above, the independent variables in the summer and non-summer regression equations account for the rate treatments and the treatments reflecting availability of different enabling technologies. The excluded categories define the control group.

⁹ The dependent variable is a binary choice variable that equal one if the customer opted out of the pilot program and zero otherwise. See Appendix B for additional details.

Table A-2 displays the results for the test of this modified hypothesis H2b. In this table, the constant term indicates overall usage (in units of average kWh per hour) for customers associated with all of the omitted categories (i.e., those customers on the flat rate with no enabling technology, no information about bill protection, no technology offered for purchase, SFNS housing, and "basic" education). To calculate average usage for customers in other treatments, one need only sum the constant term and the coefficient for the dummy variable for that other treatment.

Put somewhat differently, each coefficient represents the difference in overall average usage (relative to the omitted category) due to the treatment. For example, because of the positive coefficient in the summer model, customers on the CPP rate use 0.044 kWh per hour more electricity than do flat rate customers during the summer period. Similarly, because of the positive coefficient in the non-summer model, customers on the PTR rate use 0.035 kWh per hour more electricity than do flat rate customers in the non-summer period. Neither coefficient is significantly different than zero at the 95% confidence level. The negative and statistically significant coefficients on the multi-family housing unit variables (MFNS and MFSH) in the summer model suggest that customers in multi-family residences use less electricity than customers in single-family residences with non-space heating in the summer period. In the non-summer model, both types of space heating residences (MFSH and SFSH) have positive and significant coefficients confirming expectations that space-heating customers would use more electricity in the nonsummer months than non-space-heating customers.

As suggested in the Phase 2 report, these results reinforce the key finding from other analyses of the aggregate data. That is, when testing for treatment effects at the group level, there appears to be no significant differences on average in overall electricity usage among customers on the alternative rates.

Table A-2 Impacts of Rate Type on Electricity Usage¹⁰

	Summer	Non-Summer	
Variable	Coef. (S.E.)	Coef. (S.E.)	
Constant	1.377	0.934	
	(0.047)	(0.036)	
CPP	0.044	0.037	
	(0.033)	(0.027)	
DA-RTP	0.063	0.024	
	(0.036)	(0.030)	
PTR	0.061	0.035	
	(0.037)	(0.029)	
TOU	0.069	0.025	
	(0.037)	(0.030)	
BIHD	-0.007	0.003	
	(0.024)	(0.019)	
AIHD	0.037	0.014	
	(0.027)	(0.021)	
PCT	0.014	-0.016	
	(0.035)	(0.026)	
Bill Protection	0.024	0.043	
	(0.041)	(0.037)	
Purchase Tech.	-0.055	-0.048	
	(0.044)	(0.033)	
Educ./Notif.	-0.077 -0.046		
	(0.057)	(0.045)	
SFSH	0.061		
	(0.164)	(0.410)	
MFNS	-0.682	-0.441	
	(0.016)	(0.013)	
MFSH	-0.695	0.493	
	(0.038)	(0.071)	
Observations	5,778	5,471	
R-squared	0.191	0.173	

¹⁰ The dependent variable is average hourly kW usage for all days in the summer period (June through September 2010) and non-summer period (October 2010 through April 2011). See Appendix B for additional details.

H2c: The CPP rate causes the greatest reduction in peak load during the summer.

This hypothesis is tested using the main model where the dependent variable is each customer's average kWh usage during the peak period (1:00 p.m. to 5:00 p.m.) on non-holiday weekdays during the summer or non-summer time period. As in the regressions above, the independent variables account for the several rate and technology treatments. Two alternative tests of this hypothesis are developed, one in which average kWh usage is calculated for all peak hours during the summer or non-summer time period (Peak Hours); and a second in which average kWh usage is calculated for peak hours on CPP/PTR event days which only took place in the summer period (Event Hours). The hypothesis is that: a) the coefficient for CPP is negative; and b) the coefficient for CPP is more negative than those of the other rates.

Table A-3 contains the results of this test. Again the IBR customers are not included in the sample. The treatment categories not appearing individually in the table define the control group, which, in this case, is comprised of customers on the flat rate (FLR) with eWeb technology and basic education (i.e. treatment cell F3) residing in single-family homes with non-space heating. The coefficients represent the differences in average peak-period (on all days and on event days, respectively) usage for the treatments versus customers in the excluded categories. For example, in Table A-3, the summer model coefficient on CPP of 0.059 indicates that CPP customers use an average of 0.059 kWh per hour more than flat rate customers (all else equal) during peak hours, although this difference is not statistically significant. Across the three models there are only two significant differences in consumption by rate treatment: the day-ahead RTP group (DA-RTP) has higher peak consumption (on all days) in the summer than does the flat rate group; and the CPP group has higher peak consumption in the nonsummer period than the flat rate group. Otherwise, there are no significant effects resulting from the various treatments.¹¹ Therefore, hypothesis H2c is not supported by the evidence.

¹¹ The statistically significant effect of Educ./Notif. during event hours is discussed in Section 5 of EPRI 1023644.

Table A-3 Impacts of Rate Type on Summer Peak Load¹²

	Summer Peak Hours	Summer Event Hours	Non-summer Peak Hours
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.563	2.232	0.845
	(0.059)	(0.091)	(0.034)
CPP	0.059	0.002	0.054
	(0.041)	(0.058)	(0.026)
DA-RTP	0.101	0.102	0.036
	(0.045)	(0.064)	(0.028)
PTR	0.082	0.080	0.050
	(0.046)	(0.064)	(0.028)
TOU	0.063	0.071	0.017
	(0.046)	(0.065)	(0.029)
BIHD	0.005	0.016	0.005
	(0.031)	(0.042)	(0.019)
AIHD	0.059	0.087	0.016
	(0.035)	(0.048)	(0.021)
PCT	0.001	0.012	-0.025
	(0.041)	(0.058)	(0.025)
Bill Protection	0.041	0.077	0.040
	(0.052)	(0.073)	(0.036)
Purchase Tech.	-0.056	-0.081	-0.043
	(0.055)	(0.076)	(0.033)
Educ./Notif.	-0.107	-0.223	-0.031
	(0.071)	(0.106)	(0.043)
SFSH	0.083	-0.086	1.38
	(0.214)	(0.264)	(0.401)
MFNS	-0.87	-1.232	-0.414
	(0.020)	(0.028)	(0.012)
MFSH	-0.846	-1.202	0.435
	(0.047)	(0.068)	(0.073)
Observations	5,778	5,778	5,471
R-squared	0.195	0.199	0.162

 $^{^{12}}$ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

H2d: The CPP rate causes flatter load shapes at all times during the year.

This hypothesis is tested using the main model where the dependent variable is customers' average ratio of peak to off-peak usage (P/O Ratio).¹³ These ratios of peak to off-peak usage are calculated over each of the summer and non-summer timeframes. The independent variables account for the rate and technology treatments. The hypothesis is that: a) the coefficient for the CPP variable is negative; and b) the coefficient for the CPP variable is more negative than those of the other rates.

Table A-4 shows that, with only two exceptions, peak to off-peak usage ratios do not vary significantly among customer groups. The first exception is that customers in the DA-RTP group are estimated to have higher summer peak to off-peak load ratios than customers on the flat rate, where the difference is statistically significant at the 5% level. The second exception is that customers living in multi-family residences with non-space heating (MFNS) have significantly flatter summer load shapes than customers living in single-family residences with non-space heating (all else equal). Otherwise, there are no significant effects resulting from the various treatments. Therefore, hypothesis H2d is not supported by the evidence.

¹³ As mentioned above, the peak period is defined to include the hours 1 p.m. to 5 p.m. on nonholiday weekdays and the off-peak period includes all other hours.

Table A-4 Impacts of Rate Type on Peak to Off-Peak Load Ratios¹⁴

	Summer	Non-Summer
Variable	Coef. (S.E.)	Coef. (S.E.)
Constant	1.119	0.904
	(0.022)	(0.015)
СРР	0.003	0.016
	(0.014)	(0.011)
DA-RTP	0.037	0.017
	(0.016)	(0.012)
PTR	0.007	0.022
	(0.015)	(0.012)
TOU	-0.016	-0.018
	(0.015)	(0.012)
BIHD	0.012	0.006
	(0.011)	(0.008)
AIHD	0.019	0.010
	(0.012)	(0.009)
РСТ	0.003	-0.000
	(0.015)	(0.011)
Bill Protection	0.030	0.005
	(0.018)	(0.013)
Purchase Tech.	0.001	-0.006
	(0.018)	(0.013)
Educ./Notif.	-0.009	0.022
	(0.026)	(0.018)
SFSH	0.032	0.053
	(0.069)	(0.043)
MFNS	-0.153	-0.001
	(0.008)	(0.007)
MFSH	-0.058	-0.014
	(0.035)	(0.025)
Observations	5,778	5,471
R-squared	0.063	0.007

¹⁴ The dependent variable is average hourly kW usage during peak hours divided by average hourly kW usage during off-peak hours for non-holiday weekdays in the summer period (June through September 2010) and the non-summer period (October 2010 through April 2011). See Appendix B for additional details.

H2e: The CPP rate delivers the best combination of energy efficiency, demand response, and load-shifting benefits.

This hypothesis is designed to embody the previous three hypotheses (H2b, H2c, and H2d). Under the best of circumstances, it would have been difficult to combine these three hypotheses into a single rank ordering suitable for testing this joint hypothesis. Initially, the intention was to construct a rank order of the rate treatments based on the differential performance as suggested by the results from the three separate hypothesis tests above. The "best" combination would then be associated with the rate with the smallest average rank. However, the results from above indicate little or no significant differences among the rate treatments in their energy efficiency, demand response, or load-shifting benefits at the aggregate level. The data therefore provide no evidence in support of hypothesis H2e.

H2f: Customers on the IBR rate will experience greater satisfaction than customers on the other rates.

A test of this hypothesis requires a measure of customer satisfaction, which was collected through the administration of a survey to all CAP participants and control groups. This hypothesis was tested using an ANOVA-style comparison in which the dependent variable is each customer's average response to two questions in the final survey: question 22 asks customers to rate their satisfaction with their pricing plan on a scale from 0 to 10, where 0 represents "extremely dissatisfied" and 10 represents "extremely satisfied"; and question 23 asks customers to rate their satisfaction with ComEd on the same scale.¹⁵ The independent variables again account for the several rate and technology treatments. The control group consists of customers on the IBR rate with eWeb technology, without notification of bill protection, and residing in SFNS housing. The hypothesis is that the coefficients for all the rate type variables are negative.

Table A-5 contains the results of this regression. Because the standard errors are high relative to the estimated coefficients, we find no evidence that customer satisfaction is significantly impacted by rate or technology treatments.

¹⁵ Question 22 reads "Thinking about your experiences with ComEd's electricity pricing plan, how satisfied are you with this pricing plan?" Question 23 reads "Thinking about your experiences with ComEd as your electric utility, how satisfied are you with ComEd?"

Variable	Coef.	(S.E.)	
Constant	5.839**	(0.272)	
FLR	-0.294	(0.211)	
CPP	-0.248	(0.194)	
DA-RTP	-0.011	(0.202)	
PTR	-0.093	(0.208)	
TOU	-0.117	(0.218)	
BIHD	0.007	(0.136)	
AIHD	-0.094	(0.148)	
РСТ	0.190	(0.219)	
Bill Protection	0.208	(0.268)	
Purchase Tech.	-0.107	(0.254)	
Educ./Notif.	0.312	(0.223)	
SFSH	-0.236	(0.284)	
MFNS	0.016	(0.111)	
MFSH	-0.305	(0.244)	
Observations	2,371		
R-squared	0.009		

Table A-5 Impacts of Rate Type of Customer Satisfaction¹⁶

Enabling Technology

All of the hypotheses related to enabling technology are based upon comparisons of data across all treatment cells. As was the case in testing for the effects of the rate treatments, these analyses include variables to account for all of the treatments that customers receive. Therefore, the models tend to be similar (and sometimes identical) to the models used to analyze the effects of the rate treatments. In other words, the analyses of these hypotheses are based upon the main model defined above.

To test the hypotheses related to enabling technology, it is necessary to develop definitions and measures of *implementation* and *adoption*. For purposes of these analyses, customers are considered to have *implemented* a technology when they install the device so that it is operational. They are deemed to have *adopted* a technology when they make continued use of the technology. The persistence of adoption is challenging to define because it involves the timing of customers'

¹⁶ The dependent variable is average satisfaction score (0-10) self-reported for questions 22 and 23 in the final survey. See Appendix B for additional details.

apparent use of technologies, including lapses in use after initial transactions. Therefore, the measure of adoption is based on customers' self-reported use of technologies from the CAP final survey.

H3a: The basic in-home display (BIHD) will have a higher implementation rate than other enabling technologies.

This hypothesis test for rates of implementation (i.e., installation) across rate treatments requires the use of a logit regression model in which the dependent variable equals unity if the customer implemented the technology and zero if he/she did not. Again the independent variables account for rate and technology treatments. Because BIHD customers are the omitted technology group, the hypothesis is that the coefficients on the AIHD and PCT variables are negative, indicating a reduced likelihood of implementation for those technologies.

Table A-6 shows the results that compare the implementation rates of the BIHD, AIHD, and PCT technologies. The results confirm the hypothesis, as both the AIHD and PCT coefficients are negative and statistically significant. The negative and statistically significant coefficient on the purchase technology variable is due to the fact that very few customers purchased technology, but the variable is set to unity for all of the customers who were offered the opportunity to purchase the technology. The constant coefficient indicates that customers on the flat rate, with BIHD, and in a single-family home with non-space heating have a 29.9% probability of implementing the in-home device.¹⁷ By comparison, AIHD and PCT customers have 12.3% and 14.5% probabilities of implementing the in-home devices, respectively.

 $^{^{17}}$ 29.86% = exp(-0.854)/(1 + exp(-0.854))

Variable	Coef.	S.E	z	Prob
Constant	-0.854	0.117	-7.287	29.86%
CPP	0.293	0.134	2.192	36.33%
DA-RTP	0.175	0.142	1.233	33.65%
PTR	0.020	0.141	0.144	30.28%
TOU	0.281	0.141	1.993	36.05%
IBR	0.065	0.158	0.414	31.24%
AIHD	-1.106	0.087	-12.784	12.35%
PCT	-0.920	0.121	-7.622	14.50%
Purchase Tech.	-2.876	0.369	-7.799	2.34%
SFSH	-0.378	0.684	-0.553	22.58%
MFNS	-0.525	0.077	-6.811	20.12%
MFSH	-0.381	0.274	-1.39	22.53%
Observations	5,532			
R-squared	0.076			

Table A-6 Impacts of Technology on Implementation Rates¹⁸

H3b: The BIHD will have a higher adoption rate than other enabling technologies.

This test was conducted in the same way as the test of hypothesis H3a, substituting adoption (utilization) for implementation (installation) as the dependent variable. Adoption was determined based on each customer's response to question 6b in the final survey which asked customers how often they looked at their in-home device in recent months.¹⁹ All customers who answered the question and did not choose "never" as their response were deemed to have adopted the technology.²⁰

Table A-7 shows that none of the treatments have a significant impact on the likelihood of adopting an in-home device. The constant coefficient indicates that customers on the flat rate, with BIHD, and in a single-family home with non-

¹⁸ The dependent variable is a binary choice variable that equals one if the customer implemented the technology and zero otherwise. See Appendix B for additional details.

¹⁹ Question 6b reads: "How often did you look at the information [on] the IHD display in recent months?" with possible answers of "Never", "About once a month", "About once a week", "More than once a week but not daily", or "At least once each day".

²⁰ Additionally, customers had to have been in a treatment cell involving an in-home device and had to have *implemented* their device in order to adopt it. Of the 824 customers who answered question 6b, 106 customers answered the question even though they were not offered an IHD by ComEd (they may have had their own); and an additional 269 answered the question despite never having installed their offered device. Due to these restrictions, this analysis should be considered a test of the incremental likelihood of adopting an IHD given that the customer installed it.

space heating have a 68.0% probability of adopting the in-home device given that they installed it.²¹

Table A-7

Impacts of Technology on Adoption Rates²²

Variable	Coef.	S.E	z	Prob		
Constant	0.752	0.341	2.207	67.96%		
CPP	0.031	0.404	0.076	68.63%		
DA-RTP	0.043	0.426	0.101	68.89%		
PTR	0.232	0.433	0.536	72.79%		
TOU	-0.477	0.410	-1.164	56.83%		
IBR	0.035	0.468	0.075	68.72%		
AIHD	0.277	0.267	1.038	73.67%		
PCT	0.354	0.401	0.884	75.14%		
Purchase Tech.	0.348	0.898	0.387	75.03%		
SFSH	-1.060	1.380	-0.768	42.36%		
MFNS	0.118	0.249	0.475	70.47%		
MFSH	-0.119	0.776	-0.154	65.32%		
Observations	449					
R-squared	0.0139					

H3c: A combination of direct and indirect feedback solutions will achieve greater energy efficiency, demand response, and load-shifting benefits than indirect feedback solutions alone.

There are three separate hypotheses implied in H3c, and each is tested separately. A variation of the main model that includes independent variables in addition to those for rate and technology treatments is used to test this hypothesis. Specifically, the additional variables describe whether each customer has engaged in direct and/or indirect feedback solutions. Customers are designated as having engaged in direct feedback solutions when they have implemented and adopted BIHD- or AIHD-enabling technologies. Customers are designated as having engaged in indirect feedback solutions if they interacted with the OPOWER website three or more times over the course of the pilot.

Three indicator variables are added to the main model: one for the use of direct feedback solutions only; one for the use of indirect feedback solutions only; and

 $^{^{21}}$ 68.0% = exp(0.752)/(1 + exp(0.752))

 $^{^{22}}$ The dependent variable is a binary choice variable that equals one if the customer adopted the technology and zero otherwise. See Appendix B for additional details.

one for the use of both feedback solutions.²³ For any one of the measures (e.g., energy efficiency that is measured by differences in average usage), the hypothesis is that the coefficient on the indicator variable for the use of both feedback solutions is smaller than the coefficients on the direct- and indirect-only indicator variables.

Table A-8 presents the results of four summer and three non-summer models. None of the estimated effects for feedback solutions are significantly different from zero. Subsequent tests suggest that in all instances the estimated coefficient for the variable identifying both feedback solutions (Direct+Indirect) is not significantly different from that for the direct- or indirect-only feedback solutions. As a result, we reject hypothesis H3c.

Table A-8

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.225	1.315	1.870	1.053	0.796	0.667	0.829
	(0.131)	(0.168)	(0.264)	(0.069)	(0.105)	(0.096)	(0.045)
CPP	0.076	0.094	-0.071	0.019	0.072	0.129	0.058
	(0.083)	(0.109)	(0.168)	(0.035)	(0.068)	(0.058)	(0.025)
DA-RTP	0.026	0.044	-0.061	0.034	-0.009	0.040	0.055
	(0.089)	(0.114)	(0.172)	(0.038)	(0.072)	(0.062)	(0.026)
PTR	0.015	0.043	-0.089	0.033	0.048	0.085	0.05
	(0.086)	(0.111)	(0.170)	(0.038)	(0.073)	(0.062)	(0.025)
TOU	0.057	0.060	-0.038	-0.025	0.089	0.125	0.032
	(0.097)	(0.127)	(0.192)	(0.038)	(0.082)	(0.073)	(0.026)
BIHD	0.010	0.002	-0.011	-0.040	-0.046	-0.045	-0.012
	(0.083)	(0.099)	(0.147)	(0.038)	(0.070)	(0.068)	(0.027)
AIHD	-0.007	-0.019	-0.035	-0.048	-0.055	-0.063	-0.020
	(0.091)	(0.110)	(0.164)	(0.040)	(0.072)	(0.069)	(0.028)
РСТ	0.032	-0.015	-0.011	-0.070	-0.011	-0.049	-0.032
	(0.101)	(0.124)	(0.183)	(0.045)	(0.089)	(0.083)	(0.032)
	(0.300)	(0.378)	(0.543)	(0.103)	(0.337)	(0.318)	(0.058)

Impacts of Feedback Solutions on Electricity Usage²⁴

²³ The omitted (*i.e.*, base case) category is the use of neither feedback solution.

²⁴ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-8 (continued) Impacts of Feedback Solutions on Electricity Usage

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Bill Protection	0.227	0.185	0.189	-0.079	0.329	0.339	0.015
	(0.167)	(0.187)	(0.262)	(0.053)	(0.184)	(0.183)	(0.035)
Purchase Tech.	-0.100	-0.151	-0.205	0.011	-0.072	-0.026	0.061
	(0.148)	(0.199)	(0.298)	(0.085)	(0.115)	(0.123)	(0.061)
Educ./Notif.	0.093	0.143	0.293	0.069	0.113	0.127	0.054
	(0.162)	(0.204)	(0.319)	(0.081)	(0.135)	(0.122)	(0.052)
SFSH	0.264	0.317	0.332	0.057	1.016	0.904	0.090
	(0.238)	(0.379)	(0.433)	(0.113)	(0.717)	(0.487)	(0.129)
MFNS	-0.684	-0.824	-1.199	-0.103	-0.440	-0.391	0.030
	(0.043)	(0.053)	(0.076)	(0.023)	(0.035)	(0.035)	(0.018)
MFSH	-0.722	-0.809	-1.204	0.016	0.268	0.245	0.089
	(0.111)	(0.141)	(0.187)	(0.107)	(0.198)	(0.184)	(0.128)
Direct Feedback	-0.044	-0.061	-0.088	-0.034	0.030	0.023	0.001
	(0.053)	(0.069)	(0.099)	(0.023)	(0.041)	(0.040)	(0.017)
Indirect Feedback	-0.172	-0.165	-0.359	0.042	0.223	0.259	0.039
	(0.269)	(0.338)	(0.466)	(0.089)	(0.322)	(0.304)	(0.046)
Direct+Indirect	0.316	0.270	0.515	-0.083	-0.130	-0.213	-0.079
	(0.300)	(0.378)	(0.543)	(0.103)	(0.337)	(0.318)	(0.058)
Observations	677	677	677	677	680	680	680
R-squared	0.225	0.199	0.200	0.044	0.178	0.162	0.027

H3d: The advanced in-home display/programmable controllable thermostat (AIHD/PCT) solution will achieve greater energy efficiency, demand response, and load-shifting benefits than other enabling technology.

There are three separate hypotheses implied in H3d, and each is tested separately. They are tested using models similar to the main model with the addition of several variables. The hypothesis in each case is that the coefficient for the AIHD/PCT technology treatment is smaller than the coefficients on the other technology type variables. Because of the small number of PCT installations, the regressions use eWeb as the control group technology; but greater benefits from AIHD/PCT, if they exist, may be inferred from the results.

In Table A-9 the estimated coefficients show how usage (in average kWh per hour) is related to the rate and technology treatments. The table's columns each present results for a different period. These models differ from the main model in that they include both the technology-type indicator variables, as well as variables that are interactions between technology type and whether the customer implemented (i.e., installed) the technology. These inclusions facilitate differentiation between the intention to treat and the actual treatment. However, the treatment in this case is not randomly assigned. For example, customers who implemented BIHD have higher average usage levels (over all summer and nonsummer hours) than customers with no technology. It is not possible to distinguish whether this effect is caused by the technology (which seems unlikely) or the fact that customers who chose to implement the technology tended to have higher usage levels (which seems more plausible). Because none of the technology-specific implementation coefficients in Table A-9 are negative and significantly different from zero at the 5% level, there is little or no evidence to suggest that enabling technologies lead to lower levels of usage as measured in any of these three different ways.

Table A-9 also contains the results of a test of the effects of rate and technology treatments on the ratios of peak to off-peak usage. Customers who implemented BIHD and AIHD have lower ratios of peak to off-peak usage than customers who do not have enabling technology, and based on the size of the corresponding standard errors, these differences are statistically significant.²⁵ As before, it is difficult to know whether these findings are due to effects of the technology or are indicative of the kinds of customers who choose to implement the technology. In addition, the result is somewhat strange because BIHD customers have higher peak-period usage is not different from that of non-technology customers. Consequently, the results seem to indicate that the customers who install these technologies tend to have especially high levels of off-peak usage.

²⁵ Both of these coefficients are negative and significant in the model for summer months. Only the BIHD Implement coefficient is significantly different from zero in the model for non-summer months.

Table A-9 Impacts of Technology on Electricity Usage²⁶

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.376	1.562	2.230	1.119	0.933	0.844	0.904
	(0.047)	(0.059)	(0.091)	(0.022)	(0.036)	(0.034)	(0.015)
CPP	0.041	0.056	0.000	0.004	0.034	0.051	0.016
	(0.033)	(0.041)	(0.058)	(0.014)	(0.027)	(0.026)	(0.011)
DA-RTP	0.061	0.099	0.100	0.038*	0.021	0.034	0.017
	(0.036)	(0.045)	(0.063)	(0.016)	(0.029)	(0.028)	(0.012)
PTR	0.061	0.082	0.081	0.007	0.036	0.051	0.022
	(0.037)	(0.046)	(0.064)	(0.015)	(0.029)	(0.028)	(0.012)
TOU	0.065	0.060	0.068	-0.015	0.022	0.015	-0.018
	(0.037)	(0.046)	(0.065)	(0.015)	(0.030)	(0.029)	(0.012)
BIHD	-0.038	-0.018	-0.018	0.025	-0.024	-0.016	0.012
	(0.026)	(0.033)	(0.046)	(0.012)	(0.020)	(0.020)	(0.009)
AIHD	0.023	0.048	0.079	0.025	-0.003	0.001	0.012
	(0.028)	(0.035)	(0.049)	(0.012)	(0.022)	(0.022)	(0.009)
PCT	0.000	-0.010	0.006	0.010	-0.034	-0.041	0.001
	(0.035)	(0.042)	(0.059)	(0.015)	(0.026)	(0.025)	(0.011)
Bill Protection	0.025	0.042	0.077	0.030	0.044	0.041	0.005
	(0.041)	(0.052)	(0.073)	(0.018)	(0.037)	(0.036)	(0.013)
Purchase	-0.033	-0.039	-0.060	-0.008	-0.026	-0.026	-0.010
Tech.	(0.044)	(0.056)	(0.076)	(0.019)	(0.033)	(0.033)	(0.013)
Educ./Notif.	-0.075	-0.106	-0.222	-0.010	-0.045	-0.030	0.022
	(0.057)	(0.071)	(0.106)	(0.026)	(0.045)	(0.043)	(0.018)
SFSH	0.064	0.086	-0.082	0.031	1.401	1.381	0.052
	(0.165)	(0.216)	(0.265)	(0.069)	(0.410)	(0.402)	(0.042)
MFNS	-0.677	-0.867	-1.228	-0.155	-0.436	-0.41	-0.001
	-0.016	(0.020)	(0.028)	(0.008)	(0.013)	(0.012)	(0.007)
MFSH	-0.693	-0.845	-1.202	-0.059	0.496	0.437	-0.015
	(0.038)	(0.047)	(0.068)	(0.035)	(0.071)	(0.073)	(0.025)

 $^{^{26}}$ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-9 (continued) Impacts of Technology on Electricity Usage

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
BIHD	0.100	0.075	0.111	-0.043	0.083	0.065	-0.020
Implement	(0.033)	(0.042)	(0.059)	(0.013)	(0.026)	(0.025)	(0.010)
AIHD	0.097	0.077	0.045	-0.042	0.116	0.105	-0.009
Implement	(0.051)	(0.067)	(0.090)	(0.018)	(0.038)	(0.038)	(0.014)
РСТ	-0.054	-0.095	-0.076	0.002	-0.022	-0.040	-0.001
Implement	(0.188)	(0.232)	(0.296)	(0.074)	(0.119)	(0.106)	(0.046)
Observations	5,778	5,778	5,778	5,778	5,471	5,471	5,471
R-squared	0.193	0.196	0.199	0.065	0.176	0.164	0.007

H3e: The AIHD/PCT solution in combination with the CPP rate will achieve greater energy efficiency, demand response, and load-shifting benefits than other enabling technology and pricing plan combinations.

The hypothesis to be tested is that usage by customers in cell D4 is lower than usage by customers in other cells. Table A-10 contains results of statistical comparisons of usage as measured by the four main measures of usage discussed throughout this appendix. These comparisons are all relative to the control group in cell F3 (which contains customers on the flat rate who have an AMI meter, and have received basic AMI education) with SFNS housing, which is represented in the regression by the constant term. The coefficient on the constant term indicates that the average hourly consumption of SFNS customers in cell F3 in all summer hours equals 1.377 kWh. Average hourly consumption for customers in each other cell equals the constant coefficient plus the coefficient on the appropriate indicator or dummy variable. For example, the estimated average hourly consumption of customers in cell D1a in all summer hours is lower and equals 1.353 kWh (= 1.377 - 0.024).

In general, there are few instances where treatments had a significant effect. There are some instances where event-hour usage by CPP customers is significantly different than that of customers in the control group. Specifically, during peak periods on event days, customers in treatment cell F3 (the control group) consume more electricity than customers in two of the five CPP cells (D2 and D4 have negative coefficients with are significant). However, customers in treatment cell F5 (flat rate customers with e-Web and education) also consume less electricity on average during peak periods on event days than the control group, and they only differ from the control group customers in that they received additional education.

Table A-10 also reports the results explaining how the ratios of peak to off-peak usage differ by treatment cell in the summer (5th column) and the non-summer periods (7th column). Based on the high standard errors (and resulting lack of statistical significance), Table A-10 shows that summer peak-to-offpeak usage ratios for most customers (except those in treatment cell L1b) are statistically indistinguishable from the average for customers in group F3. In the non-summer models, shown in the three rightmost columns of table A-10, the only significant treatment effects are found in the peak-to-off-peak ratio model. Several CPP and DA-RTP treatment cells and all of the PTR treatment cells use significantly more electricity during peak hours relative to offpeak hours when compared to the control cell, F3.

The exceptions provide highly selective support for hypothesis H3e; but in general, the evidence that usage by customers in cell D4 is lower than usage by customers in other cells is rather weak.

Table A-10 Usage of Cells Relative to Cell F3²⁷

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.377	1.564	2.232	1.119	0.934	0.844	0.904
	(0.047)	(0.059)	(0.091)	(0.022)	(0.036)	(0.035)	(0.015)
Dla	-0.024	-0.045	-0.196	-0.014	-0.007	0.015	0.026
	(0.056)	(0.070)	(0.105)	(0.026)	(0.043)	(0.042)	(0.018)
D1b	0.035	0.043	-0.092	0.018	0.063	0.100	0.042
	(0.068)	(0.086)	(0.128)	(0.031)	(0.058)	(0.059)	(0.022)
D2	-0.057	-0.060	-0.246	0.010	-0.043	0.000	0.057
	(0.056)	(0.071)	(0.105)	(0.027)	(0.043)	(0.042)	(0.019)
D3	0.007	0.013	-0.125	0.011	0.025	0.056	0.046
	(0.057)	(0.072)	(0.108)	(0.026)	(0.044)	(0.043)	(0.018)
D4	-0.032	-0.060	-0.222	0.001	-0.024	-0.000	0.04
	(0.058)	(0.070)	(0.105)	(0.026)	(0.044)	(0.042)	(0.018)
D5	-0.021	-0.042	-0.166	-0.009	-0.013	0.024	0.06
	(0.068)	(0.084)	(0.123)	(0.029)	(0.049)	(0.048)	(0.021)

²⁷ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-10 (continued) Usage of Cells Relative to Cell F3

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
D6	-0.059	-0.056	-0.166	0.015	-0.004	0.025	0.043
	(0.057)	(0.072)	(0.108)	(0.026)	(0.043)	(0.041)	(0.018)
D7	0.074	0.103	0.029	0.022	-0.001	0.033	0.061
	(0.076)	(0.101)	(0.143)	(0.031)	(0.054)	(0.053)	(0.021)
D8	0.030	0.004	-0.100	-0.012	-0.030	-0.011	0.041
	(0.063)	(0.079)	(0.119)	(0.029)	(0.046)	(0.043)	(0.020)
F5	-0.075	-0.101	-0.270	0.010	-0.027	-0.006	0.033
	(0.072)	(0.088)	(0.125)	(0.031)	(0.060)	(0.058)	(0.022)
F6	-0.091	-0.118	-0.195	-0.013	-0.039	-0.028	0.022
	(0.062)	(0.077)	(0.117)	(0.028)	(0.051)	(0.048)	(0.021)
F7	-0.032	-0.035	-0.104	0.010	-0.055	-0.037	0.031
	(0.073)	(0.089)	(0.131)	(0.031)	(0.054)	(0.051)	(0.026)
Lla	-0.042	-0.037	-0.145	0.020	-0.019	0.012	0.041
	(0.066)	(0.082)	(0.120)	(0.033)	(0.052)	(0.050)	(0.021)
L1b	-0.031	-0.013	-0.093	0.062	-0.007	0.012	0.045
	(0.069)	(0.084)	(0.125)	(0.031)	(0.057)	(0.055)	(0.020)
L2	0.009	0.034	-0.080	0.041	-0.014	0.020	0.047
	(0.057)	(0.073)	(0.108)	(0.027)	(0.043)	(0.042)	(0.018)
L3	0.026	0.051	-0.017	0.045	0.004	0.020	0.041
	(0.066)	(0.085)	(0.127)	(0.031)	(0.051)	(0.049)	(0.022)
L4	0.002	-0.013	-0.112	-0.015	-0.045	-0.032	0.003
	(0.060)	(0.077)	(0.116)	(0.030)	(0.046)	(0.046)	(0.021)
L5a	0.024	-0.006	-0.082	-0.018	0.009	0.010	0.005
	(0.059)	(0.073)	(0.110)	(0.026)	(0.046)	(0.044)	(0.018)
L5b	-0.099	-0.122	-0.227	-0.008	-0.071	-0.060	0.007
	(0.066)	(0.082)	(0.123)	(0.030)	(0.052)	(0.050)	(0.021)
L6a	-0.070	-0.095	-0.225	-0.007	-0.046	-0.023	0.026
	(0.068)	(0.085)	(0.123)	(0.030)	(0.050)	(0.051)	(0.023)

Table A-10 (continued) Usage of Cells Relative to Cell F3

	All Summe Hours	er Pe	nmer ak urs	Eve Ho	ent urs	Summe P/O Ratio	r	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Co (S.		Co (S.		Coef. (S.E.)		Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Lób	0.002	-0.0	016	-0.1	35	-0.010		-0.049	-0.032	0.005
	(0.071	(0.0	091)	(0.	126)	(0.032)		(0.051)	(0.051)	(0.022)
SFSH	0.057	0.0	79	-0.0	086	0.031		1.400	1.382	0.054
	(0.166	(0.2	217)	(0.2	268)	(0.069)		(0.408)	(0.400)	(0.042)
MFNS	-0.682	2 -0.	871	-1.	233	-0.153		-0.44	-0.413	-0.001
	(0.016	(0.0	020)	(0.0	028)	(0.008)		(0.013)	(0.012)	(0.007)
MFSH	-0.693	3 -0.	845	-1.	201	-0.059		0.495	0.437	-0.014
	(0.038	(0.0	047)	(0.0	068)	(0.036)		(0.071)	(0.073)	(0.025)
Observation	s 5,2	778	5,778	3	5,778	5,778	3	5,471	5,471	5,471
R-squared	0.	193	0.196	5	0.200	0.063	3	0.174	0.162	0.008

H3f: Customers activating a BIHD will experience greater satisfaction than customers who have received and activated other enabling technology.

This hypothesis test is conducted using a model similar to that which was developed for hypothesis H2f. Satisfaction is measured as the average of customer responses to questions 22 and 23 of the CAP final survey. The control group consists of customers on the FLR rate with BIHD technology (i.e. in treatment cell F6) residing in SFNS housing. The hypothesis would be supported if the coefficients for AIHD and PCT were significant and negative; but because this is not the case, the hypothesis is rejected. The results show that, relative to the control group, only the option to purchase technology (a positive effect, counter-intuitively) and MFSH housing (a negative effect) significantly impact customer satisfaction.

Variable	Coef.	(S.E)
Constant	6.068	(0.352)
CPP	-0.178	(0.436)
DA-RTP	0.036	(0.425)
PTR	0.037	(0.442)
TOU	-0.098	(0.444)
IBR	0.003	(0.470)
AIHD	-0.098	(0.279)
РСТ	-0.106	(0.419)
Purchase Tech.	1.663	(0.571)
SFSH	-0.194	(0.366)
MFNS	0.209	(0.277)
MFSH	-2.600	(0.727)
Observations	497	
R-squared	0.026	

Table A-11 Impacts of Technology on Customer Satisfaction²⁸

Enabling Technology Acquisition

All of the hypotheses regarding the acquisition of enabling technologies are based upon comparisons of data within two cells: customer groups L5a and L5b, and customer groups L6a and L6b.

Hypotheses H4b, H4c, and H4d assert that customers who willingly purchase enabling technology, albeit at a subsidized cost, will take actions that differ from those who were offered the technology at no cost.²⁹

 $^{^{28}}$ The dependent variable is the average satisfaction score (0-10) self-reported for questions 22 and 23 in the final survey. See Appendix B for additional details.

 $^{^{29}}$ One sub-set of customers was offered the opportunity to purchase the BIHD for \$42 and another was offered the AIHD for \$84.

H4a: The acquisition rate of free enabling technology will exceed that of purchased enabling technology.³⁰

Customers in groups L5a and L6a were given enabling technologies at no cost. Customers in groups L5b and L6b were offered enabling technologies for purchase. Table A-12 provides data on how many customers in each group were offered enabling technologies, how many acquired those technologies, how many implemented the technologies, and how many self-reported adopting the technology. It also provides the acquisition rates (number acquired divided by number offered, expressed as a percentage), implementation rates (number implemented divided by number acquired, expressed as a percentage), and adoption rates (number adopted divided by number of customers who reported any adoption behavior, expressed as a percentage).³¹

The acquisition rate for free BIHDs is 100%, because the CAP project provided customers with this technology without the customer having to request it. The acquisition rate for free AIHDs is unknown because the available data do not identify how many free AIHDs were sent. By contrast, of the 450 customers in groups L5b and L6b who were offered technology for purchase at a heavily subsidized price, only 9 (or 2%) accepted the purchase offer.

While the numbers of customers purchasing the technologies were too small to support formal ANOVA tests, these descriptive data support the assertion that only a small fraction of customers are likely to purchase enabling technology. However, because customers who obtained the technology free of charge did so without requesting the technology, there is no way to know what proportion of these customers would have actually requested the technology at no cost had they been required to opt in.

³⁰ Because all customers who were given the BIHD and AIHD are coded as having acquired the technology, this hypothesis is true by definition unless all customers who were offered the opportunity to purchase the technology did purchase it.

³¹ The implementation rate for L6a (free AIHDs) was calculated by dividing the number of implemented free AIHDs by the number of *potentially* acquired free AIHDs (0.12 - 27/225).

			Number	5			Rates			
	Offer	Acquire	Imple- ment	Adopt	Did not Adopt	Acquire	Imple- ment	Adopt		
For Free										
L5a	525	525	171	30	28	100%	33%	52%		
Lóa	225	Unknown	27	15	3	Unknown	12%	83%		
For Purc	nase									
L5b	225	5	4	2	2	2%	80%	50%		
Lób	225	4	4	2	0	2%	100%	100%		

Table A-12 Acquisition, Implementation, and Adoption of Free and Purchased Technology

H4b: The implementation rate of purchased enabling technology will exceed that of free enabling technology.

Table A-12 also contains data that suggest that customers who purchased enabling technologies implemented the technologies at much higher rates than did customers who were given the technologies at no cost (80% and 100% versus 12% and 33%, though these values are based on small samples). On the one hand, this is a plausible result; people who pay for something are more likely to place a higher value on it than people who receive it at no cost. On the other hand, the rates of implementation in Table A-12 for those receiving the technology at no cost may well understate the rates of implementation that would be experienced if customers had been required to at least *request* the technology. In summary, the available evidence supports the hypothesis; but the evidence would be stronger if: a) customers given the enabling technology were required to request the technology; and b) there was a large population of customers who were offered the technology for purchase so that the "for purchase" acquisition and implementation rates were more statistically meaningful.

H4c: The adoption rate of purchased enabling technology will exceed that of free enabling technology.

Table A-12 also contains data suggesting that adoption rates for enabling technology are similar regardless of whether the IHD was offered for free or made available for purchase. The data suggest that when a BIHD is offered for free or for purchase, the adoption rate is 53% and 50%, respectively. The adoption rate for free AIHDs is 83% and the adoption rate of for purchase AIHDs is 100%. Because the sample is so small (resulting in essentially anecdotal evidence), however, the hypothesis can neither be accepted nor rejected.

H4d: Purchased enabling technology will achieve greater energy efficiency, demand response, and load-shifting benefits than free enabling technology.

To test this hypothesis, we restrict our analyses to include only customers in treatment cells L5 and L6, which were split so that some customers were given the technology while others were offered it for purchase. The control group for

these regressions includes customers on the TOU rate who received BIHD at no cost (i.e. treatment cell L5a), and who reside in SFNS housing.

Table A-13 contains the results of four summer and three non-summer regressions. There are no significant relationships between the measures of usage and whether the customer was offered the technology for free or for purchase. Only housing type has a significant effect.

Table A-13

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.35	1.498	2.084	1.093	0.923	0.836	0.913
	(0.041)	(0.051)	(0.073)	(0.014)	(0.031)	(0.029)	(0.009)
AIHD	-0.015	-0.010	-0.047	0.006	-0.026	-0.009	0.012
	(0.047)	(0.059)	(0.080)	(0.019)	(0.035)	(0.035)	(0.015)
Purchase	-0.040	-0.032	-0.044	0.006	-0.047	-0.044	-0.008
Tech.	(0.046)	(0.058)	(0.080)	(0.019)	(0.035)	(0.035)	(0.014)
SFSH	-0.197	-0.085	-0.304	0.186	1.825	1.747	0.039
	(0.278)	(0.425)	(0.717)	(0.153)	(0.276)	(0.367)	(0.054)
MFNS	-0.602	-0.766	-1.121	-0.123	-0.414	-0.384	-0.002
	(0.042)	(0.051)	(0.070)	(0.020)	(0.032)	(0.031)	(0.016)
MFSH	-0.651	-0.828	-1.23	-0.135	0.67	0.536	-0.059
	(0.089)	(0.094)	(0.129)	(0.070)	(0.157)	(0.147)	(0.052)
		·					
Observations	994	994	994	994	946	946	946
R-squared	0.141	0.144	0.158	0.043	0.159	0.143	0.002

Usage Comparisons by Method of Obtaining Technology³²

Bill Protection

There are three hypotheses in the analysis plan that relate to bill protection. These hypothesis tests are based upon comparisons of data within two cells:

Customer groups D1a and D1b (customers on the CPP rate with e-Web technology, where customers in sub-group "a" were not informed of bill protection, while those in sub-group "b" were); and

³² The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Customer groups L1a and L1b (customers on the DA-RTP rate with e-Web technology, where customers in sub-group "a" were not informed of bill protection, while those in sub-group "b" were).

H5a: The adoption rate of a dynamic pricing plan will be greater when bill protection is offered than when it is not offered.

This hypothesis was tested using a logit model. The dependent variable takes on a value of unity if the customer opted out of the pilot, and a value of zero otherwise. The independent variables include indicators for each of the rate treatments and housing types, and an indicator variable distinguishing customers who have been notified of bill protection. Only customers in cells D1 (CPP) and L1 (DA-RTP) are included in the sample. The hypothesis being tested is that the coefficient on the bill protection variable is negative.

Table A-14 shows the estimated impact of bill protection on opt-out rates. The coefficient for the constant implies an opt-out rate of 4.1% for CPP customers with eWeb technology and SFNS housing who were not informed of bill protection.³³ The opt-out rate for DA-RTP customers is calculated from the sum of the constant term and the coefficient on the DA-RTP indicator variable. The impact of bill protection is implied by the coefficient on the dummy variable for bill protection. The very small z-statistic indicates that bill protection did not significantly affect opt-out rates, though it should be noted that opt-out rates are quite low overall.³⁴

Variable	Coef.	(S.E)	Z	Prob
Constant	-3.157	(0.256)	-12.336	4.1%
DA-RTP	-0.889	(0.461)	-1.929	1.7%
Bill Protection	0.188	(0.373)	0.505	4.9%
MFNS	-0.626	(0.412)	-1.519	2.2%
SFSH	(omitted)			
MFSH	(omitted)			
Observations		1,1	19	
R-squared		0.02	248	

Table A-14 Impact of Bill Protection on Opt-Out Rates³⁵

 $^{^{33}}$ 4.1% = exp(-3.157)/(1 + exp(-3.157))

³⁴ See Table A-22 for a summary of opt-outs by rate treatment and month.

³⁵ The dependent variable is a binary choice variable that equals one if the customer opted out of the pilot program and zero otherwise. See Appendix B for additional details.

H5b: Customers without bill protection will achieve greater energy efficiency, demand response, and load-shifting benefits than customers with bill protection.

To test this hypothesis, four summer and three non-summer tests are specified where the dependent variable for each test is one of the four main measures of customer usage. Furthermore, to test these hypotheses, we restrict our analyses to include only customers in cells D1 and L1, which were split so that some customers were notified of bill protection and others were not. The regression models include two independent variables of particular interest: Bill Protection, which is the variable of interest, takes on a value of unity if the customer was notified of bill protection and a value of zero otherwise: and CPP takes on a value of unity if the customer is in the CPP treatment and a value of zero otherwise. Thus, the treatment group for the DA-RTP rate with eWeb technology and without bill protection serves as the control group for this regression analysis.

Table A-15 contains the results for these seven separate hypothesis tests. Since the standard errors associated with the estimated coefficients on bill protection are large in all seven models, there is no evidence of any significant difference in these three measures of electricity consumption between customers who were notified of bill protection and those who were not notified.

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.325	1.516	2.067	1.142	0.920	0.860	0.952
	(0.047)	(0.059)	(0.082)	(0.020)	(0.036)	(0.035)	(0.013)
CPP	0.036	0.016	-0.031	-0.038	0.032	0.033	-0.011
	(0.044)	(0.055)	(0.077)	(0.020)	(0.037)	(0.037)	(0.014)
Bill	0.040	0.062	0.085	0.037	0.044	0.047	0.010
Protection	(0.044)	(0.056)	(0.079)	(0.020)	(0.039)	(0.039)	(0.014)
SFSH	0.528	0.649	0.440	0.031	1.571	1.639	0.042
	(0.241)	(0.508)	(0.573)	(0.182)	(0.732)	(0.795)	(0.105)
MFNS	-0.699	-0.899	-1.234	-0.159	-0.504	-0.498	-0.031
	(0.038)	(0.047)	(0.066)	(0.018)	(0.031)	(0.029)	(0.015)
MFSH	-0.656	-0.789	-1.094	0.001	0.568	0.550	0.013
	(0.076)	(0.100)	(0.147)	(0.098)	(0.170)	(0.184)	(0.043)
Observations	975	975	975	975	917	917	917
R-squared	0.221	0.228	0.219	0.075	0.229	0.229	0.007

Table A-15 Usage Comparisons by Notification of Bill Protection³⁶

H5c: Customers with bill protection will experience greater satisfaction than customers without bill protection.

This hypothesis test is conducted using the model developed to test hypothesis H2f, where the dependent variable is a measure of satisfaction obtained by averaging customer responses to questions 22 and 23 of the CAP final survey. Here, again, only customers who are in treatment cells D1a, D1b, L1a, or L1b and who answered the final survey are included in the sample. An indicator variable for the notification of bill protection is included, and the hypothesis is that the coefficient on this variable is positive.³⁷

Table A-16 presents the results of this hypothesis test. The high standard error for the Bill Protection coefficient indicates that customers who were notified of bill protection (at the beginning of the program) do not experience significantly different levels of satisfaction as compared to customers who were not notified.

³⁶ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

³⁷ The omitted (*i.e.*, "base case") category is customers who were not notified of bill protection.

Variable	Coef.	(S.E)			
Constant	5.707	(0.225)			
DA-RTP	0.349	(0.268)			
Bill Protection	0.277	(0.291)			
SFSH	-1.707	(0.225)			
MFNS	0.212	(0.280)			
MFSH	0.112	(0.816)			
Observations	305				
R-squared	0.	013			

Table A-16 Impact of Bill Protection on Customer Satisfaction³⁸

It is important to note that the results of these hypotheses regarding bill protection should be interpreted with some caution. It is our understanding that throughout the Pilot, ComEd had an unstated policy of making all customers whole at the end of the Pilot. Thus, there is some chance that ComEd's intention in this regard may have been revealed (accidentally or intentionally) during the course of the Pilot to customers other than those in cells D1b and L1b, who were explicitly notified that they will receive bill protection. There are some data indicating which customers were told of the bill protection when they attempted to opt out of the program; and question 2i of the final survey asks if customers were aware that they would be made whole.³⁹ However, because the survey question was vaguely worded, we are still unable to know exactly which customers may have been notified of bill protection informally (e.g., by a neighbor).

Customer Education

For this group of hypotheses, customers in treatment cell F3 received Basic AMI Education. Customers in this treatment cell received awareness education about the smart meter system and the flat rate they are charged for electricity (disseminated through materials that came with meter installation and a Rate Notification Letter). Customers in this group had access to Energy Tips on the OPOWER website, as well as access to the hourly data on the website.

Customers in all other treatment cells received the Education treatment. It involved Basic AMI Education *plus* detailed rate education, access to the Customer Education Package (by mail or online), a monthly OPOWER report, IHD videos (available online), an IHD user manual, and a quick-start guide for

 $^{^{38}}$ The dependent variable is average satisfaction score (0-10) self-reported for questions 22 and 23 in the final survey. See Appendix B for additional details.

³⁹ Question 2i asks customers to agree or disagree with the following statement, "My pricing plan includes a rate guarantee."

applicable cells. All customers who are not in treatment cells F1 or F3 received this education.

Customers in cell F1 are from ComEd's load research sample, and these customers are not involved in the pilot. Customers in this treatment cell received no education. Customers in cell F2 are also from the load research sample, but they received an AMI meter and full education. They pay the flat rate for electricity, and they reside outside of the AMI footprint.

H6a: Customers receiving customer education will achieve greater energy efficiency, demand response, and load-shifting benefits than customers who do not receive customer education.

The tests of this hypothesis are based on customers only from cells F1 and F2. Like many other hypotheses presented in this appendix, this is really a joint hypothesis, but each piece of it is tested separately. Thus, four summer and three non-summer regression models are specified, where the dependent variables correspond to the four main measures of electricity consumption. The independent variables are an indicator variable that is equal to unity if the customer received education (i.e., the customer is in cell F2) and zero if the customer did not (i.e., the customer is in cell F1) in addition to indicator variables for housing type. The hypothesis is that the coefficient on the F2 variable will be negative in each model.

This is a direct test of the effect of education on customer behavior, absent any additional influences from the dynamic rate treatments, the AMI meter, or any treatments for enabling technologies. It is impossible to include customers from any of the rate treatment groups in this test for the effect of education because all customers in treatments not paying the flat rate received customer education.

Table A-17presents the results of the seven regressions. The coefficients for the constant terms in each model represent the average of that model's dependent variable for customers in cell F1 with SFNS housing. The coefficients for the F2 dummy variables represent the differences in the various usage measures between customers in groups F1 and F2. The standard errors associated with the F2 variable in each model are too large for these differences to be statistically significant. Therefore, the evidence does not support hypothesis H6a.

Table A-17 Impact of Customer Education on Usage⁴⁰

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	2.235	2.751	3.629	1.311	1.441	1.371	0.954
	(0.152)	(0.193)	(0.246)	(0.034)	(0.162)	(0.148)	(0.024)
F2	0.003	0.005	0.044	0.025	0.354	0.312	0.026
	(0.168)	(0.210)	(0.262)	(0.036)	(0.291)	(0.259)	(0.037)
SFSH	0.489	0.412	0.149	-0.098	4.306	3.747	-0.085
	(0.277)	(0.350)	(0.411)	(0.045)	(0.472)	(0.412)	(0.023)
MFNS	-0.389	-0.663	-0.96	-0.165	-0.534	-0.504	0.009
	(0.254)	(0.318)	(0.416)	(0.051)	(0.197)	(0.181)	(0.031)
MFSH	-0.546	-0.947	-1.415	-0.196	1.842	1.662	-0.013
	(0.197)	(0.248)	(0.313)	(0.043)	(0.307)	(0.282)	(0.044)
Observations	487	487	487	487	459	459	459
R-squared	0.045	0.053	0.055	0.046	0.286	0.277	0.012

H6b: Customers who receive customer education along with an AMI-enabled, nonflat rate and enabling technology will achieve greater energy efficiency, demand response, and load-shifting benefits than customers who are offered a flat rate and Basic AMI Education.

As was the case for the previous hypothesis, this is really a joint hypothesis, but each piece of it is tested separately. Thus, four summer and three non-summer regression models are specified where the dependent variable is one of the four main measures of electricity consumption. To test this hypothesis, one must compare customers who pay a flat rate and have only eWeb access, cell F3, with customers who do not pay a flat or IBR rate for electricity and who have an AMI-enabled, enabling technology (cells D2, D3, D4, D6, D7, D8, L2, L3, L5a, and L6a). The independent variables in each of these regression equations include indicators for housing type and an indicator variable that equals unity if the customer is in cell F3 (i.e., pays a flat rate and has only basic AMI education), and zero otherwise. Only customers in the treatment cells listed above are included in the sample. The hypothesis is that the coefficient on the F3 variable is positive in each model.

⁴⁰ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-18 presents the results for the seven models used to test this hypothesis. The constant coefficients represent average hourly kWh usage for all customers in treatment groups where customers do not pay a flat or IBR rate, but do have an AMI-enabled enabling technology and SFNS housing. The coefficients for the dummy variable associated with the F3 variable reflect the differences in the respective measures of electricity usage between F3 and all other treatment groups mentioned above. The positive signs on these coefficients are as expected, but the large standard errors suggest that the effects are not statistically significant for any of the three periods. The only exception is for the non-summer model comparing peak-to-offpeak usage ratios. The negative and significant F3 coefficient estimate reported in the table suggests that in the non-summer months, customers in treatment cell F3 have flatter load shapes than those in the other treatment cells.

In summary, none of the evidence from the seven regressions supports hypothesis H6b.

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.364	1.547	2.095	1.129	0.914	0.849	0.94
	(0.016)	(0.020)	(0.029)	(0.006)	(0.011)	(0.011)	(0.004)
F3	0.014	0.019	0.141	-0.008	0.016	-0.008	-0.037
	(0.048)	(0.060)	(0.092)	(0.023)	(0.036)	(0.035)	(0.015)
SFSH	-0.014	-0.031	-0.192	0.006	1.330	1.280	0.058
	(0.191)	(0.240)	(0.312)	(0.073)	(0.488)	(0.456)	(0.045)
MFNS	-0.686	-0.879	-1.247	-0.159	-0.427	-0.397	0.001
	(0.020)	(0.025)	(0.035)	(0.010)	(0.016)	(0.015)	(0.008)
MFSH	-0.695	-0.857	-1.198	-0.068	0.487	0.438	-0.004
	(0.053)	(0.061)	(0.086)	(0.041)	(0.091)	(0.090)	(0.036)
Observations	3,817	3,817	3,817	3,817	3,645	3,645	3,645
R-squared	0.184	0.187	0.192	0.061	0.159	0.146	0.002

Table A-18 Impact of Technology and Customer Education Usage⁴¹

⁴¹ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

H6c: Customers who receive customer education along with an AMI-enabled, nonflat rate and enabling technology will achieve greater energy efficiency, demand response, and load-shifting benefits than customers who receive customer education, a flat rate, and enabling technology.

As in the previous hypothesis, this is really a joint hypothesis, but each piece of it is tested separately. Thus, four summer and three non-summer regression models are specified where the dependent variable is one of the four main measures of electricity consumption. To test this hypothesis, one must compare customers who face the flat rate and have an AMI-enabled enabling technology (treatment cells F6 and F7) with customers who have an AMI-enabled enabling technology but who do not pay a flat or IBR rate (treatment cells D2, D3, D4, D6, D7, D8, L2, L3, L5a, and L6a). The independent variables in each of these regression equations include indicators for housing type and an indicator variable that equals unity if the customer is in cell F6 or F7 (i.e., pays a flat rate, has received education, and has enabling technology). The hypothesis is that the coefficient on the F6|F7 variable in each model is positive.

Table A-19 presents the results for the seven models related to measures of energy efficiency, demand response, and load shifting. The constant coefficient in each model represent average values of the dependent variable for the control group where customers do not face the flat rate, but are AMI-enabled, have enabling technology, and have SFNS housing. The coefficients on the F6| F7 dummy variables reflect the differences in usage between customers in the combined F6| F7 group and customers in the control groups. Although all seven estimated coefficients on the F6| F7 variable are negative, they also all have large standard errors, thus implying that the differences in usage between the two groups are not statistically significant.

In summary, none of the evidence from any of the seven tests supports hypothesis H6c.

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.366	1.547	2.097	1.127	0.915	0.849	0.939
	(0.016)	(0.020)	(0.028)	(0.006)	(0.011)	(0.011)	(0.004)
F6 or F7	-0.051	-0.062	-0.014	-0.011	-0.030	-0.041	-0.011
	(0.035)	(0.044)	(0.063)	(0.015)	(0.028)	(0.027)	(0.013)
SFSH	-0.016	-0.032	-0.194	0.007	1.329	1.28	0.059
	(0.191)	(0.240)	(0.312)	(0.073)	(0.488)	(0.456)	(0.045)
MFNS	-0.691	-0.879	-1.251	-0.152	-0.428	-0.397	0.004
	(0.020)	(0.024)	(0.034)	(0.010)	(0.015)	(0.015)	(0.008)
MFSH	-0.707	-0.884	-1.239	-0.087	0.476	0.422	-0.007
	(0.051)	(0.057)	(0.081)	(0.038)	(0.089)	(0.087)	(0.035)
Observations	4,068	4,068	4,068	4,068	3,866	3,866	3,866
R-squared	0.185	0.187	0.192	0.057	0.156	0.143	0.001

Table A-19 Impact of Technology and Customer Education on Usage⁴²

H6d: Customers who receive customer education will experience greater satisfaction than customers without customer education.

As is the case with the other hypotheses that are related to customer satisfaction, this test uses a measure of satisfaction constructed by averaging the scores of questions 22 and 23 from the CAP final survey as the dependent variable. The model includes an indicator variable that equals unity for customers who receive education and a value of zero otherwise. Only customers in treatment cells F1 and F2 are used in the sample for this regression, and the control group consists of customers in treatment cell F1 (who received no education) with SFNS housing. The hypothesis is that the coefficient on the full education variable is positive.

Table A-20 presents results for the regression. The coefficient on the constant term indicates that the average satisfaction score for customers in the F1 treatment cell with SFNS housing is 5.098. The estimated coefficient on the full education variable indicates the incremental impact of education on customer satisfaction with respect to the control group. Although the estimated coefficient on the full education variable is positive as expected, the corresponding standard

 $^{^{42}}$ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

error is large so the effect is not statistically significant. Therefore, the evidence does not support hypothesis H6d.

Table A-20

Impact of Customer Education on Customer Satisfaction⁴³

Variable	Coef.	(S.E)
Constant	5.098	(0.290)
Full Education	0.416	(0.307)
SFSH	0.236	(0.402)
MFNS	0.505	(0.436)
MFSH	0.546	(0.385)
Observations	2	260
R-squared	0.	016

Customer Experience – Observable Steps

The tests of hypotheses related to customer experience involve codifying a number of observable steps that customers may take during participation in the CAP pilot. The following list contains examples of these observable steps:

- 1. Returned Survey A
- 2. Notification Preference Updated on survey with one or more of the following: email, text, and/or phone
- 3. Customer Education Package Requested on the survey
- 4. Requested Customer Education Package via RNL postcard
- 5. Created a Web Account
- 6. Called to schedule an OpenPeak, or to purchase a Tendril or OpenPeak
- 7. Activated a Tendril or OpenPeak
- 8. Called ComEd call center
- 9. Completed exit survey at the end of the study.

Throughout the pilot, data that allow us to construct metrics representing many of these steps were collected. In some cases, however, a particular step could not be directly measured or had to be interpreted to conform with the available data. Due to errors in the measurement and validation database (MVDB), Step 2 could not be observed. Step 4 is interpreted to mean that the customer sent in any postcard.⁴⁴ As a result, a customer may have completed any number between zero and eight steps.

 $^{^{\}rm 43}$ Dependent variable: average satisfaction score (0-10) self-reported for questions 22 and 23 in the final survey. See Appendix B for additional details.

 $^{^{\}rm 44}$ The MVDB only indicates that a postcard was received and does not specify what information the postcard included.

H7a: Customers who engage in small, observable steps will achieve greater energy efficiency, demand response, and load-shifting benefits than customers who do not engage in those steps.

As in many of the previous hypotheses, this is really a joint hypothesis, but each piece of it is tested separately. Thus, four summer and three non-summer regression models are specified where the dependent variable is one of the four main measures of electricity consumption. These models build upon the main model by including two new variables: the first is an indicator variable that equals unity for customers who have engaged in any small, observable steps, and a value of zero otherwise; and the second is a count variable that equals an integer between zero and eight indicating the number of steps that a customer took. The hypothesis is that the coefficients on these variables for observable steps are negative.

Table A-21 presents the results of the seven regressions. Three of the models exhibit statistically significant impacts (i.e. statistically significant coefficients on the # of Steps and Any Steps variables) as a result of the steps: Summer Peak Hours, Event Hours, and Summer P/O Ratio. In all three models, the estimated coefficients for the indicator variable Any Steps (0 or 1) are positive and significant, suggesting (unexpectedly) that customers who engaged in any of the steps have higher average peak usage and usage ratios in the summer than customers who engaged in none of the steps. However, the negative and significant coefficients for the # of Steps (0 to 7) variables suggest that with each additional step taken, the customer exhibits decreasing peak usage and usage ratios in the summer.

One interpretation of these results is to conclude that only larger customers are inclined to take any steps, but thereafter, given the magnitude of the coefficients of interest, as long as the customer takes at least three steps, peak usage is likely to be lower than for customers who took no steps. The results partially confirm hypothesis H7a.

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.366	1.543	2.192	1.116	0.945	0.854	0.905
	(0.048)	(0.060)	(0.093)	(0.023)	(0.037)	(0.036)	(0.015)
CPP	0.045	0.062	0.006	0.004	0.037	0.054	0.016
	(0.033)	(0.041)	(0.058)	(0.014)	(0.027)	(0.026)	(0.011)
DA-RTP	0.064	0.103	0.104	0.038	0.024	0.036	0.017
	(0.036)	(0.045)	(0.063)	(0.016)	(0.030)	(0.028)	(0.012)
PTR	0.062	0.085	0.084	0.008	0.034	0.050	0.023
	(0.037)	(0.046)	(0.065)	(0.015)	(0.029)	(0.028)	(0.012)
TOU	0.071	0.068	0.077	-0.014	0.024	0.018	-0.018
	(0.037)	(0.046)	(0.065)	(0.015)	(0.030)	(0.029)	(0.012)
BIHD	-0.004	0.012	0.022	0.016	0.004	0.007	0.008
	(0.025)	(0.031)	(0.043)	(0.011)	(0.019)	(0.019)	(0.008)
AIHD	0.038	0.064	0.091	0.021	0.015	0.017	0.011
	(0.028)	(0.035)	(0.049)	(0.012)	(0.021)	(0.021)	(0.009)
PCT	0.016	0.004	0.015	0.005	-0.015	-0.024	0.001
	(0.035)	(0.041)	(0.058)	(0.015)	(0.026)	(0.025)	(0.011)
Bill	0.024	0.040	0.076	0.030	0.043	0.041	0.005
Protection	(0.041)	(0.052)	(0.073)	(0.018)	(0.037)	(0.036)	(0.013)
Purchase	-0.056	-0.060	-0.082	-0.002	-0.049	-0.045	-0.007
Tech.	(0.044)	(0.055)	(0.076)	(0.018)	(0.033)	(0.033)	(0.013)
Educ./Notif	-0.075	-0.104	-0.218	-0.008	-0.047	-0.031	0.023
	(0.057)	(0.071)	(0.106)	(0.026)	(0.045)	(0.043)	(0.018)
SFSH	0.055	0.072	-0.107	0.030	1.404	1.384	0.053
	(0.164)	(0.214)	(0.266)	(0.070)	(0.410)	(0.401)	(0.042)
MFNS	-0.682	-0.871	-1.231	-0.154	-0.442	-0.415	-0.001
	(0.016)	(0.020)	(0.028)	(0.008)	(0.013)	(0.012)	(0.007)
MFSH	-0.693	-0.843	-1.198	-0.057	0.493	0.435	-0.014
	(0.038)	(0.047)	(0.067)	(0.035)	(0.071)	(0.073)	(0.025)

Table A-21 Impact of Small Observable Steps on Electricity Usage⁴⁵

 $^{^{\}rm 45}$ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-21 (continued) Impact of Small Observable Steps on Electricity Usage

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
# of Steps	-0.012	-0.026	-0.034	-0.010	0.004	0.000	-0.003
(0 to 7)	(0.008)	(0.011)	(0.015)	(0.003)	(0.006)	(0.006)	(0.002)
Any Steps	0.043	0.087	0.138	0.024	-0.030	-0.018	0.003
(0 or 1)	(0.028)	(0.036)	(0.050)	(0.012)	(0.022)	(0.021)	(0.008)
Observatio ns	5,778	5,778	5,778	5,778	5,471	5,471	5,471
R-squared	0.191	0.196	0.200	0.064	0.173	0.162	0.007

Customer Experience – Opt-Out Enrollment

CAP employed an opt-out design, the first major application of that approach to exposing residential customers to price and other treatments designed to induce changes in electricity usage. Four hypotheses were established to compare the performance for opt-out enrollment with opt-in recruitment practices, as follows;

H7b: An opt-out strategy will result in a higher enrollment percentage than an opt-in strategy.

This analysis requires comparing ComEd's CAP enrollment as a share of eligible customers to other utilities' reported shares of opt-in and opt-out customer enrollments.

H7c: An opt-out strategy will result in greater adoption of new pricing plans and enabling technology than an opt-in strategy.

This involves comparing reported rates of adoption of new pricing plans and enabling technology, differentiated by opt-in and opt-out strategies, using ComEd CAP and other's program data.

H7d: An opt-out strategy will result in greater energy efficiency, demand response, and load-shifting benefits than an opt-in strategy.

The analysis involves comparing the four main measures of energy usage (average usage across all hours; average usage during all peak-period hours; average usage during event hours; and the peak to off-peak usage ratio) distinguishing differences associated with the enrollment/recruitment process employed.

H7e: Customer satisfaction with an opt-out strategy will not be significantly different from satisfaction with an opt-in strategy.

The analysis involves comparing opt-out and opt-in programs based on customer satisfaction metrics.

A review of recent residential and small commercial pilots and experiments involving electricity pricing, feedback, and enabling technologies revealed only one in which an opt-out recruitment approach was employed. It was a relatively small initiative involving about 225 commercial customers. However, a modified opt-out recruitment method was employed in that the customers chosen were contacted and offered participation, but each had to affirm acceptance of the offer in order to be enrolled.

Opt-out enrollment, as widely used today, involves the automatic enrollment of people into programs, and participation is commenced for all those enrolled without explicit permission to do so. Each customer must subsequently take an action to be de-enrolled. The opt-out premise is that entities act in the (presumed) best interest of their employees or customers through automatic enrollment in certain types of programs rather than by soliciting participation that historically has resulted in low rates of participation.

In general, reports describing the opt-in pilots that we reviewed did not provide sufficient information to determine the opt-in acceptance rate, defined as the percentage of customers offered participation that undertook the actions required to become enrolled in the program. The following summary of opt-in programs was gleaned from a few reports⁴⁶ that provided data on realized residential

California's Statewide Pricing Pilot, (Commercial and Industrial Analysis Update). Freeman, Sullivan & Co. and Charles River Associates, Oakland, CA, June 28, 2006.

⁴⁶ Electricity Pricing Structures for the 21st Century: Remodeling or New Construction? A Summary of Workshop Presentations and Dialogue, Nashville, TN. June 14-15, 2011. Sponsored by EPRI and the Tennessee Valley Authority, p. 25.

Baltimore Gas & Electric Smart Energy Pricing Pilot - Summer 2008. Ahmad Faruqui and Sanem Sergici, BGE's Smart Energy Pricing Pilot, Summer 2008 Impact, The Brattle Group, Inc., April 28, 2009.

Impact Evaluation of the California Statewide Pricing Pilot, (Residential Summary). Charles River Associates, Oakland, CA, March 16, 2005.

Results of CL&P's Plan-It Wise Energy Pilot. Connecticut Light and Power, Filing in Response to the Department of Public Utility Control's Compliance Order No. 4, Docket No. 05-10-03RE01, December 2009. Available at: <u>http://nuwnotes1.nu.com/apps/clp/clpwebcontent.nsf/AR/PlanItWise/\$File/Planit%20Wise%20Pilot%20Results.pdf</u>

Evaluation of the (Commonwealth Edison) Residential Real Time Pricing (RRTP) Program, 2007-2010. Navigant Consulting, Inc., prepared for Commonwealth Edison Company, June 20, 2011.

The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program: Phase 2 Final Analysis. EPRI Report No. 1023644. EPRI, Christensen Associates Energy Consulting, LLC, R. Boisvert, Cornell University. October 21, 2011.

program opt-in rates. Note that additional information of interest on this topic, and related topics, will appear in a forthcoming EPRI report⁴⁷.

- Opt-in rates ranged from 1% to 18%. The most common reported rates were 4-7%.
- The highest rate (18%) was from a pilot of about 1,000 participants, but many were solicited for already established programs, which may account for the high acceptance rate.
- Another random design pilot of about 400 participants reported a 13% optin rate, recruited from a group of customers that already had smart meters installed.
- The largest pilots (6,000-12,000 participants) reported opt-in rates of 4-5% (e.g., twenty or more customers needed to be invited, or solicited through phone calls or mailings to obtain each participant in the pilot).
- The lowest rate (1%) is from an on-going program that has recruited participants for more than five years. It reflects response to periodic mailings of an offer to participate. Participants are also recruited using other methods, such as alternative rate design offers in conjunction with energy efficiency program offerings.
- A wide range of recruitment methods were employed. Most used mailings offered to prospective (or randomly selected) customers, followed by additional forms of engagement such as mailing more detailed information and phone calls.

Hydro One Networks Inc. Time-of-Use Pilot Project Results. EB-2007-0086, Susan Frank, submitted to the Ontario Energy Board, Ontario, Canada, May 13, 2008.

2008 Ex Post Load Impact Evaluation for Pacific Gas and Electric Company's SmartRateTM Tariff. Stephen George and Josh Bode, Freeman, Sullivan & Co., San Francisco, CA, December 30, 2008.

PowerCentsDCTM Power Program. eMeter Strategic Consulting for the Smart Meter Pilot Program, Inc., September 2010.

Public Service Electric and Gas Company. Dan Violette, Jeff Erickson, Mary Klos, Summit Blue Consulting, Final Report for the myPower Pricing Segments Evaluation, Public Service Electric and Gas Company, December 21, 2007.

Impact Evaluation of 2007 In-Home Display Pilot: Submitted to Progress Energy—Carolinas (Final Report). Summit Blue Consulting, LLC, Boulder, CO: October 2008.

Hydro One Pilot, Real Time Monitoring Pilot, Summer 2004-2005. Dean C. Mountain, Mountain Economic Consulting and Associates, Inc., March 2006.

Dominion Virginia Power, Power Cost Monitor Pilot – May 2008 to July 2009. Dean C. Mountain, Mountain Economic Consulting and Associates, Inc., January 2010.

Focus On Energy – PowerCost Monitor Study: Final Report. Energy Center of Wisconsin, April 16 2010.

Evaluation Report: OPOWER SMUD Pilot Year 2. Navigant Consulting, February 2011.

H. Allcott. "Social Norms and Energy Conservation," Journal of Public Economics. Vol. 95, No. 9-10, p. 1082 (2011).

⁴⁷ Understanding Electric Utility Customers: What we know and what we need to know. EPRI, Palo Alto, CA: 2012. 1023562

- In most cases, participants were offered a participation inducement of \$50-100.
- Most, but not all, of the programs were designed so that participant losses (i.e., bill increases) would be minimal (through a revenue neutral rate design) and/or offered feedback or enabling technology at no cost to the participant.

The spare and inconsistently reported nature of opt-in recruitments prevents formal testing of the four specified hypotheses (H7b-e). However, a few observations are warranted:

- ComEd opt-out enrollment achieved a very high overall level of participation (over 8,000), compared to most opt-in programs, and did so with a very low opt-out rate (about 2%). This result supports H7b's contention of a high optout enrollment percentage.
- However, a careful analysis of load changes revealed that 10% or less of participants responded to CPP and PTR elevated event prices or to RTP price changes; and enabling technology and feedback treatments did not affect usage, on average. CAP's 10% price responder rate seems to comport with the findings of opt-in pilots, assuming that those that volunteered are presumptively more inclined to respond.
- The low rate and potentially high cost of opt-in recruitment to achieve large participation rates argues for consideration of opt-out enrollment, even if the percentage of participants responding to the treatment is the same under either approach. It remains to be demonstrated convincingly that there are no unintended consequences (customer dissatisfactions) to subscribing customers automatically into an electric service plan they do not want, and would have rejected if offered.

Customer Experience – Comparisons

The following set of hypotheses relates to suggested changes in customer behavior that are based on information about rate comparisons and normative comparisons that customers receive in particular months or over a series of months.⁴⁸ The analysis of rate comparisons must: a) distinguish among losers according to the relative sizes of their losses (i.e., bill increases), and among winners according to the relative sizes of their gains (i.e., bill reductions); b) account for when losses or gains are made known to customers; and c) address cases in which a customer sees alternating monthly losses and gains. These requirements, along with difficulties in the data and in the consistent provision of normative comparisons throughout the CAP period, present significant obstacles to providing meaningful analyses to the hypotheses. Below, we provide a brief discussion of each hypothesis below but have not conducted any formal analyses.

⁴⁸ "Rate comparisons" show each customer both their actual monthly CAP bill and what their bill would have been under the flat rate. "Normative comparisons" show each customer their own usage level relative to a comparison group of their "neighbors."

Rather than discuss these hypotheses in the order that they are presented in previous CAP documents, we will group them here according to three subtopics: drop-out (opt-out) rates, rate comparisons, and normative comparisons.

Drop-out rates

Hypotheses H7f, H7i, H7j, and H7k address the rate at which customers choose to de-enroll from the program after experiencing certain conditions (such as a monthly loss or gain) in the CAP. Relatively few customers opted out of the program at all, and even fewer opted out during or after July 2010, when customers could be considered to have experienced one or more of the CAP treatments. Table A-22 presents the number of customers who opted out of CAP under each rate treatment by month.

Rate	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Rate Total
CPP	3	16	13	7	2	28	10	1				1	81
DAP	1	5	6			9							21
FLR	1	1											2
IBR		1				1	1						3
PTR	4	4	5	2	2	10	2						29
TOU	3	5	1	3	3	13	2	1				1	32
Month Total	12	32	25	12	7	61	15	2	0	0	0	2	168

Table A-22 Count of Dropouts by Rate and Month (March 2010 to February 2011)

As Table A-22 indicates, only 87 customers opted out of CAP during or after July 2010. August saw the highest number of customers leave the program, and CPP comprised the highest number of departures. July and August are the months during which CPP/PTR events were called and are also the months during which customers would have received their first bills under CAP. It is difficult to distinguish the effects of any one factor on a customer's choice to opt out of the program. However, ComEd did collect some information on the customers' self-reported motivations for opting out. Table A-23 contains a summary of the various reasons customers conveyed for opting out of the CAP and the number of customers that indicated each reason. The table shows that 21 of the 114 (18%) data points collected chose "causing higher bills" as the reason for opting out of CAP. Another 27 (24%) of the data points ("Won't save me money" and "Won't or can't shift usage") indicate other reasons related to billing amounts.

Opt-out Reason	#	%
Not interested	23	20%
Causing higher bills	21	18%
Won't or can't shift usage	16	14%
Too complex	12	11%
Won't save me money	11	10%
Violates my privacy	7	6%
Customer not at premise	6	5%
Don't have time	5	4%
Doesn't work	4	4%
Don't understand	4	4%
Medical issues in the home	4	4%
Dislike ComEd	1	1%
Total	114	100%

Table A-23
Opt-Out Reasons ⁴⁹

Each hypothesis is stated below along with a summary describing how the hypothesis could be tested in principle, however, in practice too few customers drop out to make the test meaningful.

H7f: Customers who are saving money will have a drop-out rate that is less than customers who are not saving money.

This hypothesis is indistinguishable from hypotheses H7i and H7j below. One difference in the analysis could involve the timing used to develop the variable

⁴⁹ CAP Pilot Dashboard (Data as of April 22, 2011)

indicating customer savings or losses. For instance, hypotheses H7i and H7j both depend upon customers receiving and viewing their rate comparisons, and therefore must account for some lag from the time the loss/gain is accumulated, the time the customer is made aware of it, and the time the customer adjusts their behavior in response to it. However, it may be possible for customers who use an in-home device or log onto the OPOWER website to know their savings or loss status immediately. As stated above, the low drop-out rate during the pilot period (i.e. after customers had received bills under CAP) prevented meaningful analysis of this hypothesis.

H7i: Customers whose rate comparison shows a monthly gain will have a drop-out rate that is lower than customers who experience a monthly loss.

For purposes of testing this hypothesis and distinguishing it from H7j, this could be interpreted as follows: "Customers who drop out are more likely to have experienced a monthly loss in the previous month than a monthly gain in the previous month." This hypothesis could be tested using a model similar to that which was developed to test hypothesis H2a (a logit model in which the dependent variable equals unity if the customer opted out of the pilot and zero if the customer did not). It would be necessary to add an independent indicator variable that equals unity if the customer experienced a loss in the previous billing month, and zero otherwise. The hypothesis is that the coefficient on this variable will be positive. As stated above, the low drop-out rate during the pilot period (i.e. after customers had received bills under CAP) prevented meaningful analysis of this hypothesis.

H7j: Customers whose rate comparison shows a cumulative gain will have a drop-out rate that is lower than customers who experience a cumulative loss.

This hypothesis could also be tested using a logit model in which the dependent variable is unity for customers who have dropped out of the program and zero for those who have not. The analysis would omit customers who terminated service during the course of the pilot. The independent variables would represent the several rate and technology treatments, the education treatments, and an indicator variable that equals unity if the customer's aggregate CAP bill is less than the customer's aggregate bill on its standard residential rate. The hypothesis is that the coefficient on this variable will be negative, indicating that customers who have paid less on CAP than they would otherwise have paid were less likely to drop out of the program. As stated above, the low drop-out rate during the pilot period (i.e. after customers had received bills under CAP) prevented meaningful analysis of this hypothesis.

H7k: Customers who experience sequential monthly losses will have a drop-out rate that is higher than customers who do not experience sequential monthly losses.

This hypothesis could be tested using the same method used to test hypothesis H7h, but it would include an explanatory variable that equals unity for customers who have experienced sequential monthly losses in two or more consecutive months. As stated above, the low drop-out rate during the pilot period (i.e. after

customers had received bills under CAP) prevented meaningful analysis of this hypothesis.

Rate Comparisons

Hypotheses H7g and H7h address changes in customer behavior that may result from experiencing losses as portrayed on the rate comparisons. As is discussed above, the timing involved in these hypotheses make them particularly challenging to test: there is a lag between the time that electricity usage leading to a bill loss or gain takes place, the time when the customer is made aware of the loss or gain via a rate comparison, and the time that the customer adjusts their behavior in response to the loss or gain. Further, the wording of these hypotheses is imprecise and requires additional interpretation. For instance, H7g states that customers will "change their behavior in subsequent months", but does not indicate what behavior might change or how many subsequent months should be analyzed. For these reasons, we do not conduct formal tests of these hypotheses but instead describe methods that could be applied if these barriers were overcome.

Both hypotheses are stated below, along with descriptions of an approach to testing them according to customer behavior as measured by customer-specific elasticities of substitution.

H7g: Customers whose rate comparison shows a monthly loss will change their behavior in subsequent months to minimize that loss.

This hypothesis could be tested using results derived from our estimated customer-specific demand models. These demand models allow us to estimate elasticities of substitution between peak and off-peak electricity by day, and these can be averaged or otherwise combined for any specified rate type and time period. In this way, these estimated elasticities of substitution can be the dependent variable in a second-stage model. For example, the dependent variable in one of several second-stage models could be average monthly customer-level elasticities of substitution (where the month corresponds to each customer's billing month). The independent variables that are likely to be associated with changes in customer's elasticities of substitution may include those related to weather, customer fixed effects (which account for customer-specific factors that do not change during the sample timeframe, and therefore include rate type and technology type), time-based indicator variables (e.g., indicating month of the year), and a variable indicating whether the previous billing month represented a loss.

In conducting these tests, it is likely that a loss would be defined as a month in which the customer received a higher bill on its CAP rate that he/she would have received on its standard rate. Loss categories may also be introduced that separate small losses from larger losses (e.g., less than 10% vs. 10% or more). The hypothesis is that the coefficient on the loss variable will be positive, indicating a higher elasticity of substitution for customers who previously experienced a loss.

Such an analysis would require considerable forethought to recognize the data requirements.

H7h: Customers whose rate comparison shows a cumulative loss will change their behavior in subsequent months to minimize that loss.

A model to test this hypothesis could use the same data used to test hypothesis H7g, except that it would include an independent variable that equals unity if the customer has experienced a cumulative loss (i.e., where the sum of monthly CAP bills is higher than the sum of what those bills would have been under the flat rate), and zero otherwise. The hypothesis is that the coefficient on the variable that measures the cumulative loss is positive, indicating a higher elasticity of substitution for customers who have experienced a cumulative loss.

Normative Comparisons

Hypotheses H7l and H7m address the effects of normative comparisons on customer electricity usage behavior. Testing these hypotheses encounters some of the timing complications discussed above, but the primary obstacles to testing these hypotheses is that almost all customers received normative comparisons (OPOWER reports) leaving no appropriate control group. Furthermore, due to problems encountered in the pilot, the OPOWER reports were not consistently distributed to customers throughout the CAP time period.

Hypotheses H7l and H7m are stated below, and an approach to addressing H7m is outlined.

H71: Customers receiving normative comparisons will experience greater energy efficiency, demand response, and load-shifting benefits than customers not receiving normative comparisons.

Because all customers who receive education also receive normative comparisons through OPOWER, this hypothesis cannot be distinguished from hypothesis H6a. Therefore, no separate test of this hypothesis was conducted.

H7m: Customers whose normative comparisons show them having higher electricity consumption than their neighbors will lower their electricity consumption.

This hypothesis could be tested using the main model with the addition of an indicator variable that takes on a value of unity for customers whose OPOWER report indicates that they have higher electricity consumption than their neighbors, and zero otherwise. The null hypothesis is that the coefficient on this variable will be negative. The required data were not available.

Customer Experience – Notifications

Except for customers in control applications F1 and F3, all CAP customers were notified of events by automated phone call (unless they choose to opt-out⁵⁰); they may also have chosen to receive notification by email or text message. In addition, customers on the CPP, PTR, and DA-RTP rates were notified of high prices whenever an hourly price exceeded \$0.13 per kWh.

H7n: Customers who are notified of events will experience greater energy efficiency, demand response, and load-shifting benefits than customers who are not notified.

As in some previous hypotheses, this is really a joint hypothesis, but each piece of it is tested separately. Thus, four summer and three non-summer regression models are specified where the dependent variable is one of the four main measures of electricity consumption. The test is based on the main model but includes an independent variable that indicates the share of events for which a customer was successfully notified.⁵¹ The hypothesis is that the coefficient on this variable will be negative in each model.

Table A-24 presents results for energy efficiency and demand response. The constant coefficients represent the customer group whose customers face the flat rate, have SFNS housing, basic education, and eWeb technology. The coefficients on the notification variable indicate the impact of notification on usage. For six of the seven models, the standard errors on the coefficients for the notification variable imply that notification is a significant determinant of usage. Unfortunately, the findings are counterintuitive. The positive signs on all but one of the coefficients indicate that notification increases (rather than reduces) usage. It seems reasonable to suppose that this result reflects a selection effect (i.e., higher-use customers choosing to be notified) rather than a treatment effect.

In summary, the evidence does not support hypothesis H7n.

 $^{^{50}}$ Over the course of the pilot, only about 200 customers who were eligible to receive notifications elected not to.

⁵¹ For example, because there were seven events between June and September, the notification variable equals 0 if the customer was never successfully notified, 1/7 if the customer was successfully notified once, 2/7 if the customer was successfully notified of two events, and so on.

Table A-24 Impact of Notification on Usage⁵²

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.376	1.562	2.23	1.119	0.934	0.844	0.904
	(0.047)	(0.059)	(0.091)	(0.022)	(0.036)	(0.034)	(0.015)
CPP	0.040	0.054	-0.005	0.002	0.035	0.052	0.016
	(0.033)	(0.041)	(0.057)	(0.014)	(0.027)	(0.026)	(0.011)
DA-RTP	0.062	0.099	0.099	0.037	0.022	0.035	0.017
	(0.036)	(0.045)	(0.063)	(0.016)	(0.029)	(0.028)	(0.012)
PTR	0.060	0.081	0.079	0.007	0.035	0.050	0.023
	(0.037)	(0.046)	(0.064)	(0.015)	(0.029)	(0.028)	(0.012)
TOU	0.068	0.062	0.071	-0.016	0.024	0.017	-0.018
	(0.037)	(0.046)	(0.065)	(0.015)	(0.030)	(0.029)	(0.012)
BIHD	-0.010	0.001	0.011	0.012	0.002	0.004	0.007
	(0.024)	(0.030)	(0.042)	(0.011)	(0.019)	(0.019)	(0.008)
AIHD	0.033	0.054	0.080	0.018	0.012	0.014	0.011
	(0.027)	(0.035)	(0.048)	(0.012)	(0.021)	(0.021)	(0.009)
PCT	0.013	-0.001	0.010	0.003	-0.016	-0.025	0.000
	(0.035)	(0.041)	(0.058)	(0.015)	(0.026)	(0.025)	(0.011)
Bill Protection	0.020	0.035	0.069	0.030	0.041	0.039	0.006
	(0.041)	(0.052)	(0.073)	(0.018)	(0.037)	(0.036)	(0.013)
Purchase Tech.	-0.056	-0.057	-0.082	0.001	-0.048	-0.043	-0.006
	(0.043)	(0.055)	(0.076)	(0.018)	(0.033)	(0.033)	(0.013)
# Event	0.113	0.143	0.207	0.010	0.05	0.036	-0.024
Notifications (#/7)	(0.023)	(0.029)	(0.041)	(0.010)	(0.018)	(0.018)	(0.008)
Educ./Notif.	-0.160	-0.212	-0.374	-0.017	-0.083	-0.057	0.040
	(0.059)	(0.073)	(0.109)	(0.027)	(0.047)	(0.045)	(0.019)
SFSH	0.045	0.063	-0.115	0.031	1.394	1.377	0.055
	(0.162)	(0.213)	(0.262)	(0.070)	(0.411)	(0.402)	(0.042)

 $^{^{52}}$ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-24 (continued) Impact of Notification on Usage

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non- summer Peak Hours	Non- summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
MFNS	-0.679	-0.868	-1.228	-0.152	-0.439	-0.413	-0.001
	(0.016)	(0.020)	(0.028)	(0.008)	(0.013)	(0.012)	(0.007)
MFSH	-0.687	-0.836	-1.188	-0.057	0.496	0.437	-0.016
	(0.038)	(0.047)	(0.068)	(0.035)	(0.071)	(0.073)	(0.025)
Observations	5,778	5,778	5,778	5,778	5,471	5,471	5,471
R-squared	0.194	0.198	0.202	0.063	0.174	0.162	0.008

H70: Customers who choose more than one notification media will experience greater energy efficiency, demand response, and load-shifting benefits than customers who do not.

This hypothesis test uses the model from hypothesis H7n, plus an indicator variable that equals unity for customers who have elected to receive notification through multiple media and zero otherwise. The null hypothesis is that the coefficient on this new variable will be negative in each model.

Table A-25 presents results for the seven regressions. The constant coefficients represent the customer group with a flat rate, eWeb technology, basic education, and SFNS housing. The coefficients on the dummy variables for Multiple Notification Methods (0 or 1) indicate the impact of multiple notification methods on usage. In all cases, the high standard errors on the coefficients for this variable implies that multiple notification methods is a not a significant determinant of usage in these periods.

Table A-25
Impact of Multiple Notification Methods on Usage ⁵³

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non-summer Peak Hours	Non-summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.376	1.562	2.23	1.119	0.934	0.844	0.904
	(0.047)	(0.059)	(0.091)	(0.022)	(0.036)	(0.034)	(0.015)
CPP	0.040	0.054	-0.003	0.003	0.034	0.052	0.017
	(0.033)	(0.041)	(0.058)	(0.014)	(0.027)	(0.026)	(0.011)
DA-RTP	0.062	0.099	0.100	0.037	0.022	0.035	0.017
	(0.036)	(0.045)	(0.063)	(0.016)	(0.029)	(0.028)	(0.012)
PTR	0.060	0.081	0.079	0.007	0.035	0.050	0.023
	(0.037)	(0.046)	(0.064)	(0.015)	(0.029)	(0.028)	(0.012)
TOU	0.068	0.062	0.071	-0.016	0.023	0.016	-0.018
	(0.037)	(0.046)	(0.065)	(0.015)	(0.030)	(0.029)	(0.012)
BIHD	-0.010	0.001	0.011	0.012	0.002	0.003	0.007
	(0.024)	(0.030)	(0.042)	(0.011)	(0.019)	(0.019)	(0.008)
AIHD	0.033	0.054	0.079	0.018	0.013	0.015	0.011
	(0.028)	(0.035)	(0.048)	(0.012)	(0.021)	(0.021)	(0.009)
PCT	0.014	-0.001	0.009	0.003	-0.016	-0.025	-0.000
	(0.035)	(0.041)	(0.058)	(0.015)	(0.026)	(0.025)	(0.011)
Bill Protection	0.020	0.035	0.069	0.030	0.040	0.039	0.006
	(0.041)	(0.052)	(0.073)	(0.018)	(0.037)	(0.036)	(0.013)

⁵³ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-25 (continued) Impact of Multiple Notification Methods on Usage

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non-summer Peak Hours	Non-summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Purchase Tech.	-0.055	-0.057	-0.084	0.000	-0.047	-0.042	-0.006
	(0.044)	(0.055)	(0.076)	(0.018)	(0.033)	(0.033)	(0.013)
# Event Notifications (#/7)	0.111	0.143	0.212	0.012	0.046	0.032	-0.023
	(0.024)	(0.030)	(0.042)	(0.011)	(0.018)	(0.018)	(0.008)
Multiple Notification Methods (0 or 1)	0.010	-0.001	-0.026	-0.008	0.020	0.017	-0.005
	-0.023	(0.029)	(0.040)	(0.009)	(0.018)	(0.018)	(0.007)
Educ./Notif.	-0.16	-0.212	-0.373	-0.017	-0.084	-0.058	0.04
	(0.059)	(0.073)	(0.109)	(0.027)	(0.047)	(0.045)	(0.020)
SFSH	0.046	0.063	-0.116	0.031	1.396	1.378	0.055
	(0.162)	(0.213)	(0.262)	(0.070)	(0.411)	(0.402)	(0.042)
MFNS	-0.679	-0.868	-1.228	-0.153	-0.439	-0.413	-0.001
	(0.016)	(0.020)	(0.028)	(0.008)	(0.013)	(0.012)	(0.007)
MFSH	-0.687	-0.836	-1.187	-0.057	0.496	0.437	-0.016
	(0.038)	(0.047)	(0.068)	(0.035)	(0.071)	(0.073)	(0.025)
Observations	5,778	5,778	5,778	5,778	5,471	5,471	5,471
R-squared	0.194	0.198	0.202	0.063	0.174	0.162	0.009

H7p: Customers who view hourly pricing information online will experience greater energy efficiency, demand response, and load-shifting benefits than customers who do not.

The question of whether customers viewed hourly prices online was not adequately addressed in the CAP final survey and the requisite data were not available in the MVDB. Therefore, this hypothesis could not be tested.

Were the data or needed survey information available, this test would build upon the test of hypothesis H7m by including an indicator variable for customers who indicate that they have viewed hourly pricing information. It would also be possible to construct interaction variables between this variable and the indicator variables for rate treatment RTP, CPP, and PTR (which charge hourly prices) if any non-hourly customers view hourly prices. The interaction would indicate whether viewing the hourly prices has a larger effect when customers are charged those prices. The hypothesis would be that the coefficient on the price-viewing variables will be negative in each model. The data requirements to undertake this test are formidable, especially getting customers to recall if they viewed the data.

H7q: Customers who sign up one or more family members for notification will experience greater energy efficiency, demand response, and load-shifting benefits than customers who do not.

The question of whether customers requested that multiple family members receive notifications was not addressed in the CAP final survey nor was useful data available in the MVDB. Therefore, this hypothesis cannot be tested.

Were these data available, this test could build upon the test of hypothesis H7n by including an indicator variable for customers who signed up more than one family member to receive event and high price notifications. The hypothesis would be that the coefficient on this variable will be negative in each model.

Customer Experience – Customer Support

The final set of hypotheses relate to the nature and/or effect of CAP customers' experience in contacting the customer support center. The CAP customer support center is staffed by specially-trained individuals who provide telephone and email support. ComEd outsourced this function.

H7r: Customers who contact the customer support center will experience greater energy efficiency, demand response, and load-shifting benefits than customers who do not.

This test is based on the main model but adds an indicator variable that equals unity if the customer ever contacted the CAP customer support center and zero if it did not. The hypothesis is that the coefficient on the customer contact variable is negative in each model. Table A-26 presents results for four summer and three non-summer regressions. The coefficients on the dummy variable for *Contact Call Center (0 or 1)* indicate the impact on usage of a customer who called, emailed, sent a letter, or left a message for the customer support center. Only the coefficient for this variable in the All Summer Hours model is statistically significant, however its sign is positive, contradicting the hypothesis and posing a counterintuitive result.

Table A-26 Impact of Customer Contacts on Usage⁵⁴

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non-summer Peak Hours	Non-summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Constant	1.374	1.561	2.227	1.120	0.932	0.843	0.904
	(0.047)	(0.059)	(0.091)	(0.022)	(0.036)	(0.035)	(0.015)
СРР	0.039	0.054	-0.005	0.004	0.033	0.051	0.015
	(0.033)	(0.041)	(0.058)	(0.014)	(0.027)	(0.026)	(0.011)
DA-RTP	0.060	0.098	0.097	0.038	0.021	0.034	0.016
	(0.036)	(0.045)	(0.063)	(0.016)	(0.030)	(0.028)	(0.012)
PTR	0.058	0.080	0.077	0.007	0.034	0.049	0.022
	(0.037)	(0.046)	(0.064)	(0.015)	(0.029)	(0.028)	(0.012)
TOU	0.064	0.059	0.065	-0.015	0.022	0.015	-0.019
	(0.037)	(0.046)	(0.065)	(0.015)	(0.030)	(0.029)	(0.012)
BIHD	-0.024	-0.010	-0.007	0.017	-0.008	-0.006	0.005
	(0.025)	(0.032)	(0.044)	(0.011)	(0.020)	(0.019)	(0.008)
AIHD	0.027	0.051	0.074	0.021	0.008	0.010	0.009
	(0.028)	(0.035)	(0.049)	(0.012)	(0.021)	(0.021)	(0.009)
PCT	0.005	-0.008	-0.001	0.006	-0.022	-0.031	-0.001
	(0.035)	(0.041)	(0.058)	(0.015)	(0.026)	(0.025)	(0.011)

⁵⁴ The dependent variable in each regression is indicated at the top of each column and defined in greater detail on pages A-1 and A-2 of this appendix. See Appendix B for further details.

Table A-26 (continued) Impact of Customer Contacts on Usage

	All Summer Hours	Summer Peak Hours	Event Hours	Summer P/O Ratio	All Non- summer Hours	Non-summer Peak Hours	Non-summer P/O Ratio
Variable	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)	Coef. (S.E.)
Bill Protection	0.024	0.041	0.076	0.030	0.043	0.040	0.005
	(0.041)	(0.052)	(0.073)	(0.018)	(0.037)	(0.036)	(0.013)
Purchase Tech.	-0.042	-0.045	-0.063	-0.003	-0.039	-0.035	-0.005
	(0.044)	(0.056)	(0.076)	(0.018)	(0.033)	(0.033)	(0.013)
Contact Call Center	0.053	0.045	0.071	-0.015	0.033	0.031	0.004
(0 or 1)	(0.022)	(0.028)	(0.039)	(0.009)	(0.017)	(0.016)	(0.007)
Educ./Notif.	-0.075	-0.106	-0.221	-0.010	-0.045	-0.030	0.023
	(0.057)	(0.071)	(0.106)	(0.026)	(0.045)	(0.043)	(0.018)
SFSH	0.059	0.082	-0.088	0.033	1.395	1.376	0.053
	(0.164)	(0.215)	(0.266)	(0.069)	(0.410)	(0.401)	(0.043)
MFNS	-0.679	-0.868	-1.228	-0.153	-0.439	-0.412	-0.000
	(0.016)	(0.020)	(0.028)	(0.008)	(0.013)	(0.012)	(0.007)
MFSH	-0.698	-0.848	-1.206	-0.057	0.492	0.433	-0.014
	(0.038)	(0.047)	(0.068)	(0.035)	(0.071)	(0.072)	(0.025)
Observations	5,778	5,778	5,778	5,778	5,471	5,471	5,471
R-squared	0.192	0.195	0.199	0.063	0.173	0.162	0.007

H7s: Customers on the CPP rate will contact the customer support center more frequently than customers on other rates.

This hypothesis is tested using a Poisson regression model, which is appropriate when the dependent variable is a count variable.⁵⁵ The dependent variable is the number of times the customer has contacted the customer support center. The independent variables represent the rate and technology treatments. Because dummy variables are specified to represent all rate treatments except for CPP, which is the control group, the hypothesis is that the coefficients on the dummy variables for the rate treatments will all be negative, indicating that customers on the other rates have contacted the customer support center less frequently than have CPP customers.

Table A-27 presents the results. The constant coefficient is equal to the natural log of 0.12 suggesting that on average CPP customers with eWeb and SFNS housing contacted the customer support center 0.12 times throughout the pilot. The other coefficients indicate how customers in the other rate or technology treatment groups differ from CPP customers with eWeb and SFNS housing. The small standard errors for the coefficients on the dummy variables for most of the rate treatment variables indicate that rate treatments do significantly affect the number of contacts. Thus, the evidence supports the hypothesis.

Furthermore, as might be expected, the coefficients for the technology treatment indicators (BIHD, AIHD, and PCT) are all positive and statistically significant. This may be because customers with those technologies must call customer support to activate the device and are probably more likely to need technical support.

⁵⁵ According to Greene (*Econometric Analysis.* 5th edition, Englewood Cliffs, NJ: Prentice Hall, Inc., 2003, Chapter 21), one could use ordinary linear regression to conduct the analysis when the dependent variable consists of count data. Nonetheless, because of the number of zeros, and very small values, and the discrete nature of the data, one can improve on the results by specification of a model that accounts specifically for these characteristics of the dependent variable. The Poisson model is widely used for this purpose. It specifies that each of the dependent variables is drawn from a Poisson distribution rather than a normal distribution.

Variable	Coef.	(S.E)
Constant	-2.155	(0.312)
FLR	-0.615	(0.114)
DA-RTP	-0.309	(0.080)
IBR	-0.403	(0.099)
PTR	-0.275	(0.088)
TOU	-0.066	(0.095)
BIHD	1.610	(0.093)
AIHD	1.325	(0.108)
PCT	1.399	(0.133)
Bill Protection	0.332	(0.167)
Purchase Tech.	-1.142	(0.181)
Educ./Notif.	0.477	(0.316)
SFSH	0.188	(0.477)
MFNS	-0.340	(0.064)
MFSH	0.391	(0.177)
Observations	7,	847
R-squared	0.0	0806

Table A-27 Impact of Rate on Number of Customer Contacts⁵⁶

H7t: Customers on the CPP rate will have call durations that are longer than the durations for customers on other rates.

This hypothesis is tested using a Poisson regression model in which the dependent variable is the call duration. Because dummy variables are specified to represent all rate treatments except for CPP (i.e. CPP is the control group), the hypothesis is that the coefficients on the dummy variables for the rate treatments will be negative, indicating that customers in the other rate treatments have contacted the customer support center for shorter durations than did CPP customers.

Table A-28 presents results in which the constant coefficient represents the average call duration (in seconds) by the control group, CPP customers with eWeb and SFNS housing. The other coefficients indicate how average call durations differ for customers with other rate and technology treatments from those in the control group. Only customers with enabling technologies (BIHD,

⁵⁶ The dependent variable is a count variable that equals the number of times the customer contacted the customer support center. Please see Appendix B for this addendum for additional details.

AIHD, or PCT) are included in the sample. The negative signs and small standard errors on the coefficients for variables representing the DA-RTP and IBR rate treatments indicate that call durations for customers on those rates are significantly shorter than for customers on the CPP rate (all else equal). Thus, the evidence partially supports the hypothesis.

Table A-28

Impact of Rate and Technology on Call Duration⁵⁷

Variable	Coef.	(S.E)
Constant	179.114	(27.267)
FLR	-22.447	(23.193)
DA-RTP	-35.469	(15.918)
IBR	-46.277	(18.369)
PTR	-26.941	(16.408)
TOU	-31.826	(17.056)
BIHD	46.735	(22.780)
AIHD	31.441	(24.674)
РСТ	25.624	(28.213)
Bill Protection	-6.286	(39.067)
Purchase Tech.	-58.711	(27.026)
Educ./Notif.	130.379	(33.082)
SFSH	62.733	(81.178)
MFNS	0.847	(11.587)
MFSH	26.151	(28.512)
Event	-60.982	(22.073)
Observations	2,874	
R-squared	0.010	

H7u: Customers who are eligible to receive the BIHD will contact the customer support center more frequently than customers eligible to receive other enabling technology.

The model used to test this hypothesis is similar to that which was used to test hypothesis H7s except that, to measure contacts relative to BIHD, the independent variables were rearranged so that the constant coefficient represents the number of contacts by flat rate customers with BIHD and SFNS housing. Consequently, the hypothesis is that the coefficients on the technology variables

⁵⁷ Dependent variable: variable indicating the length of calls placed to the customer support center in seconds. Please see Appendix B for this addendum for additional details.

are negative. In keeping with the wording of the hypothesis, the technology variables include all customers in the treatment cells rather than only those who implemented and/or adopted the technology.

In Table A-29 the small standard error for the coefficient corresponding to AIHD technology suggests that the number of calls is significantly fewer for customers eligible to receive AIHD as compared to those eligible to receive BIHD (all else equal). There is no significant difference for customers eligible to receive PCT. Therefore, hypothesis H7u is partially supported by the evidence.

Table A-29

Variable	Coef.	(S.E)
Constant	-0.645	(0.110)
CPP	0.563	(0.120)
DA-RTP	0.266	(0.123)
IBR	0.175	(0.136)
PTR	0.293	(0.130)
TOU	0.516	(0.132)
AIHD	-0.284	(0.077)
PCT	-0.200	(0.111)
Purchase Tech.	-1.148	(0.182)
SFSH	0.252	(0.476)
MFNS	-0.337	(0.068)
MFSH	0.408	(0.195)
Observations	5,532	
R-squared	0.0286	

Impact of Technology on Number of Customer Contacts⁵⁸

H7v: Customers who are eligible to receive the BIHD will have call durations that are longer than durations for customers eligible to receive other enabling technology.

The model used to test this hypothesis is similar to that which was used to test hypothesis H7t except that, to measure call durations relative to BIHD, the independent variables were rearranged so that the constant coefficient represents the call duration for flat rate customers with BIHD technology and SFNS housing. Consequently, the hypothesis is that the coefficients on the technology variables are negative. In keeping with the wording of the hypothesis, the

⁵⁸ The dependent variable is a count variable that equals the number of times the customer contacted the customer support center. Please see Appendix B for this addendum for additional details.

technology variables include all customers in the treatment cells rather than only those who implemented and/or adopted the technology.

The results presented in Table A-30 suggest that neither the AIHD nor the PCT treatment significantly affected call durations when compared to call durations for customers eligible to receive the BIHD (all else equal). Therefore, the evidence does not support the hypothesis.

Table A-30

Variable	Coef.	(S.E)
Constant	333.301	(22.093)
СРР	18.189	(24.003)
DA-RTP	-12.091	(24.758)
IBR	-18.858	(26.405)
PTR	-4.246	(25.307)
TOU	-8.582	(25.311)
AIHD	-14.834	(13.180)
РСТ	-18.094	(19.357)
Purchase Tech.	-60.768	(27.209)
SFSH	64.587	(81.128)
MFNS	1.645	(12.199)
MFSH	30.349	(30.399)
Event	-52.960	(25.773)
Observations	2,6	564
R-squared	0.0	006

Impact of Rate and Technology on Call Duration⁵⁹

H7w: Customer satisfaction with customer support center will exceed satisfaction levels of ComEd's customer care center.

The test of this hypothesis relies on information about customer satisfaction with the CAP customer support center obtained in the CAP final survey. Unfortunately, the final survey did not directly inquire about customer satisfaction with ComEd's customer care center and only indirectly addressed satisfaction with the customer support center. As a result, this hypothesis could not be directly tested. Instead we run a linear regression measuring the effects of treatments on satisfaction with the support center as measured by question 19b on the CAP final survey. That question asks customers to rank their

⁵⁹ The dependent variable is the length of calls placed to the customer support center, in seconds.

disagreement or agreement (from zero to 10, respectively) with the statement that "the Smart Tools call center easy to do business with."

The model is a linear regression where the dependent variable equals each customer's response to question 19b and the independent variables account for various rate and technology treatments. Table A-31 presents the results of this regression. The control group consists of customers in the omitted categories – customers on the IBR rate, with eWeb technology, and SFNS housing. The only coefficients with standard errors small enough to yield statistically significant results are for the technology treatments. When compared to customers with eWeb technology (all else equal), customers eligible to receive BIHD, AIHD, and PCTs were all more satisfied with the customer support center.

Table A-31

Impact of Rate and	Technology o	n Customer	Satisfaction	with	Customer	Support
Center ⁶⁰						

Variable	Coef.	(S.E)
Constant	3.446	(1.150)
FLR	0.266	(0.897)
CPP	0.746	(0.810)
DA-RTP	0.978	(0.842)
PTR	0.953	(0.876)
TOU	0.032	(0.864)
BIHD	0.982	(0.435)
AIHD	1.359	(0.501)
PCT	1.788	(0.703)
Bill Protection	-0.530	(0.765)
Purchase Tech.	-0.374	(0.801)
Educ./Notif.	-0.081	(0.896)
SFSH	2.099	(1.756)
MFNS	-0.258	(0.366)
MFSH	-1.083	(0.754)
Observations	478	
R-squared	0.056	

⁶⁰ Dependent variable: variable indicating the customer's response to question 19b on the CAP final survey. Please see Appendix B for this addendum for additional details.

Appendix B: Technical Summaries

Statistical estimates are presented in tables throughout the Phase 2 Analysis Report⁶¹ and Appendix A of this addendum. To facilitate the replication of results, this Appendix B provides output from the statistical software (Stata) corresponding to each of those tables. The first section defines the variable labels found in the Stata output. The second section describes the criteria used to filter data (i.e., eliminate customers from the analysis because of missing or unreliable data). The final section presents the Stata output tables in the order in which they appear in the Phase 2 Analysis Report and Appendix A of this addendum.

Throughout this appendix, unless otherwise specified, "Summer" refers to the period from June 11, 2010 to September 30, 2010; and "Non-Summer" refers to the period from October 2, 2010 to April 27, 2011.⁶²

Variable Definitions

The variable labels defined below frequently appear in the Stata output tables and/or are referenced in the summaries:

Dependent Variables

usage

Average hourly kW usage for all days from June 11 through September 30, 2010 in Summer models and from October 2, 2010, through April 27, 2011 in Non-Summer models.

peak

Average hourly kW usage during peak hours (1:00pm to 5:00pm) on nonholiday weekdays from June 11 through September 30, 2010 in Summer models and from October 2, 2010, through April 27, 2011 in Non-Summer models.

⁶¹ The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program: Phase 2 Final Analysis. EPRI, Palo Alto, CA: 2011. 1023644.

⁶² As was noted in the Phase 2 report, one exception to the summer time period is August 3, 2010, where the data indicate an outage for customers in only some of the rate treatments. As such, this date is omitted from the ANOVA analyses. This was likely due to a technical error in data collection rather than an actual outage.

event_peak

Average hourly kW usage during peak hours (1:00pm to 5:00pm) on event days.

peak_offpeak

Average peak hourly usage divided by average off-peak hourly usage on nonholiday weekdays from June through August 2010.

- ln_kwh Natural log of average hourly peak-period kWh.
- ln_avg_usage

Natural log of usage (in kWh/hour) during a specific billing month averaged across customers in the IBR treatment cells.

optout

Binary choice variable that equals one if the customer opted out of the pilot program and zero otherwise.

implement

Binary choice variable that equals one if the customer implemented the technology and zero otherwise.

satisfaction

Average of customer responses to questions 22 and 23 on the CAP final survey, where each score can be any integer from zero to 10.

adoption

Binary choice variable that equals one if the customer adopted the technology and zero otherwise.

contacts

Count variable that equals the number of times the customer has contacted the customer support center.

callduration

Variable indicating the length of calls placed to the customer support center in seconds.

cc_satisfa~n Variable from zero to 10 indicating

Variable from zero to 10 indicating the customers response to question 19b on the CAP final survey.

Independent Variables

- Rate type indicators equal one if the customer is subject to a particular rate structure and equal zero otherwise.
 - cpp corresponds to the critical peak pricing rate structure.
 - dap corresponds to the day-ahead real-time pricing rate structure.
 - flr corresponds to the flat rate structure.
 - ibr corresponds to the inclining block rate structure.
 - ptr corresponds to the peak-time rebate rate structure.
 - tou corresponds to the time-of-use pricing rate structure.

- Technology type indicators equal one if the customer is in a treatment cell that offers a particular technology and equal zero otherwise.
 - bihd
 - corresponds to the Basic In-Home Display (BIHD) treatment cells.
 - aihd
 - corresponds to the Advanced In-Home Display (AIHD) treatment cells. pct
 - corresponds to the Advanced In-Home Display plus Programmable Communicating Thermostat (AIHD/PCT) treatment cells.
 - eweb corresponds to the Enhanced Web (eWeb) treatment cells.
- Technology implementation indicators that are interactions between the technology variables and whether the customer implemented (i.e., installed) the technology. These variables equal one if the customer is in a treatment cell offering a particular technology *and* the customer implemented (i.e. installed) the technology, and equal zero otherwise.
 - bihd_imp

corresponds to customers in a BIHD treatment cell who have installed their device.

- aihd_imp

corresponds to customers in an AIHD treatment cell who have installed their device.

- pct_imp corresponds to customers in an AIHD/PCT treatment cell who have installed their devices.
- Housing type indicators equal one if the customer resides in a particular class of residential housing and equal zero otherwise.
 - SFNS
 - corresponds to customers in single-family residences with no space heating.
 - SFSH

corresponds to customers in single-family residences with space heating. MFNS

corresponds to customers in multi-family residences with no space heating.

- MFSH

corresponds to customers in multi-family residences with space heating.

- Cell type indicators equal one if the customer is in a particular treatment cell and equal zero otherwise.
 - d1 corresponds to customers in treatment cell D1a.
 - 11 corresponds to customers in treatment cell L1a.
 - 15 corresponds to customers in treatment cell L5a.
 - 16 corresponds to customers in treatment cell L6a.
 - f6_or_f7

corresponds to customers in treatment cells F6 or F7.

≺ B-3 ≻

- All other variable labels match the treatment cells as outlined in the report.
- Event-day indicators equal one on the specified event-day(s) and equal zero otherwise.
 - event7
 - corresponds to the seventh event-day, September 21, 2010
 - event_day_~d
 - corresponds to all event days; July 14, July 23, July 27, August 19, August 20, August 31, and September 21, 2010.
- Day-type and month-type indicators equal one on a specified day or month and equal zero otherwise.
 - dt2 corresponds to Tuesdays.
 - dt3 corresponds to Wednesdays.
 - dt4 corresponds to Thursdays.
 - dt5 corresponds to Fridays.
 - m7 corresponds to July.
 - m8 corresponds to August .
 - m9 corresponds to September.
- Weather variables identify temperature and humidity conditions during a particular time period.
 - peak_thi
 - Average hourly peak-period Temperature-Humidity Index (THI), where THI = (0.55 * average temperature) + (0.2 * average dewpoint) + 17.5.
 - prepeak_thi Average hourly THI between 10:00am and 1:00pm.
 - morn_thi Average hourly THI between midnight and 10:00am.
 - lag1_thi Average hourly THI from the previous day.
 - peak_thi2 Square of average hourly peak-period THI.
 - prepeak_thi2
 - Square of average hourly THI between 10:00am and 1:00pm.
 - morn_thi2
 - Square of average hourly THI between midnight and 10:00am.
 - lag1_thi2 Square of average hourly THI from the previous day.
 - peak_cdh65
 Average peak-period cooling degree hours (CDH) using 65 degrees as the baseline value.
 - prepeak_c~65 Average CDH between 10:00am and 1:00pm.
 - morn_cdh65 Average CDH between midnight and 10:00am.
 - lag1_cdh65 Average CDH from the previous day.
 - peak_cdh652 Square of average peak-period CDH.
 - prepeak_c~652 Square of average CDH between 10:00am and 1:00pm.
 - morn_cdh652 Square of average CDH between midnight and 9:00am.
 - lag1_cdh652 Square of average CDH from the previous day.
 - avg_cdd
 - Average cooling degree days during a typical (average) bill month using 65 degrees as the baseline value.

- avg_hdd

Average heating degree days during a typical (average) bill month using 65 degrees as the baseline value.

- Other treatment conditions are identified using indicators that equal one when the customer satisfies the particular condition and equal zero otherwise.
 - bill_prot
 - corresponds to customers who were notified of bill protection.
 - purch_tech

corresponds to customers who were offered the opportunity to purchase enabling technology.

- full_educ

corresponds to customers who received education beyond the basic education offered to customers in cell F3.

- notify_share corresponds to the share of events for which a customer was successfully notified (i.e., it can equal 0, 1/7, 2/7, etc.).
- methods

corresponds to customers who have elected to receive notification through multiple media.

- anycontact

corresponds to customers who ever contacted the CAP customer support center.

- event

corresponds to event days in models where the observations are date-specific.

- direct
- corresponds to customers who engaged in direct feedback solutions only. - indirect
- corresponds to customers who engaged in indirect feedback solutions only.
- direct_ind~t

corresponds to customers who engaged in both direct and indirect feedback solutions.

- small_steps equals an integer from zero to eight depending upon the number of small observable steps the customer engaged in.
- steps_dummy
 - corresponds to customers who engaged in any small observable steps.
- The constant in the regression equation is represented by _cons.

Data Filtering

Due to technical problems with the collection of electricity usage data from CAP customers, data for some customers could not be used in the Phase 2 analysis. In some cases, the problems were isolated to individual customers, but often the

≺ B-5 ≻

issues could be categorized and applied to larger groups of customers. Throughout the analysis we applied several *filters* to the data in order to screen out these data problems. Because all models were evaluated over the summer and non-summer time periods separately, there are separate filters for each period.

Different models required different levels of data screening. For instance, because the ANOVA models contain one observation for each customer and because weather is not included, it is necessary that each customer's observation represents an aggregation of usage data over the same time period. Therefore, the ANOVA filter is distinct in that it requires complete data over the specified time period. In contrast, because the fixed-effects model contains daily observations for each customer in addition to weather variables, it does not require each customer to have full data for the relevant time period.⁶³

There were six primary criteria used to screen the data. Table B-1 below details the criteria and the number of non-F1/F2 customers that were filtered as a result of each.⁶⁴ Filter A was used for the ANOVA, NCES, and GL models. Filter B was applied for the fixed-effects model and the model used to find the average estimated load impact for responders (page 5-26 of Phase 2 report).

Table B-1

	Filte	er A	Filter B
	Summer	Non- Summer	Summer
Total non-F1 or F2 customers with data	7380	7044	7380
High share of zeroes – Usage data contains >2% values equal to zero	543	257	543
Incomplete data – Usage data contains holes or missing hours	264	455	
Customers opt-out of CAP	94	86	133
High frequency of repeating values – Technical problems in the usage data as indicated by >200 instances of 3 hours in a row of identical kWh	48	57	57
Multiple instances of unrealistically high kWh values	33	18	34
Finaled (and not caught in incomplete data filter)	1	118	150
Total # filtered	983	991	917
Total % filtered	13%	14%	12%

Number of Customers Filtered from Electricity Usage Data

⁶³ However, we do continue to screen customers who had terminated service (finaled) by the end of the relevant time period.

⁶⁴ Note that customers could have fulfilled more than one filtering criteria, but the counts in the table reflect each filtered customer being counted once.

Phase 2 Report Tables

Output from each statistical model that contributed to the results presented in the Phase 2 report is shown below. The results are organized according to the table numbers from the Phase 2 report.

Table 5-1 Estimated Coefficients from the Summer ANOVA Models⁶⁵

Table 5-1 contains results from the four models detailed below. Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage.

Linear regressi	ion				Number of obs F(13, 5764) Prob > F R-squared Root MSE	= 140.50 = 0.0000 = 0.1908
usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
-+	.0438367	.0332756	1.32	0.188	0213959	.1090693
	.0631761					.1338153
ptr	.0605055	.0369629	1.64	0.102	0119556	.1329666
tou	.0687044	.0372524	1.84	0.065	0043243	.1417331
bihd	0067263	.0242201	-0.28	0.781	0542069	.0407542
aihd	.036752	.0274435	1.34	0.181	0170476	.0905516
pct	.0143969	.0346126	0.42	0.677	0534568	.0822506
bill_prot	.0242882	.0412734	0.59	0.556	0566233	.1051996
purch_tech	0550892	.0435824	-1.26	0.206	1405271	.0303487
full_educ	0768751	.0569643	-1.35	0.177	1885465	.0347964
SFSH	.0608919	.1635426	0.37	0.710	2597131	.3814968
MFNS	681744	.0163047	-41.81	0.000	7137075	6497806
MFSH	6947426	.0381425	-18.21	0.000	7695162	6199689
_cons	1.376989	.0471172	29.22	0.000	1.284622	1.469357

⁶⁵ Table 5-1 can be found on page 5-5 of EPRI 1023644.

• Linear regression model using robust standard errors where the dependent variable is peak.

Linear regressi	.on				Number of obs F(13, 5764) Prob > F R-squared Root MSE	= 149.93 = 0.0000 = 0.1949
1		Robust				
_	Coef.				[95% Conf.	Interval]
					0219617	.1390697
dap	.1008382	.0451884	2.23	0.026	.0122519	.1894245
ptr	.082068	.0462535	1.77	0.076	0086063	.1727422
tou	.0627371	.0459909	1.36	0.173	0274223	.1528965
bihd	.0047288	.0305293	0.15	0.877	0551201	.0645777
aihd	.0592565	.0347762	1.70	0.088	0089179	.1274309
pct	.0006117	.0413959	0.01	0.988	0805397	.0817632
bill_prot	.0408943	.0518402	0.79	0.430	0607318	.1425205
purch_tech	0560664	.0552798	-1.01	0.311	1644356	.0523028
full_educ	1074225	.0707728	-1.52	0.129	2461637	.0313188
SFSH	.0831851	.2141098	0.39	0.698	3365506	.5029207
MFNS	8704187	.0200549	-43.40	0.000	909734	8311035
MFSH	8460358	.046673	-18.13	0.000	9375325	7545391
_cons	1.563471	.05892	26.54	0.000	1.447966	1.678977

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressio	on				Number of obs	=	5778
					F(13, 5764)	=	153.32
					Prob > F	=	0.0000
					R-squared	=	0.1988
					Root MSE	=	1.1927
		Robust					
event_peak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+							
cpp	.0017062	.0577115	0.03	0.976	11143		1148423
dap	.1015057	.063502	1.60	0.110	0229822		2259935
ptr	.0804983	.0644706	1.25	0.212	0458884		2068849

< B-8 ≻

tou	.0709674	.0651602	1.09	0.276	056771	.1987057
bihd	.0164468	.0423197	0.39	0.698	0665158	.0994093
aihd	.0866684	.0483536	1.79	0.073	0081228	.1814597
pct	.0115838	.0580159	0.20	0.842	1021492	.1253167
bill_prot	.0769908	.0731636	1.05	0.293	0664374	.220419
purch_tech	0809135	.0757414	-1.07	0.285	2293951	.0675681
full_educ	2226392	.1058271	-2.10	0.035	4301001	0151784
SFSH	0862252	.2644919	-0.33	0.744	6047287	.4322783
MFNS	-1.232025	.028009	-43.99	0.000	-1.286933	-1.177116
MFSH	-1.202139	.0676078	-17.78	0.000	-1.334676	-1.069603
_cons	2.231532	.0911892	24.47	0.000	2.052767	2.410297

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak.

Linear regressi	Lon				Number of obs F(13, 5764) Prob > F R-squared Root MSE	= 31.05 = 0.0000 = 0.0628
I		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0025945	.0139017	0.19	0.852	0246581	.0298472
					.0061218	
ptr	.0067823	.0149893	0.45	0.651	0226024	.036167
tou	0161976	.0153766	-1.05	0.292	0463416	.0139464
bihd	.0121792	.0106368	1.15	0.252	0086728	.0330313
aihd	.0186114	.0116592	1.60	0.110	0042451	.0414678
pct	.0030235	.0145582	0.21	0.835	025516	.0315629
bill_prot	.0301295	.0178623	1.69	0.092	0048873	.0651462
purch_tech	.0010502	.0183482	0.06	0.954	0349191	.0370195
full_educ	0094741	.0260671	-0.36	0.716	0605754	.0416272
SFSH	.0324893	.06946	0.47	0.640	1036785	.1686571
MFNS	1526917	.0079561	-19.19	0.000	1682886	1370947
MFSH	0580946	.035337	-1.64	0.100	1273684	.0111792
_cons	1.118611	.0223369	50.08	0.000	1.074822	1.162399

Table 5-2 Estimated Coefficients from the Non-Summer ANOVA Models⁶⁶

Table 5-2 contains results from the three models detailed below. Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage.

Linear regressi	on				Number of obs F(13, 5457) Prob > F R-squared	= 105.92 = 0.0000
					Root MSE	= .51384
usage	Coef.	Robust Std. Err.	t	P> t 	[95% Conf.	Interval]
cpp	.0367876	.0274151	1.34	0.180	016957	.0905322
dap	.023554	.0295083	0.80	0.425	034294	.0814021
ptr	.0349458	.0289368	1.21	0.227	0217818	.0916734
tou	.0248327	.0303454	0.82	0.413	0346565	.0843218
bihd	.0033768	.0190667	0.18	0.859	0340016	.0407552
aihd	.0141961	.021163	0.67	0.502	0272918	.055684
pct	0158206	.0261871	-0.60	0.546	0671577	.0355165
bill_prot	.0425891	.0365079	1.17	0.243	028981	.1141591
purch_tech	0475397	.0329965	-1.44	0.150	112226	.0171466
full_educ	0461952	.0446643	-1.03	0.301	1337549	.0413646
SFSH	1.398966	.410241	3.41	0.001	.5947298	2.203202
MFNS	4407038	.0126199	-34.92	0.000	4654438	4159639
MFSH	.4930687	.0709546	6.95	0.000	.3539694	.632168
_cons	. 9339743	.0355045	26.31	0.000	.8643714	1.003577

 $^{^{\}rm 66}\,$ Table 5-2 can be found on page 5-7 of EPRI 1023644.

• Linear regression model using robust standard errors where the dependent variable is peak.

Linear regressi	on				Number of obs F(13, 5457) Prob > F R-squared Root MSE	= 97.23 = 0.0000 = 0.1615
I		Robust				
					[95% Conf.	
•					.0019443	
					0199375	
		.0277763				
_		.0290992				.074313
bihd	.0046209	.0187697	0.25	0.806	0321752	.041417
aihd	.015775	.0210328	0.75	0.453	0254576	.0570077
pct	0252307	.0251335	-1.00	0.315	0745023	.024041
bill_prot	.0403582	.0363083	1.11	0.266	0308207	.111537
purch_tech	0426725	.032639	-1.31	0.191	106658	.021313
full_educ	0311113	.0432479	-0.72	0.472	1158945	.0536719
SFSH	1.38005	.4014583	3.44	0.001	.5930319	2.167068
MFNS	4140417	.0123408	-33.55	0.000	4382347	3898487
MFSH	.4346936	.0726003	5.99	0.000	.292368	.5770192
_cons					.7771034	

Linear regression model using robust standard errors where the dependent variable is peak_offpeak.

Linear regressi	ion				Number of obs	=	5471
					F(13, 5457)	=	3.01
					Prob > F	=	0.0002
					R-squared	=	0.0067
					Root MSE	=	.20416
L		Robust					
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+-							
cpp	.0156775	.0113494	1.38	0.167	006572	•	0379269
dap	.0167572	.0119674	1.40	0.161	0067036	•	0402179
ptr	.0224681	.011855	1.90	0.058	0007724		0457087
tou	0183263	.0122963	-1.49	0.136	0424319		0057793
bihd	.0059352	.0078276	0.76	0.448	0094101	•	0212804

aihd	.0101619	.0086948	1.17	0.243	0068835	.0272072
pct	0000368	.0107367	-0.00	0.997	0210851	.0210115
bill_prot	.0049731	.012595	0.39	0.693	0197181	.0296643
purch_tech	0059502	.0130724	-0.46	0.649	0315773	.019677
full_educ	.0223814	.0184685	1.21	0.226	0138243	.0585871
SFSH	.0530838	.0425152	1.25	0.212	030263	.1364305
MFNS	0006674	.0067494	-0.10	0.921	0138988	.0125641
MFSH	0142835	.0247994	-0.58	0.565	0629001	.0343332
_cons	.9040381	.0150896	59.91	0.000	.8744565	.9336197

Table 5-3 Event-Day Load Impact Estimates by Rate \mathbf{Type}^{67}

Table 5-3 contains results from the three models detailed below where each is a linear fixed-effects model with first-order autoregressive disturbances. The models contain one observation per non-holiday weekday for each customer within a specified rate treatment group (CPP, PTR or FLR). The dependent variable in each model is ln_kwh as defined above.

 CPP 	Customers
-------------------------	-----------

FE (within) reg	ression with	n AR(1) dist	urbances	Number	of obs =	= 158859
Group variable:	billaccount	znum		Number	of groups =	= 1896
R-sq: within	= 0.1842			Obs per	group: min =	= 20
between	= 0.0005				avg =	= 83.8
overall	= 0.0934				max =	= 85
				F(17,15	6946) =	= 2084.41
corr(u_i, Xb)	= 0.0004			Prob >	F =	= 0.0000
ln_kwh	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
event_day_~d	.0020267	.0063444	0.32	0.749	0104083	.0144617
event7	174486	.0129841	-13.44	0.000	1999346	1490374
peak_thi	0385069	.0171097	-2.25	0.024	0720417	0049722
prepeak_thi	.0133224	.0182935	0.73	0.466	0225324	.0491772
morn_thi	0561192	.0107302	-5.23	0.000	0771501	0350883
lag1_thi	.0066078	.008421	0.78	0.433	0098972	.0231128
peak_thi2	.0003228	.0001156	2.79	0.005	.0000962	.0005493
prepeak_thi2	.000067	.0001254	0.53	0.593	0001789	.0003129
morn_thi2	.000488	.0000822	5.94	0.000	.0003268	.0006492
lag1_thi2	.0000911	.000062	1.47	0.142	0000304	.0002127
dt2	0509658	.0084306	-6.05	0.000	0674897	0344419
dt3	0623147	.0127519	-4.89	0.000	0873082	0373212

⁶⁷ Table 5-3 can be found on page 5-14 of EPRI 1023644.

31.4	0006255	0144515	F F0	0 000	1000001	0500100
dt4	0806355	.0144515	-5.58	0.000	1089601	0523108
dt5	0618504	.0152661	-4.05	0.000	0917717	0319292
m7	.0887077	.0060148	14.75	0.000	.0769189	.1004965
m8	.0363456	.0060086	6.05	0.000	.0245689	.0481223
m9	1078873	.0063998	-16.86	0.000	1204307	0953439
_cons	.1167693	.0290589	4.02	0.000	.0598144	.1737241
+-						
rho_ar	.41718594					
sigma_u	.91557033					
sigma_e	.51798515					
rho_fov	.75753295	(fraction	of varia	nce becau	ise of u_i)	
F test that all	u_i=0:	F(1895,156	946) = 1	L05.77	Prob >	F = 0.0000

PTR Customers

FE (within) reg	ression wit	h AR(1) dis	turbances	Number	of obs =	158859
Group variable: billaccountnum					of groups =	1896
R-sq: within = 0.1447					group: min =	20
between	= 0.0001				avg =	83.8
overall	= 0.0386				max =	85
				F(13,15	6950) =	2041.93
corr(u_i, Xb)	= -0.0004			Prob >	F =	0.0000
ln_kwh					[95% Conf.	
event_day_~d						
event7	0108171	.0130534	-0.83	0.407	0364015	.0147672
peak_thi	0021315	.0009417	-2.26	0.024	0039773	0002857
prepeak_thi	.0167918	.0010575	15.88	0.000	.0147191	.0188644
morn_thi	.0113215	.0006803	16.64	0.000	.0099881	.012655
lag1_thi	.0002445	.0004957	0.49	0.622	000727	.001216
dt2	.4409316	.0062823	70.19	0.000	.4286183	.4532449
dt3	.7397713	.0087414	84.63	0.000	.7226383	.7569043
dt4	.8196106	.0099937	82.01	0.000	.8000232	.839198
dt5	.8801446	.0104174	84.49	0.000	.8597268	.9005624
m7	.1492271	.0060785	24.55	0.000	.1373135	.1611408
m8	.1311644	.006022	21.78	0.000	.1193613	.1429674
m9	30204	.005887	-51.31	0.000	3135784	2905016
—	-3.099777				-3.136807	
•	.41867109					
sigma e	.53018169					
	.74905341	(fraction	of varian	ice becau	se of u_i)	
F test that all					Prob > 1	
r test that all	u_1=0:	E (1095,150	5507 -	51.13	PLOD / 1	0.0000

≺ B-13 **≻**

FLR Customers

FE (within) regression wit Group variable: billaccoun		urbances		of obs = of groups =	66128 791
Group variable. Dillaccoun	CITUM		NUMBEL	or groups -	791
R-sq: within = 0.2073			Obs per	group: min =	82
between $= 0.0016$				avg =	
overall = 0.1069				max =	84
			F(17,65	320) =	1004.82
corr(u i, Xb) = -0.0001			Prob >	F =	0.0000
_					
ln_kwh Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
++					
event_day_~d .0600998	.009818	6.12	0.000	.0408564	.0793431
event7 1908444	.0198532	-9.61	0.000	2297567	1519321
peak_thi .029904	.0263238	1.14	0.256	0216905	.0814986
prepeak_thi 0703342	.0278939	-2.52	0.012	1250062	0156622
morn_thi 0733053	.0163766	-4.48	0.000	1054036	0412071
lag1_thi .0306897	.012787	2.40	0.016	.0056271	.0557523
peak_thi2 0001706	.0001782	-0.96	0.338	00052	.0001787
prepeak_thi2 .0006889	.0001916	3.60	0.000	.0003135	.0010644
morn_thi2 .0006249	.0001256	4.97	0.000	.0003787	.0008711
lag1_thi2 0000788	.0000942	-0.84	0.403	0002635	.0001059
dt2 07439	.0104826	-7.10	0.000	0949359	0538441
dt3 1078658	.015157	-7.12	0.000	1375735	0781582
dt4 131861	.0173104	-7.62	0.000	1657894	0979326
dt5 1164779	.0181444	-6.42	0.000	1520409	0809149
m7 .1014141	.0090581	11.20	0.000	.0836603	.1191679
m8 .0262965	.0090421	2.91	0.004	.0085741	.044019
m9 0834442	.0095327	-8.75	0.000	1021283	0647601
_cons .2649714	.0351043	7.55	0.000	.196167	.3337759
++					
rho_ar .40835675					
sigma_u .88166771					
sigma_e .51260949					
rho_fov .74736385	(fraction of	of varian	ice becau	se of u_i)	
F test that all u_i=0:	F(790,65320) = 103	3.79	Prob > 1	F = 0.0000

Table 5-4 Comparison of Event-Day Load Impact Estimates for Alternative Specifications, CPP Customers⁶⁸

Table 5-4 contains a subset of the results from the five models detailed below where each is a linear fixed-effects model with first-order autoregressive disturbances. The models contain one observation per non-holiday weekday for each customer within the CPP rate treatment group. The dependent variable in each model is ln_kwh as defined above.

• Original model (using THI to identify weather conditions)

FE (within) req Group variable:	-		urbances		of obs = of groups =	
	= 0.1842 = 0.0005 = 0.0934			Obs per	group: min = avg = max =	83.8
corr(u_i, Xb)	= 0.0004				6946) = F =	2084.41 0.0000
ln_kwh					[95% Conf.	Interval]
event day ~d					0104083	.0144617
	174486			0.000		
peak thi			-2.25	0.024	0720417	
prepeak thi			0.73	0.466	0225324	.0491772
morn thi				0.000	0771501	0350883
_ lag1 thi	.0066078	.008421	0.78	0.433	0098972	.0231128
peak thi2	.0003228	.0001156	2.79	0.005	.0000962	.0005493
prepeak thi2	.000067	.0001254	0.53	0.593	0001789	.0003129
morn_thi2	.000488	.0000822	5.94	0.000	.0003268	.0006492
lag1_thi2	.0000911	.000062	1.47	0.142	0000304	.0002127
dt2	0509658	.0084306	-6.05	0.000	0674897	0344419
dt3	0623147	.0127519	-4.89	0.000	0873082	0373212
dt4	0806355	.0144515	-5.58	0.000	1089601	0523108
dt5	0618504	.0152661	-4.05	0.000	0917717	0319292
m7	.0887077	.0060148	14.75	0.000	.0769189	.1004965
m8	.0363456	.0060086	6.05	0.000	.0245689	.0481223
m9	1078873	.0063998	-16.86	0.000	1204307	0953439
_cons	.1167693	.0290589	4.02	0.000	.0598144	.1737241
rho ar	.41718594			· 		·
—	01 5 5 7 0 2 2					

sigma_u | .91557033

⁶⁸ Table 5-4 can be found on page 5-18 of EPRI 1023644.

< B-15 >

sigma_e	.51798515		
rho_fov	.75753295	(fraction of variance because of u_i)	
F test that all	u_i=0:	F(1895, 156946) = 105.77 Prob > F = 0.0000	

• Model using CDH to identify weather conditions

R-sq: within = 0.1783 Obs per group: min =	20 83.8 85
between = 0.0002 avg = overall = 0.0846 max =	00
	2003.79 0.0000
ln_kwh Coef. Std. Err. t P> t [95% Conf. In	terval]
event7 1669529 .0132271 -12.62 0.000 1928778 - peak_cdh65 0024944 .0017197 -1.45 0.147 005865 . prepeak_c~65 .0040432 .0019386 2.09 0.037 .0002437 . morn_cdh65 .0251755 .0015229 16.53 0.000 .0221906 . lag1_cdh65 .0184143 .0011602 15.87 0.000 .0161404 . peak_cdh652 .0005429 .0000573 9.48 0.000 .0004306 . prepeak_c652 .0001952 .0000718 2.72 0.007 .000881 . morn_cdh652 0006792 .000103 -6.59 0.000 000881 . lag1_cdh652 0002889 .0000641 -4.51 0.000 .0004145 . dt2 .1270399 .004466 28.57 0.000 .2278154 . dt3 .2187099 .0054892 39.84 0.000 .2278154 . dt5 .239379 .006185 3	0379547 .141028 0008761 0078428 0281604 0206882 0006551 0003359 0004773 0001633 1357551 2294686 2480708 2520603 0284188 0163953 2069702 9976151
<pre>rho_fov .75638229 (fraction of variance because of u_i) F test that all u_i=0: F(1895,156946) = 104.39 Prob > F =</pre>	0.0000

< B-16 >

Model using THI to identify weather conditions and omitting quadratic weather terms

FE (within) regression with AR(1) disturbances Group variable: billaccountnum					of obs = of groups =	
	= 0.1447 = 0.0001 = 0.0386			Obs per	group: min = avg = max =	= 83.8
corr(u_i, Xb)	= -0.0004			F(13,15 Prob >	6950) = F =	= 2041.93 = 0.0000
ln_kwh	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
<pre>event_day_~d event7 peak_thi prepeak_thi morn_thi lag1_thi dt2 dt3 dt4 dt5 m7 m8 m9 _cons </pre>	0108171 0021315 .0167918 .0113215 .0002445 .4409316 .7397713 .8196106 .8801446 .1492271 .1311644 30204	.0055314 .0130534 .0009417 .0010575 .0006803 .0004957 .0062823 .0087414 .0099937 .0104174 .0060785 .006022 .005887 .0188932		0.000 0.407 0.024 0.000 0.000 0.622 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	.0645458 0364015 0039773 .0147191 .0099881 000727 .4286183 .7226383 .8000232 .8597268 .1373135 .1193613 3135784 -3.136807	0002857
_	.74905341	(fraction F(1895,156			se of u_i) Prob >	F = 0.0000

Model using CDH to identify weather conditions and omitting quadratic weather terms

FE (within) regression with AR(1) disturbances	Number of obs	=	158859
Group variable: billaccountnum	Number of groups	=	1896
R-sq: within = 0.1766	Obs per group: min	=	20
between = 0.0002	avg	=	83.8

< B-17 >

overall	= 0.0834				max =	85
corr(u_i, Xb)	= 0.0000				56950) = F =	
		Std. Err.			[95% Conf.	Interval]
event_day_~d	.0190214	.0054273	3.50	0.000	.008384	.0296588
event7	1662718	.0130745	-12.72	0.000	1918975	1406462
peak_cdh65	.0089463	.0005534	16.16	0.000	.0078616	.0100311
prepeak_c~65	.0092719	.0006616	14.02	0.000	.0079753	.0105686
morn_cdh65	.0195919	.0006979	28.07	0.000	.018224	.0209599
lag1_cdh65	.0132438	.0004786	27.67	0.000	.0123059	.0141818
dt2	.1318148	.0043893	30.03	0.000	.1232118	.1404177
dt3	.2277859	.0053561	42.53	0.000	.217288	.2382837
dt4	.2566652	.0057011	45.02	0.000	.2454913	.2678392
dt5	.2674597	.0057958	46.15	0.000	.2561001	.2788192
m7	.0222312	.0062158	3.58	0.000	.0100483	.034414
m8	.0067249	.0061252	1.10	0.272	0052805	.0187302
m9	224131	.0058843	-38.09	0.000	235664	212598
_cons	-1.069773	.0051724	-206.82	0.000	-1.07991	-1.059635
+- rho_ar	.41705651					
sigma u	.91573482					
sigma e	.52039434					
rho_fov	.75589055	(fraction	of varia	nce beca	use of u_i)	
F test that all	u_i=0:	F(1895,156	950) =	104.46	Prob > 1	F = 0.0000

Model using THI to identify weather conditions, omitting quadratic weather terms, and only including data for days in September

FE (within) regression with AR(1) disturbances Number of obs = 37523 Number of groups = 1885 Group variable: billaccountnum Obs per group: min = 4 avg = 19.9 max = 20 R-sq: within = 0.0725between = 0.0007overall = 0.0090F(9,35629) = 309.30Prob > F corr(u i, Xb) = -0.0005= 0.0000 _____ ln_kwh | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____ event_day_~d | .2116163 .0129614 16.33 0.000 .1862115 .2370211 event7 | (omitted)

≺ B-18 ≻

peak_thi	.0318561	.0022283	14.30	0.000	.0274886	.0362236
prepeak_thi	0183367	.0023701	-7.74	0.000	0229821	0136912
morn_thi	0108118	.0010196	-10.60	0.000	0128102	0088135
lag1_thi	.0137351	.000882	15.57	0.000	.0120064	.0154637
dt2	.1797122	.0092141	19.50	0.000	.1616522	.1977722
dt3	.2600818	.0113207	22.97	0.000	.2378929	.2822707
dt4	.4397042	.0101413	43.36	0.000	.419827	.4595814
dt5	.3122569	.0119659	26.10	0.000	.2888033	.3357105
m7	(omitted)					
m8	(omitted)					
m9	(omitted)					
_cons	-2.323566	.0385274	-60.31	0.000	-2.399081	-2.248051
+-						
rho_ar	.18226487					
sigma_u	.82601778					
sigma_e	.43658513					
rho_fov	.78164284	(fraction	of varia	nce becau	se of u_i)	
F test that all	u_i=0:	F(1884,3562	29) =	50.68	Prob >	F = 0.0000

Table 5-7 NCES Estimated Elasticities of Substitution, by Rate⁶⁹

Table 5-7 contains a subset of the results from the Stata output tables provided below. The model and the variables used within it are defined in Appendix D of this addendum. For reference, the NCES model is estimated using a linear regression including one observation per subperiod per non-holiday weekday between June 1, 2010 and August 31, 2010. In order to relate the terms from the Stata output below to Appendix D and the Phase 2 report, the following variable definitions are needed:

- energyterm The dependent variable is equal to the left-hand side variable in equation (1) of Appendix D
- term2 corresponds to the first right-hand side variable in equation (1) of Appendix D
- term3 corresponds to the second right-hand side variable in equation (1) of Appendix D
- weatherterm corresponds to the weather variable defined on page 4 of Appendix D

⁶⁹ Table 5-7 can be found on page 5-30 of EPRI 1023644.

subperiod_2

is an indicator variable that equals one for morning shoulder observations and zero otherwise, where morning shoulder is defined in Appendix D

subperiod_3

is an indicator variable that equals one for peak observations and zero otherwise, where peak is defined in Appendix D

subperiod_2

is an indicator variable that equals one for evening shoulder observations and zero otherwise, where evening shoulder is defined in Appendix D

month7

is an indicator variable that equals one during the month of July and zero otherwise

- month8
 is an indicator variable that equals one during the month of August and zero
 otherwise
- _cons corresponds to a constant term

The "Within-Day" results presented in Table 5-7 correspond to term2 and the "Between-Day" results presented in Table 5-7 correspond to term3.

	SS				Number of obs	
	25.7724629				F(8, 247) Prob > F	
Residual	2.91667821				R-squared	
+- Total	28.6891411				Adj R-squared Root MSE	
	Coef.				[95% Conf.	Interval]
term2	.0946973	.0173433	5.46	0.000	.0605377	.1288569
term3	.1493888	.0171635	8.70	0.000	.1155833	.1831943
weatherterm	5.183334	.1510762	34.31	0.000	4.885772	5.480896
1						
subperiod_n						
2	3502388	.0216802	-16.15	0.000	3929404	3075372
3	2813985	.0242353	-11.61	0.000	3291328	2336642
4	.1258562	.020612	6.11	0.000	.0852585	.1664539
1						
month						
7	0261986	.0213453	-1.23	0.221	0682406	.0158434
8	1189411	.0198809	-5.98	0.000	1580988	0797835
1						
_cons	.0765955	.0171594	4.46	0.000	.0427982	.1103929

CPP Responders

PTR Responders

Source	SS	df	MS		Number of obs F(8, 247)	
	20.2968275 2.55940856		361978		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8880
Total	22.8562361				Root MSE	
energyterm	Coef.		t		[95% Conf.	Interval]
term2	.0656668	.0171114	3.84	0.000	.031964	.0993697
term3	.1238349	.017155	7.22	0.000	.0900461	.1576236
weatherterm	4.574209	.1414808	32.33	0.000	4.295547	4.852872
subperiod n						
2	2695499	.0202965	-13.28	0.000	3095262	2295737
3	2002193	.0226267	-8.85	0.000	2447852	1556535
4	.1261772	.0192854	6.54	0.000	.0881923	.164162
month						
7	0053383	.0196359	-0.27	0.786	0440134	.0333369
8 	0615904	.0184429	-3.34	0.001	0979158	025265
_cons	.05817	.0160316	3.63	0.000	.0265939	.0897461

Table 5-8 GL Estimated Elasticity of Substitution for Event-responders, by Rate and Day Type⁷⁰

The output tables below contain results of Generalized Leontief models when estimated using data for customers identified as responders, aggregated by rate type (CPP and PTR only). Each model is a non-liner regression specified according to the equation in Chapter 5 of the Phase 1 report.⁷¹ Appendix A of the Phase 1 report outlines the methdology used and defines the variable labels found in the tables below.⁷²

⁷⁰ Table 5-8 can be found on page 5-32 of EPRI 1023644.

⁷¹ The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program Pilot: Phase 1. EPRI, Palo Alto, CA: 2011. 1022703.

⁷² The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program Pilot: Phase 1, Appendices. EPRI, Palo Alto, CA: 2011. 1022761.

• CPP reponders

	SS					
+-				Nu	mber of obs =	65
Model	93.435025	4 23	.3587563	R-	-squared =	0.9958
Residual	.390497425	61 .0	06401597	Ad	lj R-squared =	0.9956
+-				Rc	ot MSE =	.08001
Total	93.8255225	65 1.	44346958	Re	es. dev. =	-147.9949
ln_es_p_es_o	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
+-						
/cd	.0078396	.0034478	2.27	0.027	.0009453	.014734
/hp	.0008174	.0007201	1.14	0.261	0006224	.0022573
/gpp	.1303744	.0071107	18.34	0.000	.1161558	.1445931
/gpo	.0333374	.005565	5.99	0.000	.0222096	.0444653
ln es p es o	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
doo	.8029507	.0059416	135.14	0.000	.7910697	.8148317

PTR reponders

Source	SS	df	MS			
+-				Nui	mber of obs =	65
Model	96.3044961	4 24	.076124	R-	squared =	0.9968
Residual	.308625414	61 .005	5059433	Ad	j R-squared =	0.9966
+-				Ro	ot MSE =	.0711297
Total	96.6131215	65 1.48	3635572	Re	s. dev. =	-163.2889
ln_es_p_es_o +-						
					0050787	
/hp	.0010291	.0008164	1.26	0.212	0006033	.0026615
/gpp	.1569024	.0071624	21.91	0.000	.1425803	.1712246
/gpo					.0067294	
ln_es_p_es_o						
+-						
goo 	.80/3519	.0056849	142.02	0.000	.7959842	.818/195

< B-22 >

Table 5-9 Dependence of the Natural Log of Monthly Usage on IBR Status⁷³

Table 5-9 contains results of a linear regression model in which the dependent variable is the natural log of kW usage during a specific billing month averaged across customers in the IBR treatment cells (ln_avg_usage). There are two observations for each of 11 available CAP billing months; one observation for the bill month during the CAP period, and a second observation for the same bill month but during the previous year. Here, the independent variable ibr equals one during the CAP pilot period and zero otherwise.

Source	SS	df	MS		Number of obs	= 22
+-					F(3, 18)	= 42.10
Model	.838860018	3.279	9620006		Prob > F	= 0.0000
Residual	.119548701	18 .000	5641595		R-squared	= 0.8753
+-					Adj R-squared	= 0.8545
Total	.958408719	21 .04	1563851		Root MSE	= .0815
ln_avg_usage	Coef.				[95% Conf.	Interval]
avg_cdd	.0733018	.0068098	10.76	0.000	.058995	.0876086
avg_hdd	.0110992	.0015225	7.29	0.000	.0079006	.0142977
ibr	0400865	.0375753	-1.07	0.300	1190292	.0388563
_cons	6.115644	.0432707	141.33	0.000	6.024735	6.206552

Appendix A Tables

Table A-1 Impacts of Rate Type on Opt Outs

Table A-1 contains the results of a logistic regression using robust standard errors where the dependent variable is a binary choice variable that equals one if the customer opted out of the pilot program and zero otherwise. There is one observation per customer and customers are excluded from the analysis if they are in treatment cells F1 or F2 or if they finaled (e.g., moved out of the residence) before or during the pilot program. Because all customers who opted out of the program received full education, a coefficient could not be estimated for the full_educ variable and basic education customers (i.e. those in cell F3) were not included in the regression. The control group consists of customers with the IBR rate treatment and eWeb technology (i.e., treatment cell E1) residing in single-family homes with non-space heating.

⁷³ Table 5-9 can be found on page 5-33 of EPRI 1023644.

Logistic regres	ssion			Numbe	r of obs =	6434
				Wald	chi2(13) =	46.48
				Prob	> chi2 =	0.0000
Log pseudolikel	ihood = -74	4.01314		Pseud	lo R2 =	0.0439
1		Robust				
optout	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
+-						
cpp	2.336898	.5943135	3.93	0.000	1.172065	3.501731
dap	1.532399	.6235588	2.46	0.014	.3102461	2.754552
flr	3176118	.9155059	-0.35	0.729	-2.11197	1.476747
ptr	1.860378	.6107129	3.05	0.002	.6634022	3.057353
tou	1.71322	.6201748	2.76	0.006	.4976998	2.928741
bihd	.4857718	.2329289	2.09	0.037	.0292395	.9423041
aihd	.0980635	.2683083	0.37	0.715	427811	.623938
pct	.0955722	.3041559	0.31	0.753	5005624	.6917067
bill_prot	.293339	.3644349	0.80	0.421	4209403	1.007618
purch_tech	.1166149	.3847014	0.30	0.762	6373861	.8706159
full_educ	(omitted)					
SFSH	.4474348	1.006035	0.44	0.656	-1.524357	2.419227
MFNS	3598008	.1850959	-1.94	0.052	7225821	.0029805
MFSH	.4709061	.4373913	1.08	0.282	3863651	1.328177
_cons	-5.578479	.6114792	-9.12	0.000	-6.776956	-4.380001

Table A-2 Impacts of Rate Type on Electricity Usage

Table A-2 contains results from two linear regression models using robust standard errors where the dependent variable is usage. There is one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

Summer

Linear regressic		Number of obs	5778				
					F(13, 5764)	=	140.50
					Prob > F	=	0.0000
					R-squared	=	0.1908
					Root MSE	=	.67715
1		Robust					
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+							
cpp	.0438367	.0332756	1.32	0.188	0213959	•	1090693
dap	.0631761	.0360335	1.75	0.080	0074631		1338153

≺ B-24 ≻

ptr	L	.0605055	.0369629	1.64	0.102	0119556	.1329666
tou	L	.0687044	.0372524	1.84	0.065	0043243	.1417331
bihd	I	0067263	.0242201	-0.28	0.781	0542069	.0407542
aihd	I	.036752	.0274435	1.34	0.181	0170476	.0905516
pct	I	.0143969	.0346126	0.42	0.677	0534568	.0822506
bill_prot	I	.0242882	.0412734	0.59	0.556	0566233	.1051996
purch_tech	I	0550892	.0435824	-1.26	0.206	1405271	.0303487
full_educ	I	0768751	.0569643	-1.35	0.177	1885465	.0347964
SFSH	I	.0608919	.1635426	0.37	0.710	2597131	.3814968
MFNS	I	681744	.0163047	-41.81	0.000	7137075	6497806
MFSH	I	6947426	.0381425	-18.21	0.000	7695162	6199689
cons	I	1.376989	.0471172	29.22	0.000	1.284622	1.469357

Non-Summer

Linear regression					Number of obs = 547 F(13, 5457) = 105.9				
					Prob > F				
					R-squared				
					Root MSE	= .51384			
		Robust							
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
+-									
					016957				
-	.023554				034294				
ptr	.0349458	.0289368	1.21	0.227	0217818	.0916734			
tou	.0248327	.0303454	0.82	0.413	0346565	.0843218			
bihd	.0033768	.0190667	0.18	0.859	0340016	.0407552			
aihd	.0141961	.021163	0.67	0.502	0272918	.055684			
pct	0158206	.0261871	-0.60	0.546	0671577	.0355165			
bill_prot	.0425891	.0365079	1.17	0.243	028981	.1141591			
purch_tech	0475397	.0329965	-1.44	0.150	112226	.0171466			
full educ	0461952	.0446643	-1.03	0.301	1337549	.0413646			
SFSH	1.398966	.410241	3.41	0.001	.5947298	2.203202			
MFNS	4407038	.0126199	-34.92	0.000					
MFSH	.4930687	.0709546	6.95	0.000	.3539694				
				0.000	.8643714				

Table A-3 Impacts of Rate Type on Summer Peak Load

Table A-3 contains results from the three models detailed below. Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regressi	ion				Number of obs F(13, 5764) Prob > F R-squared Root MSE	= 149.93 = 0.0000 = 0.1949
		Robust				
peak	Coei.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.058554	.0410716	1.43	0.154	0219617	.1390697
	.1008382		2.23	0.026	.0122519	.1894245
ptr	.082068	.0462535	1.77	0.076	0086063	.1727422
tou	.0627371	.0459909	1.36	0.173	0274223	.1528965
bihd	.0047288	.0305293	0.15	0.877	0551201	.0645777
aihd	.0592565	.0347762	1.70	0.088	0089179	.1274309
pct	.0006117	.0413959	0.01	0.988	0805397	.0817632
bill_prot	.0408943	.0518402	0.79	0.430	0607318	.1425205
purch_tech	0560664	.0552798	-1.01	0.311	1644356	.0523028
full_educ	1074225	.0707728	-1.52	0.129	2461637	.0313188
SFSH	.0831851	.2141098	0.39	0.698	3365506	.5029207
MFNS	8704187	.0200549	-43.40	0.000	909734	8311035
MFSH	8460358	.046673	-18.13	0.000	9375325	7545391
_cons	1.563471	.05892	26.54	0.000	1.447966	1.678977

 Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear	regression						Number	of obs	=	5778
							F(13,	5764)	=	153.32
							Prob >	·F	=	0.0000
							R-squa	red	=	0.1988
							Root M	ISE	=	1.1927
	I.		Robi	ıst						
event	t_peak	Coef.	Std.	Err.	t	P> t	[95	% Conf.	In	terval]

< B-26 >

+-						
cpp	.0017062	.0577115	0.03	0.976	11143	.1148423
dap	.1015057	.063502	1.60	0.110	0229822	.2259935
ptr	.0804983	.0644706	1.25	0.212	0458884	.2068849
tou	.0709674	.0651602	1.09	0.276	056771	.1987057
bihd	.0164468	.0423197	0.39	0.698	0665158	.0994093
aihd	.0866684	.0483536	1.79	0.073	0081228	.1814597
pct	.0115838	.0580159	0.20	0.842	1021492	.1253167
bill_prot	.0769908	.0731636	1.05	0.293	0664374	.220419
purch_tech	0809135	.0757414	-1.07	0.285	2293951	.0675681
full_educ	2226392	.1058271	-2.10	0.035	4301001	0151784
SFSH	0862252	.2644919	-0.33	0.744	6047287	.4322783
MFNS	-1.232025	.028009	-43.99	0.000	-1.286933	-1.177116
MFSH	-1.202139	.0676078	-17.78	0.000	-1.334676	-1.069603
_cons	2.231532	.0911892	24.47	0.000	2.052767	2.410297

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regressi	Lon				Number of obs F(13, 5457) Prob > F R-squared Root MSE	= 97.23 = 0.0000 = 0.1615
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0536889	.0263949	2.03	0.042	.0019443	.1054336
dap	.0356171	.0283384	1.26	0.209	0199375	.0911717
ptr	.0503471	.0277763	1.81	0.070	0041056	.1047998
tou	.017267	.0290992	0.59	0.553	0397789	.074313
bihd	.0046209	.0187697	0.25	0.806	0321752	.041417
aihd	.015775	.0210328	0.75	0.453	0254576	.0570077
pct	0252307	.0251335	-1.00	0.315	0745023	.024041
bill_prot	.0403582	.0363083	1.11	0.266	0308207	.111537
purch_tech	0426725	.032639	-1.31	0.191	106658	.021313
full_educ	0311113	.0432479	-0.72	0.472	1158945	.0536719
SFSH	1.38005	.4014583	3.44	0.001	.5930319	2.167068
MFNS	4140417	.0123408	-33.55	0.000	4382347	3898487
MFSH	.4346936	.0726003	5.99	0.000	.292368	.5770192
_cons	.8446697	.0344656	24.51	0.000	.7771034	.912236

Table A-4 Impacts of Rate Type on Peak to Off-Peak Load Ratios

Table A-4 contains results from two linear regression models using robust standard errors where the dependent variable is peak_offpeak. There is one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

Summer

Linear regress:	ion				Number of obs F(13, 5764) Prob > F R-squared Root MSE	= 31.05 = 0.0000 = 0.0628
I		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0025945	.0139017	0.19	0.852	0246581	.0298472
dap	.0366941	.0155951	2.35	0.019	.0061218	.0672664
ptr	.0067823	.0149893	0.45	0.651	0226024	.036167
tou	0161976	.0153766	-1.05	0.292	0463416	.0139464
bihd	.0121792	.0106368	1.15	0.252	0086728	.0330313
aihd	.0186114	.0116592	1.60	0.110	0042451	.0414678
pct	.0030235	.0145582	0.21	0.835	025516	.0315629
bill_prot	.0301295	.0178623	1.69	0.092	0048873	.0651462
purch_tech	.0010502	.0183482	0.06	0.954	0349191	.0370195
full_educ	0094741	.0260671	-0.36	0.716	0605754	.0416272
SFSH	.0324893	.06946	0.47	0.640	1036785	.1686571
MFNS	1526917	.0079561	-19.19	0.000	1682886	1370947
MFSH	0580946	.035337	-1.64	0.100	1273684	.0111792
_cons	1.118611	.0223369	50.08	0.000	1.074822	1.162399

Non-Summer

Linear regress	sion				Number of obs	=	5471
					F(13, 5457)	=	3.01
					Prob > F	=	0.0002
					R-squared	=	0.0067
					Root MSE	=	.20416
I		Robust					
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]

≺ B-28 ≻

cpp	I	.0156775	.0113494	1.38	0.167	006572	.0379269
dap	L	.0167572	.0119674	1.40	0.161	0067036	.0402179
ptr	L	.0224681	.011855	1.90	0.058	0007724	.0457087
tou	L	0183263	.0122963	-1.49	0.136	0424319	.0057793
bihd	I	.0059352	.0078276	0.76	0.448	0094101	.0212804
aihd	I	.0101619	.0086948	1.17	0.243	0068835	.0272072
pct	I	0000368	.0107367	-0.00	0.997	0210851	.0210115
bill_prot	I	.0049731	.012595	0.39	0.693	0197181	.0296643
purch_tech	I	0059502	.0130724	-0.46	0.649	0315773	.019677
full_educ	I	.0223814	.0184685	1.21	0.226	0138243	.0585871
SFSH	1	.0530838	.0425152	1.25	0.212	030263	.1364305
MFNS	I	0006674	.0067494	-0.10	0.921	0138988	.0125641
MFSH	1	0142835	.0247994	-0.58	0.565	0629001	.0343332
_cons	I	.9040381	.0150896	59.91	0.000	.8744565	.9336197

Table A-5 Impacts of Rate Type on Customer Satisfaction

Table A-5 contains results from a linear regression model using robust standard errors where the dependent variable is satisfaction. There is one observation per customer; and customers are excluded if they did not answer questions 22 and 23 on the CAP final survey. The control group consists of customers with the IBR rate treatment and eWeb technology (i.e., treatment cell E1) residing in single-family homes with non-space heating.

Linear regres	ssi	on				Number of obs F(14, 2356) Prob > F R-squared	=	1.54 0.0903
						Root MSE	=	2.3914
		Coef.				[95% Conf.	Int	cerval]
								 1193682
cpp	T	2479795	.1936076	-1.28	0.200	6276385	•	1316795
dap	T	0107282	.20205	-0.05	0.958	4069425	•	3854861
ptr	Ι	0931109	.208267	-0.45	0.655	5015165	•	3152947
tou	Ι	1171016	.2183325	-0.54	0.592	5452454	•	3110421
bihd	Ι	.006564	.1355614	0.05	0.961	259268	• 2	2723961
aihd	Ι	0938261	.1482152	-0.63	0.527	3844719	•	1968197
pct	T	.1898171	.2193727	0.87	0.387	2403665	. (5200008
bill_prot	Ι	.2083255	.2677845	0.78	0.437	3167923	•	7334433
purch_tech	Ι	1071475	.2542969	-0.42	0.674	6058165	•	3915215
full_educ	T	.3117088	.2230113	1.40	0.162	12561	•	7490276
SFSH	T	2355297	.2843085	-0.83	0.408	7930506	•	3219912

MFNS	.0156165	.1109001	0.14	0.888	2018554	.2330884
MFSH	3048761	.2437285	-1.25	0.211	7828208	.1730686
_cons	5.838803	.2721052	21.46	0.000	5.305213	6.372394

Table A-6 Impacts of Technology on Implementation Rates

Table A-6 contains the results of a logistic regression using robust standard errors where the dependent variable is a binary choice variable that takes on the value of unity if the customer implemented the technology and zero otherwise (implement). There is one observation per customer, and customers are excluded if they are in treatment cell F1 or are in any of the eWeb treatment cells. The control group consists of customers in treatment cells F6 and F7 residing in single-family homes with non-space heating.

Logistic regres		Number of obs = 55					
				Wald	chi2(11)	=	294.39
				Prob	> chi2	=	0.0000
Log pseudolikel	Log pseudolikelihood = -2573.9014						0.0760
1		Robust					
implement	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
cpp	.2933847	.1338142	2.19	0.028	.031113	7	.5556558
dap	.1754118	.142286	1.23	0.218	103463	6	.4542871
ptr	.0203115	.1411823	0.14	0.886	256400	7	.2970236
tou	.2811411	.141036	1.99	0.046	.004715	6	.5575666
ibr	.0652194	.1576403	0.41	0.679	243749	9	.3741887
aihd	-1.106367	.0865399	-12.78	0.000	-1.27598	2	9367515
pct	9201849	.1207297	-7.62	0.000	-1.15681	1	683559
bill prot	(omitted)						
purch_tech	-2.875939	.3687717	-7.80	0.000	-3.59871	9	-2.15316
full_educ	(omitted)						
SFSH	3778038	.6836568	-0.55	0.581	-1.71774	7	.962139
MFNS	5252873	.0771247	-6.81	0.000	676448	9	3741257
MFSH	3810105	.2740869	-1.39	0.164	91821	1	.15619
_cons	8535895	.1171407	-7.29	0.000	-1.08318	1	623998

Table A-7 Impacts of Technology on Adoption Rates

Table A-7 contains the results of a logistic regression using robust standard errors where the dependent variable is a binary choice variable that takes on the value of unity if the customer adopted the technology and zero otherwise (adoption). There is one observation per customer; and customers are excluded if they are in treatment cell F1, are in any of the eWeb treatment cells, did not answer the relevant question on the final survey, or did not implement their inhome device. The control group consists of customers in treatment cells F6 and F7 residing in single-family homes with non-space heating.

Logistic regres	ssion		Wald	r of obs = chi2(11) = > chi2 =	449 7.49 0.7584	
Log pseudolike	ihood = -27		Pseud	lo R2 =	0.0139	
I		Robust				
adoption	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
cpp	.03074	.4035733	0.08	0.939	7602491	.8217291
dap	.0432421	.4261107	0.10	0.919	7919196	.8784038
ptr	.2323064	.4333039	0.54	0.592	6169537	1.081567
tou	4770633	.4100095	-1.16	0.245	-1.280667	.3265406
ibr	.0349632	.4677758	0.07	0.940	8818606	.951787
aihd	.2774548	.2672377	1.04	0.299	2463215	.8012312
pct	.3541956	.4007495	0.88	0.377	431259	1.13965
bill_prot	(omitted)					
purch_tech	.3479315	.8983352	0.39	0.699	-1.412773	2.108636
full_educ	(omitted)					
SFSH	-1.060351	1.380261	-0.77	0.442	-3.765613	1.64491
MFNS	.1182039	.2489371	0.47	0.635	3697038	.6061116
MFSH	1194852	.7755651	-0.15	0.878	-1.639565	1.400594
_cons	.7517302	.3406286	2.21	0.027	.0841103	1.41935

Table A-8 Impacts of Feedback Solutions on Electricity Usage

Table A-8 contains results for seven models detailed below. These models differ from those in Tables A-2 through A-4 in that they include variables pertaining to feedback solutions used by customers (direct, indirect, direct_ind~t). Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating. • Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	Lon				Number of obs F(16, 660) Prob > F R-squared Root MSE	= 17.66 = 0.0000 = 0.2252
1		Robust				
					[95% Conf.	
					0872361	
dap	.0258092	.0885088	0.29	0.771	1479836	.199602
ptr	.0154788	.0858043	0.18	0.857	1530035	.1839612
tou	.0568114	.097085	0.59	0.559	1338212	.247444
bihd	.0104112	.0828971	0.13	0.900	1523625	.173185
aihd	0067004	.0912509	-0.07	0.941	1858776	.1724767
pct	.0324	.1010644	0.32	0.749	1660464	.2308464
bill_prot	.2267001	.167049	1.36	0.175	1013114	.5547117
purch_tech	1003051	.1480244	-0.68	0.498	3909606	.1903503
full_educ	.0928952	.1615582	0.57	0.565	2243348	.4101253
SFSH	.2644371	.2379685	1.11	0.267	2028294	.7317036
MFNS	684124	.0432848	-15.81	0.000	7691166	5991314
MFSH	7222345	.1112461	-6.49	0.000	9406734	5037956
direct	0437082	.0527974	-0.83	0.408	1473794	.059963
indirect	1719632	.2694851	-0.64	0.524	7011147	.3571883
direct_ind~t	.3160132	.2997882	1.05	0.292	2726403	.9046667
_cons	1.225054	.1307769	9.37	0.000	.9682651	1.481843

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear	regression	n				Number of obs	=	677
						F(16, 660)	=	16.80
						Prob > F	=	0.0000
						R-squared	=	0.1989
						Root MSE	=	.7897
	I		Robust					
	peak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
	+							
	cpp	.094341	.1090174	0.87	0.387	1197217	•	3084036
	dap	.0438119	.1135533	0.39	0.700	1791574	•	2667812

< B-32 >

ptr	.0425047	.1113672	0.38	0.703	1761721	.2611815
tou	.0597674	.1269059	0.47	0.638	1894206	.3089553
bihd	.0019525	.0993437	0.02	0.984	1931154	.1970203
aihd	0192251	.1096261	-0.18	0.861	2344831	.1960329
pct	0150662	.1243672	-0.12	0.904	2592692	.2291369
bill_prot	.1848628	.18731	0.99	0.324	1829326	.5526582
purch_tech	1514635	.1988469	-0.76	0.447	5419123	.2389853
full_educ	.1428199	.2044168	0.70	0.485	2585657	.5442056
SFSH	.3169676	.3790415	0.84	0.403	4273049	1.06124
MFNS	8238864	.0529379	-15.56	0.000	9278334	7199395
MFSH	8090875	.1411227	-5.73	0.000	-1.086191	531984
direct	0612877	.0693559	-0.88	0.377	1974724	.0748971
indirect	1649992	.3384686	-0.49	0.626	8296043	.4996058
direct_ind~t	.2700381	.3784109	0.71	0.476	4729961	1.013072
_cons	1.314857	.1683469	7.81	0.000	.9842966	1.645417

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressi	Lon				Number of obs F(16, 660) Prob > F R-squared Root MSE	= 17.08 = 0.0000 = 0.2002
I		Robust				
event_peak		Std. Err.			[95% Conf.	Interval]
cpp					4013228	.2598886
dap	0611772	.1719953	-0.36	0.722	3989012	.2765468
ptr	0891673	.1702846	-0.52	0.601	4235322	.2451976
tou	0382292	.1916746	-0.20	0.842	4145948	.3381363
bihd	0107319	.1471505	-0.07	0.942	2996714	.2782075
aihd	0348782	.1644104	-0.21	0.832	3577086	.2879522
pct	0108501	.1832058	-0.06	0.953	3705867	.3488864
bill_prot	.1888477	.261916	0.72	0.471	3254412	.7031367
purch_tech	2045592	.2984527	-0.69	0.493	7905905	.3814721
full_educ	.2932593	.3194873	0.92	0.359	3340748	.9205935
SFSH	.3319726	.433334	0.77	0.444	5189068	1.182852
MFNS	-1.199259	.0758786	-15.80	0.000	-1.348251	-1.050266
MFSH	-1.203702	.186546	-6.45	0.000	-1.569997	8374066
direct	0883884	.0994269	-0.89	0.374	2836195	.1068428
indirect	359103	.4659974	-0.77	0.441	-1.274119	.5559131
direct_ind~t	.5145449	.5434325	0.95	0.344	55252	1.58161
_cons	1.870405	.2635419	7.10	0.000	1.352923	2.387887

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regressi	ion				Number of obs F(16, 660) Prob > F R-squared Root MSE	= 2.05 = 0.0090 = 0.0443
I		Robust				
peak_offpeak		Std. Err.			[95% Conf.	Interval]
					0496413	.0875435
					0413118	
ptr	.0333727	.0378293	0.88	0.378	0409076	.107653
tou	0247541	.037914	-0.65	0.514	0992008	.0496925
bihd	0395952	.0378513	-1.05	0.296	1139187	.0347284
aihd	0475613	.0400382	-1.19	0.235	1261789	.0310562
pct	0700195	.0447614	-1.56	0.118	1579113	.0178724
bill_prot	0791287	.0531154	-1.49	0.137	1834242	.0251668
purch_tech	.0111391	.0845114	0.13	0.895	1548046	.1770828
full_educ	.068624	.0807229	0.85	0.396	0898806	.2271285
SFSH	.0572623	.1132815	0.51	0.613	1651732	.2796979
MFNS	1033746	.0227557	-4.54	0.000	1480568	0586924
MFSH	.016025	.1070179	0.15	0.881	1941116	.2261616
direct	0342141	.0234044	-1.46	0.144	0801702	.011742
	.041819	.0889659				
direct_ind~t		.1028892	-0.80	0.423	2845549	.1195042
_cons	1.052874	.0688415	15.29	0.000	.9176989	1.188048

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regress	Lon				Number of obs	=	680
					F(16, 663)	=	11.33
					Prob > F	=	0.0000
					R-squared	=	0.1777
					Root MSE	=	.49651
1		Robust					
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+-							
cpp	.0722733	.0677459	1.07	0.286	0607491		2052956
dap	0094675	.0724928	-0.13	0.896	1518107		1328757

< B-34 >

ptr	.0476659	.0728935	0.65	0.513	095464	.1907958
tou	.0886249	.0817235	1.08	0.279	0718433	.249093
bihd	0455325	.0701763	-0.65	0.517	1833271	.0922622
aihd	0548451	.0718758	-0.76	0.446	1959767	.0862864
pct	0108397	.0886528	-0.12	0.903	1849137	.1632343
bill_prot	.3288739	.1842972	1.78	0.075	0330026	.6907504
purch_tech	0717027	.1148324	-0.62	0.533	2971816	.1537763
full_educ	.1126689	.1349238	0.84	0.404	1522606	.3775984
SFSH	1.016349	.7168663	1.42	0.157	3912525	2.423951
MFNS	4396754	.0351265	-12.52	0.000	5086479	3707028
MFSH	.2684252	.1980562	1.36	0.176	1204677	.657318
direct	.0295851	.0412871	0.72	0.474	051484	.1106543
indirect	.2234316	.3224433	0.69	0.489	4097015	.8565647
direct_ind~t	1295968	.3370297	-0.38	0.701	7913709	.5321773
_cons	.796051	.1053904	7.55	0.000	.5891118	1.00299

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regress	ion				Number of obs F(16, 663) Prob > F R-squared Root MSE	= 9.73 = 0.0000 = 0.1617
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.1285637	.0582606	2.21	0.028	.0141662	.2429611
dap	.0402196	.0617414	0.65	0.515	0810126	.1614518
ptr	.085212	.0616514	1.38	0.167	0358435	.2062676
tou	.1251861	.0732358	1.71	0.088	0186159	.2689881
bihd	0445985	.0679606	-0.66	0.512	1780426	.0888455
aihd	0628185	.0690573	-0.91	0.363	1984158	.0727788
pct	049324	.0830449	-0.59	0.553	2123868	.1137388
bill_prot	.3388237	.1829384	1.85	0.064	0203847	.6980321
purch_tech	0257865	.1227967	-0.21	0.834	2669038	.2153307
full_educ	.1270231	.1215587	1.04	0.296	1116633	.3657096
SFSH	.9038293	.4869698	1.86	0.064	0523595	1.860018
MFNS	3906693	.0346021	-11.29	0.000	4586122	3227264
MFSH	.2447898	.1843514	1.33	0.185	1171932	.6067728
direct	.0227948	.0399519	0.57	0.568	0556528	.1012424
indirect	.2591233	.3035205	0.85	0.394	336854	.8551006
direct_ind~t	2127251	.3178904	-0.67	0.504	8369183	.411468
_cons	.6668731	.0957317	6.97	0.000	.4788993	.8548469

Linear regress	ion				Number of obs F(16, 663) Prob > F R-squared Root MSE	= 1.33 = 0.1699 = 0.0268
		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0583521	.0245904	2.37	0.018	.0100676	.1066367
dap	.0552347	.0258561	2.14	0.033	.0044651	.1060043
ptr	.0504479	.0249487	2.02	0.044	.0014599	.0994359
tou	.0316118	.0259435	1.22	0.223	0193295	.0825532
bihd	012134	.0270489	-0.45	0.654	0652459	.0409779
aihd	0202957	.0281945	-0.72	0.472	075657	.0350656
pct	0324744	.0319651	-1.02	0.310	0952394	.0302906
bill_prot	.0154208	.0347176	0.44	0.657	0527489	.0835905
purch_tech	.060878	.0610103	1.00	0.319	0589187	.1806748
full_educ	.0538779	.0520978	1.03	0.301	0484186	.1561744
SFSH	.0899603	.1285183	0.70	0.484	1623916	.3423121
MFNS	.030286	.0183893	1.65	0.100	0058222	.0663942
MFSH	.0888324	.1284001	0.69	0.489	1632874	.3409523
direct	.0007089	.0172157	0.04	0.967	0330949	.0345127
indirect	.0393367	.0456728	0.86	0.389	050344	.1290174
direct_ind~t	0791782	.0577605	-1.37	0.171	1925937	.0342373
_cons	.8291352	.0448616	18.48	0.000	.7410474	.9172231

 Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Table A-9 Impacts of Technology on Electricity Usage

Table A-9 contains results for seven models detailed below. These models differ from those in Tables A-2 through A-4 in that they include the technology implementation indicator variables defined above (bihd_imp, aihd_imp, pct_imp). Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regression	Number o	of obs	=	5778
	F(16,	5761)	=	115.60
	Prob > 1	-	=	0.0000

✓ B-36 >

					R-squared Root MSE	= 0.1927 = .67653
		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bihd_imp	.1000672	.0327618	3.05	0.002	.0358419	.1642926
aihd_imp	.0968829	.0507981	1.91	0.057	0027006	.1964663
pct_imp	0537835	.1880496	-0.29	0.775	4224315	.3148644
cpp	.0411228	.0332314	1.24	0.216	0240231	.1062688
dap	.0610318	.0359587	1.70	0.090	0094607	.1315244
ptr	.0606672	.0368697	1.65	0.100	0116112	.1329457
tou	.0654309	.0372559	1.76	0.079	0076047	.1384664
bihd	0378528	.0262145	-1.44	0.149	089243	.0135374
aihd	.0226363	.0280927	0.81	0.420	032436	.0777086
pct	.0001903	.0351006	0.01	0.996	0686201	.0690007
bill_prot	.0250446	.0412825	0.61	0.544	0558846	.1059738
purch_tech	0328589	.0441332	-0.74	0.457	1193766	.0536589
full_educ	0754282	.0569492	-1.32	0.185	1870701	.0362137
SFSH	.0644262	.1650838	0.39	0.696	2592	.3880524
MFNS	67722	.0163665	-41.38	0.000	7093045	6451355
MFSH	6933667	.0382185	-18.14	0.000	7682894	618444
_cons	1.375561	.0471342	29.18	0.000	1.28316	1.467961

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regress	ion				Number of obs F(16, 5761) Prob > F R-squared Root MSE	= 122.40 = 0.0000 = 0.1956
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bihd_imp	.0745048	.0422253	1.76	0.078	0082726	.1572822
aihd_imp	.0772326	.0673985	1.15	0.252	0548937	.2093589
pct_imp	0949248	.2317149	-0.41	0.682	5491732	.3593236
cpp	.0563917	.0410832	1.37	0.170	0241468	.1369303
dap	.0991969	.0451808	2.20	0.028	.0106255	.1877683
ptr	.0823084	.0462002	1.78	0.075	0082614	.1728781
tou	.0602777	.0460166	1.31	0.190	0299321	.1504875
bihd	0184935	.0330493	-0.56	0.576	0832826	.0462956
aihd	.0481432	.0354615	1.36	0.175	0213747	.1176611
pct	009528	.0418519	-0.23	0.820	0915734	.0725175
bill_prot	.0415043	.0518582	0.80	0.424	0601573	.1431659

purch_tech	0392665	.0559773	-0.70	0.483	1490031	.0704701
full_educ	1062983	.0707795	-1.50	0.133	2450528	.0324561
SFSH	.0855981	.2155805	0.40	0.691	3370207	.5082169
MFNS	8670921	.0201114	-43.11	0.000	9065179	8276663
MFSH	8450249	.046743	-18.08	0.000	9366586	7533911
_cons	1.562421	.0589433	26.51	0.000	1.44687	1.677972

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressi	.on				Number of obs F(16, 5761) Prob > F R-squared Root MSE	= 125.00 = 0.0000 = 0.1994
I		Robust				
_		Std. Err.			[95% Conf.	Interval]
					0059381	.2270111
aihd imp	.0446753	.089609	0.50	0.618	1309921	.2203427
pct_imp	075664	.2960116	-0.26	0.798	6559581	.5046301
cpp	.000186	.05773	0.00	0.997	1129864	.1133585
dap	.0997455	.0634778	1.57	0.116	0246948	.2241859
ptr	.0806145	.0644309	1.25	0.211	0456944	.2069234
tou	.0677738	.0651116	1.04	0.298	0598695	.1954171
bihd	0175917	.0457627	-0.38	0.701	1073038	.0721203
aihd	.0789029	.0493852	1.60	0.110	0179106	.1757164
pct	.0059616	.0592005	0.10	0.920	1100937	.1220168
bill_prot	.0774478	.0731854	1.06	0.290	066023	.2209186
purch_tech	0596373	.0764113	-0.78	0.435	2094322	.0901576
full_educ	2216332	.1058445	-2.09	0.036	4291282	0141382
SFSH	0820553	.2654641	-0.31	0.757	6024648	.4383541
MFNS	-1.228191	.0281058	-43.70	0.000	-1.283289	-1.173094
MFSH	-1.201975	.0676156	-17.78	0.000	-1.334527	-1.069424
_cons	2.230349	.09123	24.45	0.000	2.051504	2.409194

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Number of obs	=	5778
F(16, 5761)	=	26.16
Prob > F	=	0.0000
R-squared	=	0.0651
Root MSE	=	.28872

Linear regression

peak_offpeak	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
bihd_imp	0426825	.0134654	-3.17	0.002	0690798	0162853
aihd_imp	0421789	.0177297	-2.38	0.017	0769358	007422
pct_imp	.0024325	.0741745	0.03	0.974	1429773	.1478423
cpp	.0037648	.0139241	0.27	0.787	0235316	.0310613
dap	.0376189	.0155728	2.42	0.016	.0070904	.0681474
ptr	.0067539	.0149912	0.45	0.652	0226345	.0361422
tou	014791	.015367	-0.96	0.336	0449161	.0153342
bihd	.0254537	.0116333	2.19	0.029	.0026482	.0482593
aihd	.0247528	.0120068	2.06	0.039	.001215	.0482905
pct	.0096764	.0150558	0.64	0.520	0198387	.0391915
bill_prot	.0298073	.0178664	1.67	0.095	0052176	.0648322
purch_tech	0084841	.0185439	-0.46	0.647	0448371	.027869
full_educ	0100999	.0260694	-0.39	0.698	0612057	.041006
SFSH	.0309144	.0690536	0.45	0.654	1044565	.1662853
MFNS	1546867	.0079701	-19.41	0.000	1703112	1390623
MFSH	0587449	.0352909	-1.66	0.096	1279284	.0104385
_cons	1.119242	.022338	50.10	0.000	1.075451	1.163033

 Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regress	ion				Number of obs F(16, 5454) Prob > F R-squared Root MSE	= 87.46 = 0.0000 = 0.1760
usage		Robust Std. Err.			[95% Conf.	Interval]
	.0834734		3.23		.0328763	.1340706
	.1157489			0.002	.0417769	
pct imp		.1194287	-0.18	0.857	2557083	.2125475
—		.027352	1.23	0.218	0198933	.0873482
dap	.0212974	.0294407	0.72	0.469	0364181	.0790129
ptr	.0355631	.0288199	1.23	0.217	0209355	.0920617
tou	.0219061	.030317	0.72	0.470	0375274	.0813395
bihd	023553	.0204881	-1.15	0.250	0637179	.0166118
aihd	0026298	.0218524	-0.12	0.904	0454692	.0402096
pct	0337917	.0261007	-1.29	0.195	0849596	.0173761
bill_prot	.0435533	.0365219	1.19	0.233	0280443	.1151509

purch_tech	0263985	.0334345	-0.79	0.430	0919434	.0391464
full_educ	0448772	.0446413	-1.01	0.315	1323919	.0426376
SFSH	1.401196	.4097787	3.42	0.001	.5978667	2.204526
MFNS	4360821	.0126518	-34.47	0.000	4608847	4112794
MFSH	.4957317	.0711734	6.97	0.000	.3562034	.6352599
_cons	.9327224	.0355193	26.26	0.000	.8630903	1.002354

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regressi	.on				Number of obs F(16, 5454) Prob > F R-squared Root MSE	= 79.54 = 0.0000 = 0.1639
1		Robust				
peak	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
bihd_imp	.0646517	.0248794	2.60	0.009	.0158782	.1134252
aihd_imp	.1045673	.0375827	2.78	0.005	.0308902	.1782444
pct_imp	0396489	.1056258	-0.38	0.707	2467176	.1674197
cpp	.0509237	.0263511	1.93	0.053	0007348	.1025823
dap	.0337036	.0282972	1.19	0.234	0217703	.0891775
ptr	.0508869	.0276892	1.84	0.066	0033949	.1051687
tou	.0149016	.0290985	0.51	0.609	042143	.0719462
bihd	0163318	.0201486	-0.81	0.418	055831	.0231674
aihd	.0008124	.0216976	0.04	0.970	0417235	.0433484
pct	0409362	.0249997	-1.64	0.102	0899457	.0080733
bill_prot	.0412097	.0363231	1.13	0.257	0299981	.1124175
purch_tech	0255257	.0330879	-0.77	0.440	0903913	.0393399
full_educ	0299382	.0432369	-0.69	0.489	1146998	.0548234
SFSH	1.380982	.4018005	3.44	0.001	.5932923	2.168671
MFNS	4102378	.0123463	-33.23	0.000	4344416	3860341
MFSH	.437008	.0727859	6.00	0.000	.2943186	.5796973
_cons	.8436356	.03448	24.47	0.000	.7760409	.9112302

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regression

Number	of obs	=	5471
F(16,	5454)	=	2.70
Prob >	F	=	0.0003
R-squa	red	=	0.0074

Root MSE = .20414

 peak_offpeak	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
bihd_imp	0197577	.0095771	-2.06	0.039	0385326	0009828
aihd_imp	008554	.0138082	-0.62	0.536	0356237	.0185156
pct_imp	0007186	.0463796	-0.02	0.988	0916412	.090204
cpp	.0159078	.0113469	1.40	0.161	0063367	.0381522
dap	.0170787	.0119561	1.43	0.153	00636	.0405174
ptr	.0223546	.0118583	1.89	0.059	0008923	.0456016
tou	0177638	.0122786	-1.45	0.148	0418348	.0063071
bihd	.0121977	.0085864	1.42	0.155	004635	.0290304
aihd	.0116903	.0089462	1.31	0.191	0058478	.0292284
pct	.0014125	.0110734	0.13	0.899	0202959	.0231208
bill_prot	.004872	.0125976	0.39	0.699	0198243	.0295682
purch_tech	0099718	.0131994	-0.76	0.450	0358479	.0159043
full_educ	.022262	.0184701	1.21	0.228	0139467	.0584708
SFSH	.0516151	.0420326	1.23	0.220	0307855	.1340157
MFNS	0014225	.0067409	-0.21	0.833	0146373	.0117923
MFSH	0145431	.0247551	-0.59	0.557	0630729	.0339866
_cons	.9042372	.0150916	59.92	0.000	.8746517	.9338228

Table A-10 Electricity Usage of Cells Relative to Cell F3

Table A-10 contains the results of seven models detailed below. Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regress	sion				Number of obs	=	5778
					F(24, 5753)	=	77.60
					Prob > F	=	0.0000
					R-squared	=	0.1925
					Root MSE	=	.67709
	l	Robust					
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
	+						
d1	0235661	.0557924	-0.42	0.673	1329402		.085808
dlb	.0353167	.0678275	0.52	0.603	0976506		1682841
d2	0567749	.0562499	-1.01	0.313	1670459		.053496
d3	.0071579	.0570054	0.13	0.900	1045942		.11891

d4	0323614	.0580219	-0.56	0.577	1461061	.0813832
d5	0210803	.0682537	-0.31	0.757	1548833	.1127227
d6	0593332	.0572944	-1.04	0.300	1716517	.0529853
d7	.0740908	.0763093	0.97	0.332	075504	.2236857
d8	.030378	.0632996	0.48	0.631	0937131	.1544691
f5	0747114	.0715529	-1.04	0.296	2149819	.0655592
f6	0912611	.0618648	-1.48	0.140	2125393	.0300172
f7	0322931	.0726032	-0.44	0.656	1746228	.1100365
11	0424757	.0656362	-0.65	0.518	1711473	.0861959
llb	0306671	.0687086	-0.45	0.655	1653618	.1040275
12	.0093276	.0567508	0.16	0.869	1019253	.1205806
13	.0264312	.0664217	0.40	0.691	1037803	.1566426
14 I	.0020626	.0597872	0.03	0.972	1151429	.1192681
15	.0240391	.0590158	0.41	0.684	0916541	.1397324
15b	0989448	.0658701	-1.50	0.133	228075	.0301854
16	0703873	.067845	-1.04	0.300	2033891	.0626144
16b	.0020272	.0707784	0.03	0.977	1367251	.1407796
SFSH	.0574966	.1655317	0.35	0.728	2670078	.3820009
MFNS	6817973	.0162935	-41.84	0.000	7137387	6498558
MFSH	693151	.0382083	-18.14	0.000	7680536	6182484
_cons	1.376961	.047161	29.20	0.000	1.284508	1.469414

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regressi	.on				Number of obs F(24, 5753) Prob > F R-squared Root MSE	= 82.03 = 0.0000
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
d1	0446523	.0699643	-0.64	0.523	1818087	.0925042
dlb	.0429803	.0864367	0.50	0.619	1264681	.2124288
d2	059839	.0708276	-0.84	0.398	1986878	.0790098
d3	.0133764	.0717982	0.19	0.852	1273751	.1541279
d4	0604688	.070141	-0.86	0.389	1979716	.077034
d5	04231	.0843274	-0.50	0.616	2076235	.1230034
d6	0563786	.0724076	-0.78	0.436	1983248	.0855675
d7	.1025978	.1009615	1.02	0.310	0953248	.3005204
d8	.0040654	.0787831	0.05	0.959	1503791	.15851
f5	1007172	.0876376	-1.15	0.251	2725199	.0710856
f6	1177322	.0772939	-1.52	0.128	2692574	.033793
f7	0352299	.0891525	-0.40	0.693	2100024	.1395426
11	037203	.0818756	-0.45	0.650	19771	.123304

11b	0133761	.0844352	-0.16	0.874	1789009	.1521488
12	.0337845	.0725835	0.47	0.642	1085066	.1760755
13	.0507745	.0851313	0.60	0.551	1161148	.2176639
14	0125916	.0768681	-0.16	0.870	163282	.1380987
15	0055851	.0733669	-0.08	0.939	1494118	.1382416
15b	1222212	.0823979	-1.48	0.138	2837522	.0393097
16	095426	.0845079	-1.13	0.259	2610932	.0702412
16b	0156815	.0907839	-0.17	0.863	193652	.1622891
SFSH	.0793161	.2171621	0.37	0.715	3464034	.5050356
MFNS	8706515	.0200616	-43.40	0.000	9099798	8313232
MFSH	8448344	.0469242	-18.00	0.000	9368235	7528453
_cons	1.563509	.0589754	26.51	0.000	1.447895	1.679123

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regress	ion				Number of obs F(24, 5753) Prob > F R-squared Root MSE	= 83.47 = 0.0000 = 0.2000
I		Robust				
event_peak +	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
d1	1962301	.1049474	-1.87	0.062	4019665	.0095063
d1b	0915712	.1279312	-0.72	0.474	3423645	.1592221
d2	2461135	.105422	-2.33	0.020	4527804	0394467
d3	1254111	.1082759	-1.16	0.247	3376726	.0868504
d4	2224064	.1052102	-2.11	0.035	4286581	0161548
d5	1661746	.1226404	-1.35	0.175	406596	.0742468
d6	1661376	.1078337	-1.54	0.123	3775322	.045257
d7	.0289863	.1429066	0.20	0.839	2511645	.3091371
d8	0997627	.1192474	-0.84	0.403	3335324	.1340071
f5	2701843	.1252114	-2.16	0.031	5156459	0247228
f6	1951262	.1170832	-1.67	0.096	4246533	.0344009
f7	1041109	.131244	-0.79	0.428	3613985	.1531767
11	1452318	.119816	-1.21	0.226	3801163	.0896526
11b	0931279	.1250321	-0.74	0.456	3382379	.1519821
12	0796203	.1080523	-0.74	0.461	2914435	.1322028
13	0165419	.1272909	-0.13	0.897	26608	.2329961
14	1124681	.1157897	-0.97	0.331	3394595	.1145232
15	0818353	.1104286	-0.74	0.459	298317	.1346464
15b	2270923	.1231916	-1.84	0.065	4685943	.0144096
16	2254398	.123368	-1.83		4672875	
16b	1350894	.1258541	-1.07	0.283	3818107	.1116319

< B-43 ≻

SFSH	0858568	.2684827	-0.32	0.749	612184	.4404703
MFNS	-1.232571	.0280291	-43.97	0.000	-1.287519	-1.177624
MFSH	-1.200612	.0679364	-17.67	0.000	-1.333793	-1.067431
_cons	2.231657	.0912756	24.45	0.000	2.052722	2.410591

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regressi	.on				Number of obs F(24, 5753) Prob > F R-squared Root MSE	= 16.97 = 0.0000
1		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
d1	0142498	.0256993	-0.55	0.579	0646301	.0361306
dlb	.0180118	.0306166	0.59	0.556	0420082	.0780319
d2	.0099118	.0266862	0.37	0.710	0424031	.0622267
d3	.0112119	.0263333	0.43	0.670	0404112	.0628351
d4	.0014913	.0264551	0.06	0.955	0503707	.0533532
d5	0085117	.0292595	-0.29	0.771	0658713	.0488479
d6	.015164	.0263682	0.58	0.565	0365276	.0668556
d7	.0217242	.0310317	0.70	0.484	0391096	.082558
d8	0122294	.0289322	-0.42	0.673	0689474	.0444887
f5	.0104642	.0311491	0.34	0.737	0505997	.0715282
f6	0130105	.0284155	-0.46	0.647	0687156	.0426946
f7	.0100647	.0312444	0.32	0.747	051186	.0713154
l1	.0201179	.0325634	0.62	0.537	0437186	.0839545
llb	.0622609	.0309679	2.01	0.044	.0015521	.1229697
12	.0406689	.0267146	1.52	0.128	0117019	.0930396
13	.0451523	.0311339	1.45	0.147	0158819	.1061865
14	0152824	.0303496	-0.50	0.615	074779	.0442142
15	0177653	.0260098	-0.68	0.495	0687544	.0332237
15b	0079922	.0302553	-0.26	0.792	0673041	.0513197
16	0074864	.0303648	-0.25	0.805	0670128	.05204
16b	0103983	.0315635	-0.33	0.742	0722745	.051478
SFSH	.0310729	.0691484	0.45	0.653	104484	.1666299
MFNS	1527529	.0079664	-19.17	0.000	1683701	1371358
MFSH	0585445	.0355091	-1.65	0.099	1281557	.0110666
_cons	1.118642	.0223589	50.03	0.000	1.07481	1.162474

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

< B-44 >

Linear regress	ion				Number of obs F(24, 5446) Prob > F R-squared Root MSE	= 58.36 = 0.0000
		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
d1	0069371	.0431134	-0.16	0.872	0914566	.0775825
d1b	.0629582	.0581884	1.08	0.279	0511143	.1770308
d2	0426625	.0428988	-0.99	0.320	1267614	.0414363
d3	.0254058	.0439032	0.58	0.563	0606621	.1114737
d4	0236758	.044167	-0.54	0.592	1102607	.0629091
d5	0125382	.0487774	-0.26	0.797	1081614	.083085
d6	0040734	.0426127	-0.10	0.924	0876114	.0794646
d7	0009538	.0540549	-0.02	0.986	106923	.1050154
d8	0304966	.0455816	-0.67	0.503	1198549	.0588616
f5	0270874	.0600119	-0.45	0.652	1447348	.0905601
f6	0393159	.0505017	-0.78	0.436	1383194	.0596876
f7	0547306	.0536419	-1.02	0.308	1598901	.0504288
11	0192199	.0516137	-0.37	0.710	1204035	.0819637
11b	0067823	.0572351	-0.12	0.906	118986	.1054214
12	0141848	.0430263	-0.33	0.742	0985335	.0701639
13	.0042509	.0509563	0.08	0.934	0956437	.1041455
14	0450907	.0458147	-0.98	0.325	1349058	.0447244
15	.0094901	.0458299	0.21	0.836	0803548	.099335
15b	071165	.0516793	-1.38	0.169	1724771	.0301471
16	0459642	.0504154	-0.91	0.362	1447986	.0528702
16b	048925	.0505779	-0.97	0.333	1480778	.0502278
SFSH	1.399526	.4083363	3.43	0.001	.5990231	2.200028
MFNS	4398834	.012627	-34.84	0.000	4646372	4151295
MFSH	.4953761	.0709534	6.98	0.000	.3562792	.6344731
_cons	.9336954	.0355397	26.27	0.000	.8640234	1.003367

Linear regression model using robust standard errors where the dependent • variable is peak and the data are limited to the Non-Summer time period.

Linear	regression		Number of obs	=	5471
			F(24, 5446)	=	53.69
			Prob > F	=	0.0000
			R-squared	=	0.1624
			Root MSE	=	.50284
	1	Robust			

< B-45 ≻

peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+- d1	015336	042366	036	0 717	0677184	0983904
	.099634		1.69	0.090	0156058	
d1D d2			0.00	0.998	0822212	
d2	.0556047		1.28	0.199	0292517	
			-0.01	0.996	0833417	
d5	.0244977		0.51	0.607	0687682	.1177637
d6	.0247016		0.60	0.552	0566381	
d7	.0330312	.0531065	0.62	0.534	0710789	.1371412
d8	0113671	.0432539	-0.26	0.793	0961621	.0734279
f5	0055938	.0582005	-0.10	0.923	11969	.1085025
f6	0281895	.0484022	-0.58	0.560	1230771	.0666981
f7	037171	.0508308	-0.73	0.465	1368197	.0624777
11	.0121078	.0499559	0.24	0.809	0858257	.1100413
llb	.0119573	.0550133	0.22	0.828	0958908	.1198054
12	.0204734	.0420191	0.49	0.626	0619008	.1028476
13	.0200513	.0492	0.41	0.684	0764003	.1165029
14 I	0322114	.0463508	-0.69	0.487	1230776	.0586548
15	.0097268	.0436583	0.22	0.824	0758609	.0953145
15b	0601728	.0498185	-1.21	0.227	1578369	.0374914
16	022767	.0506312	-0.45	0.653	1220243	.0764904
16b	0322395	.0513453	-0.63	0.530	1328968	.0684177
SFSH	1.381667	.4001911	3.45	0.001	.5971321	2.166201
MFNS	41329	.0123436	-33.48	0.000	4374884	3890916
MFSH	.4370783	.0726694	6.01	0.000	.2946173	.5795393
_cons	.8444059	.0345004	24.48	0.000	.7767713	.9120404

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regress:	near regression						5471 1.92
					F(24, 5446)	_	
					Prob > F	=	0.0046
					R-squared	=	0.0079
					Root MSE	=	.20425
		Robust					
peak_offpeak		Std. Err.	t	P> t	[95% Conf.	In	terval]
+-							
d1	.0264767	.0181781	1.46	0.145	0091597		.062113
d1b	.0422626	.0221259	1.91	0.056	0011131		0856383
d2	.0568183	.0191132	2.97	0.003	.0193488		0942877
d3	.0457272	.0180115	2.54	0.011	.0104174		.081037
d4	.0397216	.0183571	2.16	0.031	.0037343		0757088
d5	.0596847	.0205354	2.91	0.004	.019427		0999423

d6	I	.0428746	.0179277	2.39	0.017	.0077293	.07802
d7	I	.0613228	.0212656	2.88	0.004	.0196338	.1030119
d8		.0410839	.0202825	2.03	0.043	.0013221	.0808458
f5	I	.0332549	.0217182	1.53	0.126	0093214	.0758313
f6	I	.0220433	.0210975	1.04	0.296	0193162	.0634029
f7	I	.0306537	.0256238	1.20	0.232	0195792	.0808867
11	I	.041344	.0214291	1.93	0.054	0006656	.0833537
l1b	I	.0447916	.0201586	2.22	0.026	.0052727	.0843106
12	I	.0471746	.0177117	2.66	0.008	.0124526	.0818966
13	I	.0411407	.0219277	1.88	0.061	0018463	.0841277
14		.0033503	.0211581	0.16	0.874	0381281	.0448287
15		.0053939	.0177903	0.30	0.762	0294821	.0402699
15b	I	.0069775	.0209212	0.33	0.739	0340363	.0479914
16	I	.0255956	.0227472	1.13	0.261	0189979	.0701891
l6b	I	.0052535	.0216055	0.24	0.808	037102	.047609
SFSH	I	.0536659	.0421219	1.27	0.203	0289098	.1362416
MFNS	I	0006068	.0067633	-0.09	0.929	0138657	.012652
MFSH	I	0138193	.0247293	-0.56	0.576	0622987	.0346601
_cons		.9040085	.015105	59.85	0.000	.8743967	.9336203
	·						

Table A-11 Impacts of Technology on Customer Satisfaction

Table A-11 contains results from a linear regression model using robust standard errors where the dependent variable is satisfaction. There is one observation per customer; and customers are excluded if they did not answer questions 22 and 23 on the CAP final survey, if they are in any of the eWeb technology treatment cells, or if they did not implement their in-home device. The control group consists of customers with the FLR rate treatment who implemented BIHDs and reside in single-family homes with non-space heating.

Linear regress:	ion				Number of obs F(11, 485) Prob > F R-squared Root MSE	
 satisfaction	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp dap ptr tou ibr	.0362707 .0374555	.4362013 .4245307 .4418715 .4441475 .4697526	-0.41 0.09 0.08 -0.22 0.01	0.683 0.932 0.932 0.825 0.995	-1.035223 7978758 8307633 9707319 9201351	.6789325 .8704172 .9056744 .7746497 .9258678
aihd pct	0976615	.2791738	-0.35 -0.25	0.727	646201 9295228	.450878

< B-47 >

bill_prot	(omitted)					
purch_tech	1.662707	.5710576	2.91	0.004	.5406547	2.784759
full_educ	(omitted)					
SFSH	1943091	.3659988	-0.53	0.596	9134481	.52483
MFNS	.2093658	.2767308	0.76	0.450	3343735	.7531052
MFSH	-2.59953	.72739	-3.57	0.000	-4.028755	-1.170305
_cons	6.06781	.3520157	17.24	0.000	5.376145	6.759474

Table A-13 Usage Comparisons by Method of Obtaining Technology

Table A-13 contains the results of seven models detailed below. Each model contains one observation per customer; and customers are included in the sample if they are in treatment cell L5a, L5b, L6a, or L6b and were not screened due to data problems discussed above. The control group consists of customers in treatment cell L5a.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	on				Number of obs F(5, 988) Prob > F R-squared Root MSE	= 44.82 = 0.0000
usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
aihd purch_tech SFSH MFNS MFSH _cons	0151349 0396389 1970149 6016144 650667 1.349911	.0467296 .0461678 .278176 .0415246 .0886095 .041098	-0.32 -0.86 -0.71 -14.49 -7.34 32.85	0.746 0.391 0.479 0.000 0.000 0.000	1068355 1302372 7428987 6831009 8245513 1.269262	.0765657 .0509593 .3488688 5201279 4767826 1.43056

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regressi	on				Number of obs	=	994
					F(5, 988)	=	48.67
					Prob > F	=	0.0000
					R-squared	=	0.1444
					Root MSE	=	.89517
		Robust					
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]

≺ B-48 ≻

+-						
aihd	0100781	.0586818	-0.17	0.864	1252334	.1050771
purch_tech	0318605	.0579914	-0.55	0.583	145661	.08194
SFSH	0847893	.4250646	-0.20	0.842	9189224	.7493439
MFNS	7657046	.0510266	-15.01	0.000	8658377	6655716
MFSH	8281099	.0939817	-8.81	0.000	-1.012537	6436831
_cons	1.498176	.0507671	29.51	0.000	1.398552	1.5978

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressi	on				Number of obs F(5, 988) Prob > F R-squared Root MSE	
 event_peak +-	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
aihd purch_tech SFSH MFNS MFSH _cons	0468312 0442116 3041675 -1.121033 -1.230004 2.08364	.0804353 .080332 .717315 .070334 .1289657 .0729903	-0.58 -0.55 -0.42 -15.94 -9.54 28.55	0.561 0.582 0.672 0.000 0.000 0.000	2046749 2018525 -1.711804 -1.259054 -1.483082 1.940406	.1110126 .1134293 1.103469 9830121 9769257 2.226874

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regres	Number of obs	=	994				
					F(5, 988)	=	8.76
					Prob > F	=	0.0000
					R-squared	=	0.0428
					Root MSE	=	.28651
		Robust					
peak_offpeak					[95% Conf.	In	terval]
peak_offpeak		Std. Err.				In	terval]
	+						terval] 0436584
	+ .0058655						
aihd	+ .0058655	.0192588	0.30	0.761	0319273		0436584
aihd purch_tech	+ .0058655 .0057166	.0192588 .0191911	0.30 0.30	0.761 0.766 0.226	0319273 0319434		 0436584 0433766

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regressi	ion				Number of obs F(5, 940) Prob > F R-squared Root MSE	
 usage +-	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
aihd purch_tech SFSH MFNS MFSH _cons	0260395 0470901 1.824674 4142263 .6697406 .9227198	.0349312 .0351729 .2762041 .0322111 .1569877 .0307797	-0.75 -1.34 6.61 -12.86 4.27 29.98	0.456 0.181 0.000 0.000 0.000 0.000	0945917 1161167 1.282626 4774404 .3616537 .8623149	.0425128 .0219365 2.366722 3510123 .9778275 .9831247

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regressi	on				Number of obs F(5, 940) Prob > F R-squared	
					Root MSE	= .52203
		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
aihd	0091079	.0348789	-0.26	0.794	0775575	.0593417
purch_tech	0438395	.0346194	-1.27	0.206	1117798	.0241008
SFSH	1.746523	.3673565	4.75	0.000	1.025589	2.467457
MFNS	3839528	.0312831	-12.27	0.000	4453456	3225601
MFSH	.5357058	.14653	3.66	0.000	.2481419	.8232696
_cons	.8357795	.0287632	29.06	0.000	.779332	.892227

 Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regress	sion				Number of obs	= 946
					F(5, 940)	= 0.49
					Prob > F	= 0.7846
					R-squared	= 0.0022
					Root MSE	= .20229
I		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
aihd	.0118941	.0145487	0.82	0.414	0166576	.0404457
purch_tech	0076105	.0139546	-0.55	0.586	0349962	.0197752
SFSH	.0393805	.0542662	0.73	0.468	0671165	.1458775
MFNS	0015096	.0164412	-0.09	0.927	0337754	.0307561
MFSH	0592436	.0517111	-1.15	0.252	1607262	.0422389
_cons	.9129156	.009291	98.26	0.000	.8946821	.931149

Table A-14 Impact of Bill Protection on Opt-Out Rates

Table A-14 contains the results of a logistic regression using robust standard errors where the dependent variable is optout. There is one observation per customer; and customers are included in the sample if they are in treatment cells D1a, D1b, L1a, or L1b and did not final before or during the pilot program. Because there are no customers who opted out of the pilot program with either SFSH or MFSH housing, coefficients could not be estimated for these variables and customers with SFSH or MFSH housing were not included in the regression. The control group consists of customers in treatment cell D1a residing in single-family homes with non-space heating.

Logistic regression				Wald	er of obs chi2(3) > chi2	=	1119 5.80 0.1216
Log pseudolikelihood = -141.67836				Pseud	do R2	=	0.0248
		Robust					
1 .	Coef.				-		-
	8889138			0.054			
bill_prot	.1883832	.3734056	0.50	0.614	5434	784	.9202448
SFSH	(omitted)						
MFNS	625779	.412085	-1.52	0.129	-1.433	8451	.1818928
MFSH	(omitted)						
_cons	-3.157204	.2559411	-12.34	0.000	-3.65	884	-2.655569

< B-51 >

Table A-15 Usage Comparisons by Notification of Bill Protection

Table A-15 contains the results of seven models detailed below. Each model contains one observation per customer; and customers are included in the sample if they are in treatment cells D1a, D1b, L1a, or L1b and were not screened due to data problems discussed above. The control group consists of customers in treatment cell L1a residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	on				Number of obs F(5, 969) Prob > F R-squared Root MSE	
 usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp bill_prot SFSH MFNS MFSH _cons	.0362137 .0403229 .5282667 6988686 6560936 1.325295	.0438821 .0443762 .2406385 .0383554 .0762775 .0472948	0.83 0.91 2.20 -18.22 -8.60 28.02	0.409 0.364 0.028 0.000 0.000 0.000	0499012 0467616 .0560341 7741377 8057818 1.232483	.1223286 .1274073 1.000499 6235994 5064054 1.418107

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regres	sion				Number of obs	= 975
					F(5, 969)	= 74.95
					Prob > F	= 0.0000
					R-squared	= 0.2279
					Root MSE	= .81367
	I	Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
cpp	.0161928	.0548091	0.30	0.768	0913654	.1237511
bill_prot	.0621061	.0559062	1.11	0.267	0476051	.1718173
SFSH	.6492782	.5079633	1.28	0.201	3475567	1.646113
MFNS	8994892	.0470749	-19.11	0.000	9918696	8071087
MFSH	7891304	.0995818	-7.92	0.000	9845513	5937095
_cons	1.515984	.0590176	25.69	0.000	1.400166	1.631801

< B-52 ➤

•	Linear regression model using robust standard errors where the dependent variable is event_peak.
---	--

Linear regress	ion				Number of obs	= 975
					F(5, 969)	= 71.30
					Prob > F	= 0.0000
					R-squared	= 0.2192
					Root MSE	= 1.1401
I		Robust				
event_peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
cpp	0305884	.0766627	-0.40	0.690	1810325	.1198557
bill_prot	.0845996	.0787086	1.07	0.283	0698594	.2390586
SFSH	.4402352	.5725555	0.77	0.442	6833563	1.563827
MFNS	-1.234347	.0661066	-18.67	0.000	-1.364075	-1.104618
MFSH	-1.094191	.1469172	-7.45	0.000	-1.382504	805879
_cons	2.066885	.0815548	25.34	0.000	1.906841	2.22693

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regressi	on				Number of obs	= 975
					F(5, 969)	= 18.55
					Prob > F	= 0.0000
					R-squared	= 0.0752
					Root MSE	= .28593
1		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
cpp	0380074	.0198615	-1.91	0.056	0769838	.000969
bill_prot	.0366633	.0196299	1.87	0.062	0018587	.0751853
SFSH	.0311622	.1819783	0.17	0.864	3259548	.3882792
MFNS	1586222	.0179039	-8.86	0.000	193757	1234874
MFSH	.0005692	.0976498	0.01	0.995	1910603	.1921988
_cons	1.141515	.0199228	57.30	0.000	1.102419	1.180612

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regressi	on				Number of obs F(5, 911) Prob > F R-squared Root MSE	
usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp bill_prot SFSH MFNS MFSH _cons	.0324057 .0439446 1.570928 5042466 .567721 .9197201	.0372427 .0388616 .7318678 .0305727 .1699335 .0364256	0.87 1.13 2.15 -16.49 3.34 25.25	0.384 0.258 0.032 0.000 0.001 0.001	0406858 032324 .1345853 5642478 .2342145 .8482323	.1054972 .1202133 3.007271 4442455 .9012276 .9912079

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

on				Number of obs	= 917
				F(5, 911)	= 63.45
				Prob > F	= 0.0000
				R-squared	= 0.2291
				Root MSE	= .53295
	Robust				
Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
.0332957	.0365108	0.91	0.362	0383594	.1049508
.0465763	.0386832	1.20	0.229	0293422	.1224947
1.639486	.7946112	2.06	0.039	.080005	3.198967
4982281	.0293812	-16.96	0.000	5558908	4405654
.5496111	.1841485	2.98	0.003	.1882065	.9110157
.860196	.0347033	24.79	0.000	.7920882	.9283038
	Coef. .0332957 .0465763 1.639486 4982281 .5496111	Robust Coef. Std. Err. .0332957 .0365108 .0465763 .0386832 1.639486 .7946112 4982281 .0293812 .5496111 .1841485	Robust Coef. Std. Err. t .0332957 .0365108 0.91 .0465763 .0386832 1.20 1.639486 .7946112 2.06 4982281 .0293812 -16.96 .5496111 .1841485 2.98	Robust Coef. Std. Err. t P> t .0332957 .0365108 0.91 0.362 .0465763 .0386832 1.20 0.229 1.639486 .7946112 2.06 0.039 4982281 .0293812 -16.96 0.000 .5496111 .1841485 2.98 0.003	F(5, 911) Prob > F R-squared Root MSE Robust Coef. Std. Err. t P> t [95% Conf. .0332957 .0365108 0.91 0.3620383594 .0465763 .0386832 1.20 0.2290293422 1.639486 .7946112 2.06 0.039 .080005 4982281 .0293812 -16.96 0.0005558908 .5496111 .1841485 2.98 0.003 .1882065

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Numk	ber	of	obs	=	917
F (5,	9	911)	=	1.34

Linear regression

					Prob > F R-squared Root MSE	= 0.2444 = 0.0075 = .19861
L		Robust				
peak_offpeak	Coef.	Std. Err.	t t	P> t	[95% Conf.	Interval]
cpp	0110638	.0137929	-0.80	0.423	0381333	.0160057
bill_prot	.0095236	.01403	0.68	0.497	0180113	.0370585
SFSH	.0419598	.1047551	0.40	0.689	1636295	.2475491
MFNS	0308243	.0152632	-2.02	0.044	0607793	0008692
MFSH	.0130922	.0429913	0.30	0.761	0712813	.0974658
_cons	.9524942	.0133731	71.22	0.000	.9262487	.9787398

Table A-16 Impact of Bill Protection on Customer Satisfaction

Table A-16 contains results from a linear regression model using robust standard errors where the dependent variable is satisfaction. There is one observation per customer; and customers are included if they are in treatment cells D1a, D1b, L1a, or L1b and if they answered questions 22 and 23 on the CAP final survey. The control group consists of customers in treatment cell L1a residing in single-family homes with non-space heating.

Linear regress:	ion				Number of obs F(4, 299) Prob > F R-squared Root MSE	= . = . = 0.0132
satisfaction	Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
dap bill_prot SFSH MFNS MFSH _cons	.2773093	.2905516 .2245586 .2802543 .8163672	1.30 0.95 -7.60 0.75 0.14 25.41	0.194 0.341 0.000 0.451 0.891 0.000	1787921 2944758 -2.149042 3400092 -1.494332 5.265211	

Table A-17 Impact of Customer Education on Usage

Table A-17contains results for seven models detailed below. Each model contains one observation per customer; and customers are included in the sample if they are in treatment cells F1 or F2 and were not screened due to data

< B-55 ≻

problems discussed above. Customers in treatment cell F1 residing in single-family homes with non-space heating serve as the control group.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	on				Number of obs F(4, 482) Prob > F	
					R-squared	= 0.0447
					Root MSE	= 1.8218
		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f2	.0033746	.1681295	0.02	0.984	3269826	.3337319
SFSH	.4894513	.2771583	1.77	0.078	0551364	1.034039
MFNS	3887967	.2539147	-1.53	0.126	8877132	.1101198
MFSH	5461724	.1968789	-2.77	0.006	9330193	1593254
_cons	2.234744	.1515827	14.74	0.000	1.936899	2.532588

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regressi	on				Number of obs	= 487
					F(4, 482)	= 6.52
					Prob > F	= 0.0000
					R-squared	= 0.0534
					Root MSE	= 2.2866
		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
f2	.0049887	.2096145	0.02	0.981	4068823	.4168598
SFSH	.412453	.3500938	1.18	0.239	2754457	1.100352
MFNS	662834	.3181178	-2.08	0.038	-1.287903	037765
MFSH	9469324	.2478992	-3.82	0.000	-1.434029	4598358
_cons	2.751429	.1934964	14.22	0.000	2.371229	3.13163

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regression	Num	ber	of	obs	=	487
	F (4,	2	182)	=	7.41
	Pro	b >	F		=	0.0000

					R-squared	= 0.0546
					Root MSE	= 2.8436
		Robust				
event_peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
f2	.0444072	.2622786	0.17	0.866	4709434	.5597577
SFSH	.1489784	.4108184	0.36	0.717	6582379	.9561947
MFNS	9600152	.4162317	-2.31	0.022	-1.777868	1421624
MFSH	-1.415206	.312515	-4.53	0.000	-2.029266	801146
_cons	3.628542	.2461556	14.74	0.000	3.144872	4.112213

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regressi	on		Number of obs	= 487		
					F(4, 482)	= 6.34
					Prob > F	= 0.0001
					R-squared	= 0.0463
					Root MSE	= .36185
		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f2	.0251615	.0359833	0.70	0.485	045542	.095865
SFSH	0982014	.0447033	-2.20	0.029	1860388	010364
MFNS	1651221	.0510938	-3.23	0.001	2655161	0647281
MFSH	1963041	.0426068	-4.61	0.000	2800221	112586
_cons	1.310522	.0342361	38.28	0.000	1.243251	1.377792

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regressio	on				Number of obs	=	459
					F(4, 454)	=	42.87
					Prob > F	=	0.0000
					R-squared	=	0.2861
					Root MSE	=	2.7503
		Robust					
usage +	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
f2	.3541414	.291009	1.22	0.224	2177502		9260331
SFSH	4.305792	.4719861	9.12	0.000	3.378244	5	.233341

< B-57 >

MFNS	5339999	.1968817	-2.71	0.007	9209123	1470875
MFSH	1.842181	.3072327	6.00	0.000	1.238407	2.445956
_cons	1.44123	.1624193	8.87	0.000	1.122043	1.760417

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regressi	on				Number of obs F(4,454) Prob > F R-squared Root MSE	
 peak	Coef.	Robust Std. Err.		P> t		
f2 SFSH MFNS MFSH _cons	.3122167 3.746791 5035016 1.662403 1.371474	.2588613 .4115381 .1814471 .2816356 .1475539	1.21 9.10 -2.77 5.90 9.29	0.228 0.000 0.006 0.000 0.000	1964982 2.938035 860082 1.108932 1.081501	.8209316 4.555547 1469211 2.215874 1.661448

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regressi	inear regression					= 459
					F(4, 454)	= 4.50
					Prob > F	= 0.0014
					R-squared	= 0.0121
					Root MSE	= .31488
1		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
f2	.0258206	.0373526	0.69	0.490	0475849	.0992261
SFSH	0846378	.0234881	-3.60	0.000	1307967	0384789
MFNS	.0090296	.0314678	0.29	0.774	0528111	.0708702
MFSH	0126505	.0435474	-0.29	0.772	0982299	.0729289
_cons	.9535851	.0236827	40.27	0.000	.9070438	1.000126

Table A-18 Impact of Technology and Customer Education Usage

Table A-18 contains results for seven models detailed below. Each model contains one observation per customer; and customers are included in the sample if they are in treatment cell F3 or if they do not pay a flat or IBR rate for electricity and have an AMI-enabled, enabling technology (cells D2, D3, D4, D6, D7, D8, L2, L3, L5a, and L6a) and they were not screened due to data problems discussed above. The control group consists of all non-F3 customers included in the sample residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	.on				Number of obs F(4, 3812) Prob > F R-squared	
					Root MSE	= .68644
 usage 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
f3	.0141122	.0478452	0.29	0.768	0796923	.1079168
SFSH	014146	.1913524	-0.07	0.941	389309	.3610171
MFNS	6863425	.0202491	-33.89	0.000	7260426	6466424
MFSH	6946763	.0526163	-13.20	0.000	797835	5915175
_cons	1.364288	.0159532	85.52	0.000	1.33301	1.395566

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regressi	on				Number of obs	= 3817
					F(4, 3812)	= 316.77
					Prob > F	= 0.0000
					R-squared	= 0.1870
					Root MSE	= .86918
		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f3	.0194563	.0598296	0.33	0.745	0978447	.1367573
SFSH	0314892	.2395979	-0.13	0.895	5012416	.4382632
MFNS	8786278	.025022	-35.11	0.000	9276855	82957
MFSH	8565815	.0613438	-13.96	0.000	9768513	7363117
_cons	1.546832	.0204892	75.49	0.000	1.506661	1.587003

< B-59 >

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressi	ion				Number of obs F(4, 3812) Prob > F R-squared Root MSE	
 event_peak 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
f3 SFSH MFNS MFSH _cons	.1409004 1920607 -1.246523 -1.198087 2.094973	.0919728 .3123397 .0348103 .0858871 .0285584	1.53 -0.61 -35.81 -13.95 73.36	0.126 0.539 0.000 0.000 0.000	0394202 8044298 -1.314771 -1.366476 2.038982	.3212209 .4203084 -1.178274 -1.029698 2.150964

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regress	ion				Number of obs	= 3817
					F(4, 3812)	= 62.96
					Prob > F	= 0.0000
					R-squared	= 0.0605
					Root MSE	= .29184
1		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f3	0083614	.0226783	-0.37	0.712	0528242	.0361013
SFSH	.0057683	.0730173	0.08	0.937	1373885	.148925
MFNS	1585724	.0100109	-15.84	0.000	1781996	1389452
MFSH	0683228	.041221	-1.66	0.098	1491401	.0124945
_cons	1.129065	.0059809	188.78	0.000	1.117339	1.140791

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regression	Number of obs =	3645
	F(4, 3640) =	205.78
	Prob > F =	0.0000
	R-squared =	0.1592
	Root MSE =	.50953

usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+						
f3	.0162672	.0361779	0.45	0.653	0546638	.0871983
SFSH	1.330123	.4879756	2.73	0.006	.3733905	2.286856
MFNS	4268669	.0155722	-27.41	0.000	4573979	3963358
MFSH	.4870537	.0909944	5.35	0.000	.3086487	.6654587
_cons	.9143907	.0112604	81.20	0.000	.8923135	.936468

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regress	ion				Number of obs F(4, 3640) Prob > F R-squared	= 184.76 = 0.0000 = 0.1465
					Root MSE	= .49731
		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
f3	0083569	.0351215	-0.24	0.812	0772168	.0605029
SFSH	1.279797	.4559851	2.81	0.005	.3857854	2.173809
MFNS	3970409	.0152427	-26.05	0.000	426926	3671558
MFSH	.4382883	.0903502	4.85	0.000	.2611463	.6154303
_cons	.848613	.0109792	77.29	0.000	.8270869	.8701391

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regress	sion				Number of obs	=	3645
					F(4, 3640)	=	1.86
					Prob > F	=	0.1144
					R-squared	=	0.0016
					Root MSE	=	.20314
I		Robust					
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
f3	0367188	.0154422	-2.38	0.017	066995		0064426
SFSH	.0578498	.0450624	1.28	0.199	0305002		1461998
MFNS	.000693	.0082829	0.08	0.933	0155467		0169327

< B-61 >

MFSH | -.0037378 .0363325 -0.10 0.918 -.0749719 .0674962 _cons | .9400871 .003651 257.49 0.000 .932929 .9472453

Table A-19 Impact of Technology and Customer Education on Usage

Table A-19 contains results for seven models detailed below. Each model contains one observation per customer; and customers are included in the sample if they face the flat rate and were offered an in-home device (treatment cells F6 and F7) or were offered an in-home device but who do not pay the FLR or IBR rates (treatment cells D2, D3, D4, D6, D7, D8, L2, L3, L5a, and L6a). Customers were excluded if they had data problems discussed above. The control group consists of customers in the sample described above, residing in single-family homes with non-space heating, and in treatment cells other than F6 or F7.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	on				Number of obs F(4, 4063) Prob > F R-squared Root MSE	= 324.74 = 0.0000
usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
f6_or_f7 SFSH MFNS MFSH _cons	0513725 0160121 6914006 706567 1.366154	.035344 .1913241 .0195287 .051407 .015704	-1.45 -0.08 -35.40 -13.74 86.99	0.146 0.933 0.000 0.000 0.000	120666 3911123 7296875 8073529 1.335366	.0179211 .359088 6531136 6057811 1.396943

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regressi	on				Number of obs	=	4068
					F(4, 4063)	=	342.90
					Prob > F	=	0.0000
					R-squared	=	0.1871
					Root MSE	=	.87133
		Robust					
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+-							
f6_or_f7	0622742	.0436263	-1.43	0.154	1478057		0232572
SFSH	0321476	.2395599	-0.13	0.893	5018163		4375212

< B-62 >

MFNS	8791614	.0241078	-36.47	0.000	9264259	831897
MFSH	8839756	.0569771	-15.51	0.000	995682	7722692
_cons	1.54749	.020155	76.78	0.000	1.507976	1.587005

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressi	on				Number of obs F(4, 4063) Prob > F R-squared	
					Root MSE	= 1.2167
event_peak	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
f6_or_f7 SFSH MFNS MFSH _cons	0142979 1942377 -1.250981 -1.2387 2.09715	.0626492 .3122854 .0335877 .0810815 .0280974	-0.23 -0.62 -37.25 -15.28 74.64	0.819 0.534 0.000 0.000 0.000	1371247 8064882 -1.316832 -1.397664 2.042063	.1085288 .4180128 -1.185131 -1.079736 2.152236

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regress:	ion				Number of obs	= 40	68
					F(4, 4063)	= 61.	44
					Prob > F	= 0.00	00
					R-squared	= 0.05	68
					Root MSE	= .291	09
1		Robust					
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interva	1]
+							
f6_or_f7	0113031	.014669	-0.77	0.441	0400625	.01745	62
SFSH	.0074559	.0730096	0.10	0.919	1356828	.15059	47
MFNS	1524147	.009754	-15.63	0.000	1715379	13329	15
MFSH	0869401	.038043	-2.29	0.022	1615252	01235	49
_cons	1.127377	.005922	190.37	0.000	1.115767	1.1389	88

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

< B-63 ≻

Linear regressi	lon				Number of obs	= 3866
					F(4, 3861)	= 220.40
					Prob > F	= 0.0000
					R-squared	= 0.1556
					Root MSE	= .51388
		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
f6_or_f7	0301669	.0283237	-1.07	0.287	0856977	.025364
SFSH	1.329492	.4879533	2.72	0.006	.3728216	2.286163
MFNS	4283282	.0151086	-28.35	0.000	4579499	3987065
MFSH	.4759628	.0885941	5.37	0.000	.302267	.6496586
_cons	.9150217	.011121	82.28	0.000	.8932181	.9368252
	.9130217	• • • • • • • • • • • • • • • • • • • •	02.20		.0932101	. 9300232

Linear regression model using robust standard errors where the dependent • variable is peak and the data are limited to the Non-Summer time period.

Linear regress	ion				Number of obs F(4, 3861) Prob > F R-squared Root MSE	= 196.52 = 0.0000
 peak	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
f6_or_f7 SFSH MFNS MFSH _cons	0408167 1.279661 3965803 .4223707 .8487493	.026718 .4559639 .0147927 .0865876 .0108402	-1.53 2.81 -26.81 4.88 78.30	0.127 0.005 0.000 0.000 0.000	0931994 .3857077 4255825 .2526089 .8274962	.0115661 2.173614 3675781 .5921325 .8700025

Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regression		Number of obs	=	3866
		F(4, 3861)	=	0.73
		Prob > F	=	0.5722
		R-squared	=	0.0005
		Root MSE	=	.2075
I	Robust			

< B-64 ➤

peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
f6_or_f7	0107952	.012745	-0.85	0.397	0357829	.0141924
SFSH	.0589104	.0450648	1.31	0.191	0294427	.1472635
MFNS	.0043848	.0083598	0.52	0.600	0120052	.0207748
MFSH	006611	.0353804	-0.19	0.852	0759771	.0627551
_cons	.9390266	.0037026	253.61	0.000	.9317673	.9462858

Table A-20 Impact of Customer Education on Customer Satisfaction

Table A-20 contains results from a linear regression model using robust standard errors where the dependent variable is satisfaction. There is one observation per customer; and customers are included if they are in treatment cells F1 or F2 and if they answered questions 22 and 23 on the CAP final survey. The control group consists of customers in treatment cell F1 residing in single-family homes with non-space heating.

Linear regression					Number of obs	= 260
					F(4, 255)	= 1.16
					Prob > F	= 0.3270
					R-squared	= 0.0161
					Root MSE	= 2.3461
1		Robust				
satisfaction	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
full_educ	.416456	.3073974	1.35	0.177	1889048	1.021817
SFSH	.2359148	.4019222	0.59	0.558	5555948	1.027424
MFNS	.5045852	.4358505	1.16	0.248	3537399	1.36291
MFSH	.5458293	.3851517	1.42	0.158	2126539	1.304313
_cons	5.097507	.2900901	17.57	0.000	4.52623	5.668785

Table A-21 Impact of Small Observable Steps on Electricity Usage

Table A-21 contains results for seven models detailed below. These models differ from those in Tables A-2 through A-4 in that they include independent variables that indicate the degree to which customers engaged in small observable steps (small_steps, steps_dummy). Each model has one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating. • Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	ion				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 122.61 = 0.0000 = 0.1912
1		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0453956	.03327	1.36	0.172	0198261	.1106172
	.0640629		1.78			.134677
ptr	.0618029	.037001	1.67	0.095	0107331	.1343388
tou	.0709291	.0372628	1.90	0.057	00212	.1439781
bihd	0040973	.0245764	-0.17	0.868	0522762	.0440817
aihd	.0384583	.0276036	1.39	0.164	0156551	.0925718
pct	.0157455	.0346776	0.45	0.650	0522357	.0837266
bill_prot	.0240041	.0412091	0.58	0.560	0567811	.1047894
purch_tech	0561967	.043735	-1.28	0.199	1419336	.0295402
full_educ	0752144	.0570145	-1.32	0.187	1869843	.0365554
SFSH	.0548225	.1636509	0.33	0.738	2659948	.3756398
MFNS	6817373	.01647	-41.39	0.000	7140247	6494499
MFSH	6934431	.0380358	-18.23	0.000	7680075	6188786
small_steps	0118191	.008193	-1.44	0.149	0278805	.0042423
steps_dummy	.0433119	.0281063	1.54	0.123	011787	.0984108
_cons	1.36554	.0483875	28.22	0.000	1.270682	1.460398

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regre	ession	n				Number of obs	=	5778
						F(15, 5762)	=	130.19
						Prob > F	=	0.0000
						R-squared	=	0.1958
						Root MSE	=	.85223
	1		Robust					
peak	:	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
peak	: +	Coef.	Std. Err.	t 	P> t	[95% Conf.	In 	terval]
peak cpp	-+	Coef. .0622815	Std. Err. 	t 	P> t 0.129	[95% Conf. 0181888		terval] 1427518
	+							
cpp	+ > >	.0622815	.0410484	1.52	0.129	0181888		1427518
 cpp dap	+ 	.0622815 .1029549	.0410484 .0451507	1.52 2.28	0.129	0181888 .0144427		 1427518 1914672

aihd	.0635516	.0349551	1.82	0.069	0049735	.1320767
pct	.0040829	.0413943	0.10	0.921	0770656	.0852314
bill_prot	.0404132	.0517599	0.78	0.435	0610557	.1418821
purch_tech	0597184	.0553706	-1.08	0.281	1682656	.0488288
full_educ	1038442	.070748	-1.47	0.142	2425368	.0348483
SFSH	.0718576	.2144839	0.34	0.738	3486114	.4923266
MFNS	8710325	.0202106	-43.10	0.000	9106528	8314122
MFSH	8432002	.0466166	-18.09	0.000	9345863	7518141
small_steps	0261683	.0105311	-2.48	0.013	0468133	0055233
steps_dummy	.0865973	.0358617	2.41	0.016	.0162948	.1568998
_cons	1.542836	.0601811	25.64	0.000	1.424858	1.660813

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regressi	.on				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 133.08 = 0.0000 = 0.1999
1		Robust				
event_peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0057625	.0576987	0.10	0.920	1073486	.1188736
dap	.1038188	.063457	1.64	0.102	0205807	.2282183
ptr	.0842372	.0645025	1.31	0.192	0422119	.2106863
tou	.0771156	.0650753	1.19	0.236	0504564	.2046877
bihd	.0220649	.0430077	0.51	0.608	0622464	.1063763
aihd	.0907838	.0485846	1.87	0.062	0044603	.1860279
pct	.0147206	.0580302	0.25	0.800	0990404	.1284817
bill_prot	.0759529	.0730601	1.04	0.299	0672722	.2191781
purch_tech	0822804	.0757893	-1.09	0.278	2308559	.0662951
full_educ	2177258	.1057057	-2.06	0.039	4249487	0105029
SFSH	1068238	.2661994	-0.40	0.688	6286747	.4150272
MFNS	-1.231057	.0281489	-43.73	0.000	-1.286239	-1.175874
MFSH	-1.198348	.0673553	-17.79	0.000	-1.33039	-1.066306
small_steps	0339111	.0150336	-2.26	0.024	0633826	0044396
steps_dummy	.1382992	.0502718	2.75	0.006	.0397476	.2368508
_cons	2.19157	.0927108	23.64	0.000	2.009822	2.373318

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

< B-67 ≻

Linear regress	sion				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 27.46 = 0.0000 = 0.0641
I		Robust				
<pre>peak_offpeak </pre>	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0043468	.0139219	0.31	0.755	0229454	.031639
dap	.0376855	.0155942	2.42	0.016	.007115	.068256
ptr	.0078885	.0149932	0.53	0.599	0215037	.0372807
tou	0140457	.0153798	-0.91	0.361	0441959	.0161044
bihd	.01632	.0108092	1.51	0.131	0048702	.0375101
aihd	.020844	.0116985	1.78	0.075	0020895	.0437775
pct	.0049001	.0145905	0.34	0.737	0237028	.033503
bill_prot	.0300999	.0178658	1.68	0.092	0049238	.0651236
purch_tech	0016633	.0183901	-0.09	0.928	0377148	.0343881
full_educ	0081818	.0260299	-0.31	0.753	0592101	.0428465
SFSH	.0303267	.0695459	0.44	0.663	1060094	.1666627
MFNS	1536055	.0079951	-19.21	0.000	169279	1379321
MFSH	0570313	.0353629	-1.61	0.107	1263558	.0122932
small_steps	0102239	.0033649	-3.04	0.002	0168205	0036274
steps_dummy	.0238634	.0116236	2.05	0.040	.0010767	.0466502
_cons	1.115603	.02271	49.12	0.000	1.071082	1.160123

Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period. •

Linear regressio	on				Number of obs F(15, 5455) Prob > F R-squared Root MSE	
 usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp dap ptr tou bihd aihd pct bill_prot	.0367092 .0237904 .0344085 .024475 .004469 .0145059 015315 .0431901	.0274465 .0295438 .0289865 .0303356 .0193615 .0213261 .0261678 .0365374	1.34 0.81 1.19 0.81 0.23 0.68 -0.59 1.18	0.181 0.421 0.235 0.420 0.817 0.496 0.558 0.237	017097 0341272 0224166 0349948 0334873 0273018 0666144 0284377	.0905153 .0817081 .0912336 .0839449 .0424252 .0563135 .0359844 .114818

full_educ	0470287	.0447206	-1.05	0.293	1346989	.0406414
SFSH	1.403728	.4095463	3.43	0.001	.6008538	2.206602
MFNS	4415425	.0127033	-34.76	0.000	466446	4166389
MFSH	.4926408	.0709536	6.94	0.000	.3535433	.6317382
small_steps	.0042056	.0064597	0.65	0.515	008458	.0168693
steps_dummy	029569	.021633	-1.37	0.172	0719784	.0128404
_cons	.945271	.0366944	25.76	0.000	.8733355	1.017207

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regressi	.on				Number of obs F(15, 5455) Prob > F R-squared Root MSE	= 84.45 = 0.0000 = 0.1618
1		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0542499	.0263966	2.06	0.040	.0025021	.1059977
dap	.03617	.0283389	1.28	0.202	0193855	.0917256
ptr	.0502279	.0277978	1.81	0.071	0042669	.1047227
tou	.0176503	.0290599	0.61	0.544	0393186	.0746193
bihd	.0069666	.0190234	0.37	0.714	0303269	.04426
aihd	.0168199	.0211743	0.79	0.427	0246901	.0583299
pct	02425	.0251111	-0.97	0.334	0734777	.0249778
bill_prot	.04079	.0363116	1.12	0.261	0303951	.1119752
purch_tech	0447081	.0326541	-1.37	0.171	1087233	.0193071
full_educ	0314043	.0432964	-0.73	0.468	1162825	.0534739
SFSH	1.383681	.401022	3.45	0.001	.5975181	2.169844
MFNS	4150643	.0124117	-33.44	0.000	4393962	3907323
MFSH	.4345683	.0726267	5.98	0.000	.292191	.5769456
small_steps	.0003554	.006248	0.06	0.955	011893	.0126039
steps_dummy	0183198	.0211832	-0.86	0.387	0598474	.0232078
_cons	.8536808	.035548	24.01	0.000	.7839925	.923369

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regression	Number of obs =	5471
	F(15, 5455) =	84.45
	Prob > F =	0.0000

R-squared = 0.1618

ROOT	MSE	=	50262	

I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
cpp	.0542499	.0263966	2.06	0.040	.0025021	.1059977
dap	.03617	.0283389	1.28	0.202	0193855	.0917256
ptr	.0502279	.0277978	1.81	0.071	0042669	.1047227
tou	.0176503	.0290599	0.61	0.544	0393186	.0746193
bihd	.0069666	.0190234	0.37	0.714	0303269	.04426
aihd	.0168199	.0211743	0.79	0.427	0246901	.0583299
pct	02425	.0251111	-0.97	0.334	0734777	.0249778
bill_prot	.04079	.0363116	1.12	0.261	0303951	.1119752
purch_tech	0447081	.0326541	-1.37	0.171	1087233	.0193071
full_educ	0314043	.0432964	-0.73	0.468	1162825	.0534739
SFSH	1.383681	.401022	3.45	0.001	.5975181	2.169844
MFNS	4150643	.0124117	-33.44	0.000	4393962	3907323
MFSH	.4345683	.0726267	5.98	0.000	.292191	.5769456
small_steps	.0003554	.006248	0.06	0.955	011893	.0126039
steps_dummy	0183198	.0211832	-0.86	0.387	0598474	.0232078
_cons	.8536808	.035548	24.01	0.000	.7839925	.923369

Table A-22 Impact of Notification on Usage

Table A-22 contains results for seven models detailed below. These models differ from those in Tables A-2 through A-4 in that they include an independent variable indicating the degree to which customers were notified of the events (notify_share). Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed in the report. The control group consists of customers in treatment cell F3 residing in singlefamily homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressic	n				Number of obs	=	5778
					F(14, 5763)	=	132.02
					Prob > F	=	0.0000
					R-squared	=	0.1939
					Root MSE	=	.67592
1		Robust					
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+							
cpp	.0403795	.0331336	1.22	0.223	0245748	•	1053338
dap	.0620701	.035871	1.73	0.084	0082505		1323907

ptr	.0597666	.0368825	1.62	0.105	0125369	.1320701
tou	.0684557	.0371282	1.84	0.065	0043295	.1412409
bihd	0098467	.0241742	-0.41	0.684	0572372	.0375438
aihd	.0328497	.0274663	1.20	0.232	0209946	.0866939
pct	.0134414	.0346158	0.39	0.698	0544187	.0813014
bill_prot	.0197524	.0410907	0.48	0.631	0608007	.1003056
purch_tech	0558353	.0434613	-1.28	0.199	1410358	.0293652
notify_share	.113343	.0233515	4.85	0.000	.0675652	.1591207
full_educ	1598553	.0590648	-2.71	0.007	2756446	0440661
SFSH	.0451975	.1619487	0.28	0.780	2722828	.3626779
MFNS	6794724	.0162878	-41.72	0.000	7114027	6475422
MFSH	686744	.0379732	-18.08	0.000	7611858	6123022
_cons	1.376068	.0471174	29.21	0.000	1.2837	1.468435

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regress:	ion				Number of obs F(14, 5763) Prob > F R-squared Root MSE	= 140.91 = 0.0000 = 0.1979
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.054199	.0409148	1.32	0.185	0260094	.1344073
dap	.0994449	.0450065	2.21	0.027	.0112154	.1876745
ptr	.0811372	.0461242	1.76	0.079	0092835	.171558
tou	.0624237	.0458223	1.36	0.173	0274052	.1522527
bihd	.0007981	.0304548	0.03	0.979	0589047	.0605009
aihd	.0543407	.0347864	1.56	0.118	0138536	.1225351
pct	000592	.0413889	-0.01	0.989	0817297	.0805458
bill_prot	.0351807	.0516681	0.68	0.496	0661082	.1364695
purch_tech	0570063	.0551467	-1.03	0.301	1651145	.051102
notify_share	.1427778	.0293455	4.87	0.000	.0852497	.200306
full_educ	2119524	.0732573	-2.89	0.004	3555642	0683407
SFSH	.063415	.2125524	0.30	0.765	3532676	.4800976
MFNS	8675572	.0200388	-43.29	0.000	9068407	8282737
MFSH	8359601	.0465131	-17.97	0.000	9271432	7447769
_cons	1.562311	.0589194	26.52	0.000	1.446807	1.677815

• Linear regression model using robust standard errors where the dependent variable is event_peak.

< B-71 >

Linear regressi	ion				Number of obs	=	5778
					F(14, 5763)	=	144.07
					Prob > F	=	0.0000
					R-squared	=	0.2021
					Root MSE	=	1.1904
		Robust					
event_peak					[95% Conf.		
 cpp					1172723		
dap	.0994861	.0632472	1.57	0.116	0245021		2234743
ptr	.0791491	.0642505	1.23	0.218	046806		2051042
tou	.0705132	.0649047	1.09	0.277	0567244		1977507
bihd	.0107491	.0422106	0.25	0.799	0719996		0934978
aihd	.0795429	.0483315	1.65	0.100	0152049		1742907
pct	.009839	.0580478	0.17	0.865	1039565		1236344
bill_prot	.0687087	.072915	0.94	0.346	0742321		2116494
purch_tech	0822758	.0755331	-1.09	0.276	230349		0657975
notify_share	.2069597	.0409534	5.05	0.000	.1266756		2872438
full_educ	3741578	.1092076	-3.43	0.001	5882458		1600699
SFSH	1148824	.2621147	-0.44	0.661	6287258		.398961
MFNS	-1.227877	.0279846	-43.88	0.000	-1.282737	-1	.173016
MFSH	-1.187534	.0677012	-17.54	0.000	-1.320254	-1	.054814
_cons	2.229849	.0911985	24.45	0.000	2.051066	2	.408633

 Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regres	si	on				Number of obs F(14, 5763) Prob > F R-squared Root MSE		5778 28.89 0.0000 0.0630 .28899
peak_offpeak		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	In	terval]
dap ptr tou bihd aihd pct	 	.0022807 .0365937 .0067152 0162202 .011896 .0182571 .0029367	.0155963 .0149833 .015377 .0106262 .0116592 .0145571	0.16 2.35 0.45 -1.05 1.12 1.57 0.20	0.870 0.019 0.654 0.292 0.263 0.117 0.840	0249562 .0060191 0226578 046365 0089353 0045994 0256006		0295176 0671684 0360882 0139246 0327273 0411136 .031474
bill_prot purch_tech		.0297177 .0009824	.0178734 .0183534	1.66 0.05	0.096 0.957	0053209 0349971	•	0647563 .036962

< B-72 >

notify_share	.0102892	.0103923	0.99	0.322	0100837	.0306621
full_educ	017007	.0272886	-0.62	0.533	0705028	.0364889
SFSH	.0310646	.0695675	0.45	0.655	1053139	.167443
MFNS	1524855	.0079608	-19.15	0.000	1680915	1368794
MFSH	0573685	.0353014	-1.63	0.104	1265726	.0118356
_cons	1.118527	.0223383	50.07	0.000	1.074736	1.162319

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regressi	Lon				Number of obs F(14, 5456) Prob > F R-squared Root MSE	= 98.75 = 0.0000 = 0.1738
1		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
-+	.0351249	.0273785	1.28	0.200	0185479	.0887978
					0352887	
-					022019	
				0.427		
bihd	.001989	.0190536	0.10	0.917	0353635	.0393416
aihd	.0121358	.0211639	0.57	0.566	0293539	.0536255
pct	0159606	.0261782	-0.61	0.542	0672803	.035359
bill_prot	.0406314	.0365238	1.11	0.266	0309699	.1122326
purch_tech	0477429	.0329055	-1.45	0.147	1122507	.016765
notify_share	.0500962	.0180519	2.78	0.006	.0147072	.0854852
full_educ	0828619	.0467745	-1.77	0.077	1745586	.0088347
SFSH	1.394031	.4105451	3.40	0.001	.5891993	2.198864
MFNS	4394336	.0126161	-34.83	0.000	4641662	4147011
MFSH	.4962743	.0710352	6.99	0.000	.357017	.6355317
_cons	.9335538	.035507	26.29	0.000	.8639459	1.003162

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regression	Number of obs	=	5471
	F(14, 5456)	=	90.32
	Prob > F	=	0.0000
	R-squared	=	0.1621
	Root MSE	=	.50247

1		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
cpp	.0524989	.0263715	1.99	0.047	.0008002	.1041977
dap	.0348539	.0283153	1.23	0.218	0206555	.0903632
ptr	.0501364	.0277605	1.81	0.071	0042853	.1045581
tou	.0167367	.0290688	0.58	0.565	0402498	.0737232
bihd	.0036276	.0187631	0.19	0.847	0331556	.0404109
aihd	.0143004	.0210209	0.68	0.496	0269089	.0555097
pct	0253309	.0251298	-1.01	0.313	0745952	.0239335
bill_prot	.0389569	.0362987	1.07	0.283	0322031	.110117
purch_tech	0428179	.0325693	-1.31	0.189	1066666	.0210308
notify_share	.0358553	.0176789	2.03	0.043	.0011976	.0705131
full_educ	0573548	.0454836	-1.26	0.207	1465209	.0318113
SFSH	1.376519	.4017481	3.43	0.001	.5889319	2.164105
MFNS	4131326	.0123359	-33.49	0.000	4373159	3889493
MFSH	.436988	.0726296	6.02	0.000	.2946051	.5793709
_cons	.8443688	.0344689	24.50	0.000	.7767959	.9119417

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regress:	ion				Number of obs	
					F(14, 5456)	
					Prob > F	
					R-squared	
					Root MSE	= .204
		Robust				
peak_offpeak						
					0057745	
1	.0172623					
ptr	.0226076	.0118515	1.91	0.056	0006261	.0458412
tou	0179753	.0122938	-1.46	0.144	0420761	.0061255
bihd	.0065925	.0078237	0.84	0.399	008745	.0219301
aihd	.0111378	.0086779	1.28	0.199	0058744	.02815
pct	.0000295	.0107278	0.00	0.998	0210013	.0210603
bill_prot	.0059005	.0125902	0.47	0.639	0187813	.0305822
purch_tech	0058539	.0130905	-0.45	0.655	0315166	.0198088
notify_share	0237302	.0079234	-2.99	0.003	0392633	0081971
full_educ	.0397501	.0194957	2.04	0.042	.0015307	.0779696
SFSH	.0554211	.0420964	1.32	0.188	0271047	.1379469
MFNS	001269	.0067328	-0.19	0.851	0144681	.01193
MFSH	015802	.0248104	-0.64	0.524	0644403	.0328363
_cons	.9042373	.0150885	59.93	0.000	.8746577	.9338168

Table A-23 Impact of Multiple Notification Methods on Usage

Table A-23 contains results for seven models detailed below. These models differ from those in Tables A-2 through A-4 in that they include the notify_share independent variable from Table A-22 in addition to a variable that indicates whether the customer chose to be notified of events by more than one method (methods). Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed above. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating.

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regress	ion				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 123.22 = 0.0000 = 0.1939
I		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0398672	.0332719	1.20	0.231	0253581	.1050926
dap	.0618887	.0359219	1.72	0.085	0085317	.1323091
ptr	.0597329	.0368834	1.62	0.105	0125725	.1320383
tou	.0681231	.03723	1.83	0.067	0048617	.1411078
bihd	0100429	.0241741	-0.42	0.678	0574333	.0373475
aihd	.0331681	.027519	1.21	0.228	0207795	.0871158
pct	.0135896	.0346278	0.39	0.695	0542938	.0814731
bill_prot	.0198045	.0410885	0.48	0.630	0607444	.1003535
purch_tech	0551985	.0435241	-1.27	0.205	1405222	.0301252
notify_share	.1114249	.023914	4.66	0.000	.0645446	.1583053
methods	.0098725	.0229752	0.43	0.667	0351675	.0549125
full_educ	1603851	.0589925	-2.72	0.007	2760326	0447375
SFSH	.045535	.1618347	0.28	0.778	2717218	.3627918
MFNS	6793929	.0162874	-41.71	0.000	7113223	6474634
MFSH	6869262	.0379428	-18.10	0.000	7613084	6125441
_cons	1.376048	.0471216	29.20	0.000	1.283672	1.468424

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

< B-75 >

Linear regressi	.on				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 131.50 = 0.0000 = 0.1979
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0542689	.041085	1.32	0.187	0262732	.134811
dap	.0994697	.0450826	2.21	0.027	.0110909	.1878485
ptr	.0811419	.0461441	1.76	0.079	0093178	.1716016
tou	.0624692	.0459489	1.36	0.174	0276079	.1525462
bihd	.0008249	.0304557	0.03	0.978	0588798	.0605295
aihd	.0542973	.0348412	1.56	0.119	0140045	.122599
pct	0006122	.0414108	-0.01	0.988	081793	.0805686
bill_prot	.0351735	.0516782	0.68	0.496	0661352	.1364823
purch_tech	0570932	.0551848	-1.03	0.301	1652761	.0510897
notify_share	.1430397	.0299249	4.78	0.000	.0843756	.2017039
methods	0013482	.0285053	-0.05	0.962	0572293	.054533
full_educ	2118801	.0731904	-2.89	0.004	3553608	0683994
SFSH	.0633689	.2125825	0.30	0.766	3533728	.4801106
MFNS	8675681	.020041	-43.29	0.000	906856	8282801
MFSH	8359352	.0465161	-17.97	0.000	9271242	7447462
_cons	1.562313	.0589246	26.51	0.000	1.446799	1.677828

Linear regression model using robust standard errors where the dependent • variable is event_peak.

Linear regressi	on				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 5778 = 134.49 = 0.0000 = 0.2021 = 1.1904
 event_peak	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp dap ptr tou bihd aihd pct bill_prot purch_tech	003256 .0999644 .0792381 .07139 .0112664 .0787034 .0094481 .0685713 0839545	.0577497 .0633763 .064312 .0650931 .0421937 .0484228 .0580524 .0729313 .0755885	-0.06 1.58 1.23 1.10 0.27 1.63 0.16 0.94 -1.11	0.955 0.115 0.218 0.273 0.789 0.104 0.871 0.347 0.267	1164672 0242769 0468375 0562169 071449 0162234 1043564 0744014 2321363	.1099551 .2242057 .2053137 .1989969 .0939818 .1736302 .1232526 .211544 .0642273

< B-76 >

notify_share	.2120163	.0416677	5.09	0.000	.1303319	.2937008
methods	0260274	.0396105	-0.66	0.511	1036788	.051624
full_educ	3727612	.1091546	-3.41	0.001	5867453	1587771
SFSH	1157721	.2622055	-0.44	0.659	6297933	.3982491
MFNS	-1.228086	.027986	-43.88	0.000	-1.28295	-1.173223
MFSH	-1.187054	.0677915	-17.51	0.000	-1.319951	-1.054157
_cons	2.2299	.0912056	24.45	0.000	2.051103	2.408698

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Linear regressi	.on				Number of obs F(15, 5762) Prob > F R-squared Root MSE	= 27.07 = 0.0000 = 0.0631
1		Robust				
peak_offpeak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0026807	.0139067	0.19	0.847	0245816	.0299431
dap	.0367354	.0156007	2.35	0.019	.0061522	.0673186
ptr	.0067416	.0149853	0.45	0.653	0226352	.0361183
tou	0159604	.0153865	-1.04	0.300	0461238	.0142029
bihd	.0120492	.010631	1.13	0.257	0087916	.03289
aihd	.0180084	.011681	1.54	0.123	0048906	.0409075
pct	.0028209	.0145559	0.19	0.846	0257142	.031356
bill_prot	.029677	.0178636	1.66	0.097	0053424	.0646964
purch_tech	.0004852	.0183717	0.03	0.979	0355302	.0365005
notify_share	.0117871	.010586	1.11	0.266	0089654	.0325396
methods	0077099	.0094147	-0.82	0.413	0261662	.0107463
full_educ	0165933	.0272913	-0.61	0.543	0700945	.0369079
SFSH	.030801	.0696304	0.44	0.658	1057007	.1673028
MFNS	1525476	.0079598	-19.16	0.000	1681517	1369435
MFSH	0572262	.0353396	-1.62	0.105	1265051	.0120527
_cons	1.118542	.0223398	50.07	0.000	1.074748	1.162337

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regression	Number of obs =	5471
	F(15, 5455) =	92.72
	Prob > F =	0.0000
	R-squared =	0.1741

Root MSE = .51354

 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0341972	.0274418	1.25	0.213	0195997	.0879941
dap	.0223054	.02947	0.76	0.449	0354675	.0800784
ptr	.0346657	.0288793	1.20	0.230	0219492	.0912807
tou	.0234106	.0303421	0.77	0.440	036072	.0828932
bihd	.0015982	.019063	0.08	0.933	0357728	.0389693
aihd	.0127856	.0211841	0.60	0.546	0287437	.054315
pct	0157087	.026188	-0.60	0.549	0670476	.0356303
bill_prot	.0404812	.0365156	1.11	0.268	031104	.1120664
purch_tech	0466182	.0328877	-1.42	0.156	1110911	.0178548
notify_share	.0461247	.0183079	2.52	0.012	.0102338	.0820156
methods	.020328	.017949	1.13	0.257	0148593	.0555153
full_educ	0839538	.0467156	-1.80	0.072	1755351	.0076274
SFSH	1.395781	.411202	3.39	0.001	.5896608	2.201901
MFNS	4391754	.0126238	-34.79	0.000	4639231	4144277
MFSH	.4958826	.0710538	6.98	0.000	.3565888	.6351764
_cons	.9335006	.0355108	26.29	0.000	.8638853	1.003116

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regress	ion				Number of obs F(15, 5455) Prob > F R-squared Root MSE	= 84.60 = 0.0000 = 0.1622
I		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cpp	.0517038	.0264374	1.96	0.051	0001241	.1035318
dap	.0346977	.028321	1.23	0.221	0208228	.0902181
ptr	.0501486	.0277405	1.81	0.071	0042339	.1045311
tou	.016153	.0291126	0.55	0.579	0409194	.0732254
bihd	.0032927	.0187774	0.18	0.861	0335184	.0401038
aihd	.0148573	.0210297	0.71	0.480	0263692	.0560839
pct	025115	.025141	-1.00	0.318	0744014	.0241715
bill_prot	.0388282	.0362898	1.07	0.285	0323143	.1099707
purch_tech	041854	.0325507	-1.29	0.199	1056663	.0219583
notify_share	.0324517	.017853	1.82	0.069	0025473	.0674507
methods	.0174217	.0176405	0.99	0.323	0171607	.0520041
full_educ	0582906	.0454356	-1.28	0.200	1473624	.0307812
SFSH	1.378018	.4024089	3.42	0.001	.5891357	2.1669

MFNS	4129112	.0123408	-33.46	0.000	4371041	3887183
MFSH	.4366523	.0726284	6.01	0.000	.2942716	.5790329
_cons	.8443231	.0344723	24.49	0.000	.7767436	.9119027

 Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regress	Lon				Number of obs F(15, 5455) Prob > F R-squared Root MSE	= 3.19 = 0.0000 = 0.0086
I		Robust				
peak_offpeak	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
cpp	.0167116	.0113376	1.47	0.141	0055147	.0389379
dap	.0173107	.011948	1.45	0.147	0061122	.0407336
ptr	.0226038	.0118469	1.91	0.056	0006209	.0458285
tou	0177943	.012279	-1.45	0.147	0418661	.0062775
bihd	.0066964	.0078212	0.86	0.392	0086362	.022029
aihd	.0109651	.0086808	1.26	0.207	0060528	.027983
pct	0000375	.0107296	-0.00	0.997	0210718	.0209968
bill_prot	.0059404	.0125907	0.47	0.637	0187424	.0306231
purch_tech	0061528	.0130844	-0.47	0.638	0318035	.0194978
notify_share	0226746	.0079742	-2.84	0.004	0383072	0070421
methods	0054028	.0066193	-0.82	0.414	0183792	.0075736
full_educ	.0400403	.0195067	2.05	0.040	.0017994	.0782812
SFSH	.0549562	.0418653	1.31	0.189	0271165	.1370288
MFNS	0013377	.0067302	-0.20	0.842	0145315	.0118561
MFSH	0156978	.0248264	-0.63	0.527	0643674	.0329717
_cons	.9042514	.0150899	59.92	0.000	.8746691	.9338337

Table A-24 Impact of Customer Contacts on Usage

Table A-24 contains results for seven models detailed below. These models differ from those in Tables A-2 through A-4 in that they include a dependent variable indicating whether or not customers contacted the customer support center (anycontact). Each model contains one observation per customer; and customers are excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are screened due to data problems discussed in the report. The control group consists of customers in treatment cell F3 residing in single-family homes with non-space heating. • Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Summer time period.

Linear regressi	.on				Number of obs F(14, 5763) Prob > F R-squared Root MSE	= 131.32 = 0.0000 = 0.1917
1		Robust				
usage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
-+	0387516	0332965	1 16	0 245	0265219	1040252
	.0601344		1.67			
_		.0369303				
-			1.71			
bihd		.0254022		0.344		.0257463
aihd	.027322	.0278582	0.98	0.327	0272905	.0819344
pct	.0046347	.0347493	0.13	0.894	063487	.0727563
bill_prot	.0239177		0.58	0.563	0570708	.1049062
purch_tech	0419865	.0438931	-0.96	0.339	1280335	.0440605
anycontact	.0531343	.0221866	2.39	0.017	.0096402	.0966284
full_educ	0754743	.057018	-1.32	0.186	1872509	.0363024
SFSH	.0592033	.1639556	0.36	0.718	2622112	.3806178
MFNS	6789802	.0163671	-41.48	0.000	7110659	6468945
MFSH	6975296	.0379545	-18.38	0.000	7719347	6231245
_cons	1.373546	.0472063	29.10	0.000	1.281004	1.466088

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Summer time period.

Linear regress	ion				Number of obs	=	5778
					F(14, 5763)	=	139.38
					Prob > F	=	0.0000
					R-squared	=	0.1952
					Root MSE	=	.85246
1		Robust					
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+							
cpp	.0542862	.0411342	1.32	0.187	0263523		1349248
dap	.0982854	.0451529	2.18	0.030	.0097688		.186802
ptr	.0800944	.0462172	1.73	0.083	0105086	•	1706973
tou	.0586922	.0460689	1.27	0.203	0316203		1490046
bihd	0098118	.0319039	-0.31	0.758	0723555		0527319
aihd	.0513421	.0351587	1.46	0.144	0175822	•	1202664

pct	0075814	.0414047	-0.18	0.855	0887502	.0735873
bill_prot	.0405834	.0519011	0.78	0.434	0611622	.142329
purch_tech	0450697	.0556693	-0.81	0.418	1542024	.064063
anycontact	.0445941	.0282081	1.58	0.114	0107044	.0998926
full_educ	1062468	.0708324	-1.50	0.134	2451049	.0326113
SFSH	.0817679	.2148069	0.38	0.703	3393343	.50287
MFNS	8680991	.0201025	-43.18	0.000	9075077	8286906
MFSH	8483749	.0466465	-18.19	0.000	9398196	7569302
_cons	1.560582	.0590151	26.44	0.000	1.44489	1.676274

• Linear regression model using robust standard errors where the dependent variable is event_peak.

Linear regress	si	on				Number of obs F(14, 5763) Prob > F R-squared Root MSE	= 142.62 = 0.0000 = 0.1993
	I		Robust				
event_peak		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
срр		0050678	.0577988	-0.09	0.930	1183753	.1082396
dap		.0974537	.0634233	1.54	0.124	0268798	.2217872
ptr		.0773656	.0644161	1.20	0.230	0489142	.2036454
tou		.0645471	.0651482	0.99	0.322	0631678	.192262
bihd		0066329	.0441416	-0.15	0.881	0931671	.0799013
aihd		.0741063	.0488377	1.52	0.129	0216339	.1698466
pct		0014208	.0581337	-0.02	0.981	1153848	.1125431
bill_prot		.0764973	.0732122	1.04	0.296	0670261	.2200206
purch_tech		0634589	.0761326	-0.83	0.405	2127074	.0857896
anycontact		.0707822	.0393935	1.80	0.072	006444	.1480083
full_educ		2207731	.1059387	-2.08	0.037	4284528	0130935
SFSH		0884746	.2656155	-0.33	0.739	6091809	.4322316
MFNS		-1.228343	.0280795	-43.75	0.000	-1.283389	-1.173296
MFSH		-1.205852	.0676645	-17.82	0.000	-1.3385	-1.073204
_cons		2.226945	.0913662	24.37	0.000	2.047833	2.406057

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Summer time period.

Numbe	r of	obs	=	5778
F(14	, 5'	763)	=	28.93
Prob	> F		=	0.0000

Linear regression

					R-squared Root MSE	= 0.0633 = .28895
peak_offpeak	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cpp dap ptr tou bihd aihd		.0139357 .0156006 .0149834 .0153771 .0110187 .0117431	0.29 2.41 0.50 -0.96 1.56 1.82	0.771 0.016 0.619 0.336 0.119 0.069	0232582 .0069884 0219125 0449526 0044249 0016899	.0313804 .0681544 .0368335 .0153373 .0387765 .0443518
pct bill_prot purch_tech anycontact full_educ SFSH MFNS MFSH cons	0027286 0153239	.0146606 .0178476 .0184966 .0090596 .026046 .0690933 .0079821 .0352634 .0223242	0.40 1.69 -0.15 -1.69 -0.38 0.48 -19.23 -1.62 50.15	0.690 0.090 0.883 0.091 0.705 0.633 0.000 0.104 0.000	0229015 0047518 038989 0330841 0609379 1024726 1691367 1264204 1.07584	.0345792 .0652244 .0335317 .0024363 .0411818 .1684252 1378408 .0118388 1.163368

• Linear regression model using robust standard errors where the dependent variable is usage and the data are limited to the Non-Summer time period.

Linear regressi	on				Number of obs F(14, 5456) Prob > F R-squared Root MSE	
usage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
cpp	.0334564	.0274514	1.22	0.223	0203594	.0872722
dap	.0213886	.0295069	0.72	0.469	0364568	.0792339
ptr	.0336331	.0289359	1.16	0.245	0230928	.0903591
tou	.0219094	.0303983	0.72	0.471	0376833	.0815021
bihd	0077918	.0198338	-0.39	0.694	0466739	.0310903
aihd	.0080568	.0214833	0.38	0.708	034059	.0501726
pct	0217862	.0261085	-0.83	0.404	0729692	.0293968
bill prot	.0425603	.0365407	1.16	0.244	029074	.1141945
purch_tech	039289	.0332742	-1.18	0.238	1045197	.0259417
anycontact	.0333139	.0170091	1.96	0.050	0000306	.0666585
full educ	0451705	.0447373	-1.01	0.313	1328734	.0425324
SFSH	1.395082	.4100194	3.40	0.001	.5912802	2.198884
MFNS	4390332	.0126752	-34.64	0.000	4638817	4141847

MFSH	1	.4916388	.070805	6.94	0.000	.3528328	.6304447
_cons	1	.9317448	.0356207	26.16	0.000	.8619139	1.001576

• Linear regression model using robust standard errors where the dependent variable is peak and the data are limited to the Non-Summer time period.

Linear regressi	.on				Number of obs F(14, 5456) Prob > F R-squared Root MSE	= 90.60 = 0.0000 = 0.1620
1		Robust				
peak	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
-+	.0506068	.0263947	1.92	0.055	0011374	.102351
		.0283187				
ptr	.0491325	.0277693	1.77	0.077	0053063	.1035714
tou	.0145623	.0291387	0.50	0.617	0425612	.0716858
bihd	0057127	.0194917	-0.29	0.769	0439242	.0324989
aihd	.0100948	.0213019	0.47	0.636	0316654	.0518549
pct	0307503	.0250064	-1.23	0.219	0797728	.0182723
bill_prot	.0403315	.0363419	1.11	0.267	0309132	.1115761
purch_tech	0350387	.0329208	-1.06	0.287	0995765	.0294991
anycontact	.0308232	.0164776	1.87	0.061	0014796	.0631259
full_educ	0301632	.0433005	-0.70	0.486	1150494	.0547229
SFSH	1.376457	.4014128	3.43	0.001	.5895274	2.163386
MFNS	412496	.0123814	-33.32	0.000	4367684	3882235
MFSH	.4333706	.072497	5.98	0.000	.2912476	.5754936
_cons	.8426069	.0345588	24.38	0.000	.7748579	.9103559

• Linear regression model using robust standard errors where the dependent variable is peak_offpeak and the data are limited to the Non-Summer time period.

Linear regress	sion					Number of obs	=	5471
						F(14, 5456)	=	2.83
						Prob > F	=	0.0003
						R-squared	=	0.0067
						Root MSE	=	.20418
	 	Rol	oust					
peak_offpeak	l Co	bef. Std	. Err.	t	P> t	[95% Conf.	In	terval]
	+							

cpp .0152582.01133261.350.1780069582.0374746dap .0164846.01193611.380.1670069149.0398842ptr .0223029.01183971.880.0600009075.0455134tou 0186942.0122656-1.520.1280427397.0053513bihd .0045294.00819530.550.5810115366.0205955aihd .0093891.0087991.070.2860078604.0266387pct 0007877.0108192-0.070.9420219976.0204223bill_prot .0049695.01259340.390.6930197187.0296576purch_tech 0049117.0132352-0.370.711030858.0210346anycontact .004193.00671810.620.53301369.0587106SFSH .0525949.04262641.230.2170309697.1361596MFNS 0004571.0067509-0.070.9460136916.0127775MFSH 0144634.0247919-0.580.5600630654.0341385_cons .9037575.015102259.840.000.8741512.9333638								
ptr .0223029 .0118397 1.88 0.060 0009075 .0455134 tou 0186942 .0122656 -1.52 0.128 0427397 .0053513 bihd .0045294 .0081953 0.55 0.581 0115366 .0205955 aihd .0093891 .008799 1.07 0.286 0078604 .0266387 pct 0007877 .0108192 -0.07 0.942 0219976 .0204223 bill_prot .0049695 .0125934 0.39 0.693 0197187 .0296576 purch_tech 0049117 .0132352 -0.37 0.711 030858 .0210346 anycontact .004193 .0067181 0.62 0.533 0089772 .0173631 full_educ .0225103 .0184658 1.22 0.223 01369 .0587106 SFSH .0525949 .0426264 1.23 0.217 0309697 .1361596 MFNS 0144634 .0247919 -0.58 0.560 0630654 .0341385	cpp	T	.0152582	.0113326	1.35	0.178	0069582	.0374746
tou 0186942.0122656-1.520.1280427397.0053513bihd .0045294.00819530.550.5810115366.0205955aihd .0093891.0087991.070.2860078604.0266387pct 0007877.0108192-0.070.9420219976.0204223bill_prot .0049695.01259340.390.6930197187.0296576purch_tech 0049117.0132352-0.370.711030858.0210346anycontact .004193.00671810.620.53301369.0587106SFSH .0525949.04262641.230.2170309697.1361596MFNS 004571.0067509-0.070.9460136916.0127775MFSH 0144634.0247919-0.580.5600630654.0341385	dap		.0164846	.0119361	1.38	0.167	0069149	.0398842
bihd.0045294.00819530.550.5810115366.0205955aihd.0093891.0087991.070.2860078604.0266387pct0007877.0108192-0.070.9420219976.0204223bill_prot.0049695.01259340.390.6930197187.0296576purch_tech0049117.0132352-0.370.711030858.0210346anycontact.004193.00671810.620.5330089772.0173631full_educ.0225103.01846581.220.22301369.0587106SFSH.0525949.04262641.230.2170309697.1361596MFNS0044571.0067509-0.070.9460136916.0127775MFSH0144634.0247919-0.580.5600630654.0341385	ptr	I	.0223029	.0118397	1.88	0.060	0009075	.0455134
aihd .0093891.0087991.070.2860078604.0266387pct 0007877.0108192-0.070.9420219976.0204223bill_prot .0049695.01259340.390.6930197187.0296576purch_tech 0049117.0132352-0.370.711030858.0210346anycontact .004193.00671810.620.5330089772.0173631full_educ .0225103.01846581.220.22301369.0587106SFSH .0525949.04262641.230.2170309697.1361596MFNS 0004571.0067509-0.070.9460136916.0127775MFSH 0144634.0247919-0.580.5600630654.0341385	tou	Ι	0186942	.0122656	-1.52	0.128	0427397	.0053513
pct 0007877.0108192-0.070.9420219976.0204223bill_prot .0049695.01259340.390.6930197187.0296576purch_tech 0049117.0132352-0.370.711030858.0210346anycontact .004193.00671810.620.5330089772.0173631full_educ .0225103.01846581.220.22301369.0587106SFSH .0525949.04262641.230.2170309697.1361596MFNS 0004571.0067509-0.070.9460136916.0127775MFSH 0144634.0247919-0.580.5600630654.0341385	bihd	I	.0045294	.0081953	0.55	0.581	0115366	.0205955
bill_prot .0049695 .0125934 0.39 0.693 0197187 .0296576 purch_tech 0049117 .0132352 -0.37 0.711 030858 .0210346 anycontact .004193 .0067181 0.62 0.533 0089772 .0173631 full_educ .0225103 .0184658 1.22 0.223 01369 .0587106 SFSH .0525949 .0426264 1.23 0.217 0309697 .1361596 MFNS 0004571 .0067509 -0.07 0.946 0136916 .0127775 MFSH 0144634 .0247919 -0.58 0.560 0630654 .0341385	aihd		.0093891	.008799	1.07	0.286	0078604	.0266387
purch_tech 0049117 .0132352 -0.37 0.711 030858 .0210346 anycontact .004193 .0067181 0.62 0.533 0089772 .0173631 full_educ .0225103 .0184658 1.22 0.223 01369 .0587106 SFSH .0525949 .0426264 1.23 0.217 0309697 .1361596 MFNS 0004571 .0067509 -0.07 0.946 0136916 .0127775 MFSH 0144634 .0247919 -0.58 0.560 0630654 .0341385	pct		0007877	.0108192	-0.07	0.942	0219976	.0204223
anycontact .004193 .0067181 0.62 0.533 0089772 .0173631 full_educ .0225103 .0184658 1.22 0.223 01369 .0587106 SFSH .0525949 .0426264 1.23 0.217 0309697 .1361596 MFNS 0004571 .0067509 -0.07 0.946 0136916 .0127775 MFSH 0144634 .0247919 -0.58 0.560 0630654 .0341385	bill_prot		.0049695	.0125934	0.39	0.693	0197187	.0296576
full_educ .0225103 .0184658 1.22 0.223 01369 .0587106 SFSH .0525949 .0426264 1.23 0.217 0309697 .1361596 MFNS 0004571 .0067509 -0.07 0.946 0136916 .0127775 MFSH 0144634 .0247919 -0.58 0.560 0630654 .0341385	purch_tech	I	0049117	.0132352	-0.37	0.711	030858	.0210346
SFSH .0525949 .0426264 1.23 0.217 0309697 .1361596 MFNS 0004571 .0067509 -0.07 0.946 0136916 .0127775 MFSH 0144634 .0247919 -0.58 0.560 0630654 .0341385	anycontact		.004193	.0067181	0.62	0.533	0089772	.0173631
MFNS 0004571.0067509-0.070.9460136916.0127775MFSH 0144634.0247919-0.580.5600630654.0341385	full_educ		.0225103	.0184658	1.22	0.223	01369	.0587106
MFSH 0144634 .0247919 -0.58 0.5600630654 .0341385	SFSH		.0525949	.0426264	1.23	0.217	0309697	.1361596
	MFNS	I	0004571	.0067509	-0.07	0.946	0136916	.0127775
_cons .9037575 .0151022 59.84 0.000 .8741512 .9333638	MFSH		0144634	.0247919	-0.58	0.560	0630654	.0341385
	_cons		.9037575	.0151022	59.84	0.000	.8741512	.9333638

Table A-25 Impact of Rate on Number of Customer Contacts

Table A-25 contains the results of a Poisson regression model using robust standard errors where the dependent variable is contacts. There is one observation per customer; and customers are excluded if they are in treatment cells F1 or F2. The control group consists of customers on the CPP rate with eWeb technology (treatment cell D1a) residing in single-family homes with non-space heating.

Poisson regress	sion			Numbe	er of obs	=	7847
				Wald	chi2(14)	=	535.81
				Prob	> chi2	=	0.0000
Log pseudolikel	ihood = -75	28.6698		Pseud	lo R2	=	0.0806
		Robust					
contacts		Std. Err.			[95% (Conf.	Interval]
+- flr		.1141735			83842	 175	3908654
dap	3085539	.0802151	-3.85	0.000	4657	726	1513351
ibr	4027108	.0986661	-4.08	0.000	59609	927	2093289
ptr	2752258	.0883032	-3.12	0.002	4482	297	1021547
tou	0659379	.0950742	-0.69	0.488	2522	798	.1204041
bihd	1.609719	.0930763	17.29	0.000	1.4272	293	1.792146
aihd	1.324614	.1081333	12.25	0.000	1.112	677	1.536551
pct	1.398565	.1331393	10.50	0.000	1.137	617	1.659513
bill_prot	.3317375	.1666815	1.99	0.047	.00504	478	.6584272
purch_tech	-1.141726	.1811908	-6.30	0.000	-1.4968	853	7865982
full_educ	.4766048	.3163237	1.51	0.132	1433	784	1.096588
SFSH	.1884158	.4768452	0.40	0.693	74618	837	1.123015
MFNS	3402878	.0635507	-5.35	0.000	46484	448	2157307
MFSH	.3906217	.1769828	2.21	0.027	.04374	417	.7375016

Table A-26 Impact of Rate and Technology on Call Duration

Table A-26 contains the results of a linear regression model where the dependent variable is call duration. There is one observation per incoming call placed to the customer support center; and calls were excluded if they were placed by customers in treatment cells F1 or F2. The control group consists of customers on the CPP rate with eWeb technology (treatment cell D1a) residing in single-family homes with non-space heating.

Linear regres	si	on				Number of obs F(15, 2858) Prob > F R-squared Root MSE	= 9.93 = 0.0000 = 0.0102
	I		Robust				
callduration			Std. Err.	t 	P> t	[95% Conf.	Interval]
			23.19279	-0.97	0.333	-67.92317	23.02942
dap		-35.46943	15.91806	-2.23	0.026	-66.68146	-4.257395
ibr		-46.27718	18.36892	-2.52	0.012	-82.29484	-10.25951
ptr		-26.94081	16.40802	-1.64	0.101	-59.11357	5.231947
tou	I	-31.82633	17.05564	-1.87	0.062	-65.26893	1.616271
bihd		46.7352	22.78011	2.05	0.040	2.06808	91.40232
aihd		31.44103	24.67414	1.27	0.203	-16.9399	79.82195
pct	I	25.62387	28.21284	0.91	0.364	-29.6957	80.94344
bill_prot		-6.285522	39.06721	-0.16	0.872	-82.88829	70.31724
purch_tech		-58.71107	27.02647	-2.17	0.030	-111.7044	-5.71771
full_educ	I	130.3792	33.08207	3.94	0.000	65.5121	195.2464
SFSH		62.73266	81.17797	0.77	0.440	-96.44065	221.906
MFNS		.8469973	11.58737	0.07	0.942	-21.87345	23.56745
MFSH		26.15116	28.51186	0.92	0.359	-29.75472	82.05705
event	I	-60.9816	22.07282	-2.76	0.006	-104.2619	-17.70133
_cons		179.1135	27.26676	6.57	0.000	125.649	232.578

Table A-27 Impact of Technology on Number of Customer Contacts

Table A-27 contains the results of a Poisson regression model using robust standard errors where the dependent variable is contacts. There is one observation per customer, and customers are excluded if they are in treatment cells F1 or F2 or if they are in an eWeb treatment cell. The control group

Poisson regress Log pseudolikel		01.3397		Wald Prob	r of obs chi2(11) > chi2 lo R2	=	0.0000
contacts		Robust Std. Err.			[95% Cor	nf.	Interval]
cpp		.1202134			.326955	5	.7981829
dap	.2657675	.1234755	2.15	0.031	.02376	5	.507775
ibr	.1754584	.136015	1.29	0.197	091126	5	.4420429
ptr	.2932266	.1300577	2.25	0.024	.0383182	2	.5481351
tou	.5157242	.1320476	3.91	0.000	.2569155	5	.7745328
eweb	(omitted)						
aihd	284012	.0766225	-3.71	0.000	4341893	3	1338346
pct	1995675	.1108458	-1.80	0.072	4168213	3	.0176863
bill_prot	(omitted)						
purch_tech	-1.148136	.182368	-6.30	0.000	-1.505571	-	7907015
full_educ	(omitted)						
SFSH	.2524783	.4759737	0.53	0.596	6804131	-	1.18537
MFNS	3374354	.0684817	-4.93	0.000	4716571	-	2032136
MFSH	.4084702	.1945964	2.10	0.036	.0270683	3	.7898721
_cons	6452792	.1095803	-5.89	0.000	8600526	5	4305058

consists of customers in treatment cell F6 residing in single-family homes with non-space heating.

Table A-28 Impact of Rate and Technology on Call Duration

Table A-28 contains the results of a linear regression model where the dependent variable is call duration. There is one observation per incoming call placed to the customer support center; and calls were excluded if they were placed by customers in treatment cells F1 or F2 or in an eWeb treatment cell. The control group consists of customers in treatment cell F6 residing in single-family homes with non-space heating.

Linear regressi	on				Number of obs	=	2664
					F(12, 2651)	=	1.75
					Prob > F	=	0.0508
					R-squared	=	0.0061
					Root MSE	=	280.03
1		Robust					
callduration	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+-							
cpp	18.18945	24.00251	0.76	0.449	-28.87609		65.255
dap	-12.09055	24.75827	-0.49	0.625	-60.63803	3	6.45693

ibr		-18.85751	26.40513	-0.71	0.475	-70.63425	32.91923
ptr		-4.246434	25.30656	-0.17	0.867	-53.86904	45.37617
tou	I	-8.582239	25.31084	-0.34	0.735	-58.21323	41.04875
eweb	I	(omitted)					
aihd	I	-14.83367	13.18014	-1.13	0.260	-40.67806	11.01072
pct	I	-18.09394	19.3568	-0.93	0.350	-56.0499	19.86202
bill_prot	I	(omitted)					
purch_tech	I	-60.76823	27.20881	-2.23	0.026	-114.1209	-7.415579
full_educ	I	(omitted)					
SFSH	1	64.58653	81.12825	0.80	0.426	-94.49455	223.6676
MFNS	I	1.644604	12.1991	0.13	0.893	-22.27612	25.56533
MFSH	1	30.34922	30.39914	1.00	0.318	-29.25922	89.95767
event	I	-52.95999	25.77259	-2.05	0.040	-103.4964	-2.423576
_cons		333.3006	22.09306	15.09	0.000	289.9792	376.622

Table A-29 Impact of Rate and Technology on Customer Satisfaction with Customer Support Center

Table A-29 contains the results of a linear regression model where the dependent variable is cc_satisfa~n. There is one observation per customer, and customers are excluded if they did not answer questions 19b on the CAP final survey. The control group consists of customers with the IBR rate treatment and eWeb technology (i.e., treatment cell E1) residing in single-family homes with non-space heating.

Linear regres	si	on				Number of obs	= 478
						F(14, 463)	= 1.98
						Prob > F	= 0.0177
						R-squared	= 0.0561
						Root MSE	= 3.5217
			Robust				
cc_satisfa~n		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+-						
flr	I	.2662389	.8973768	0.30	0.767	-1.497197	2.029675
cpp		.7463843	.8100099	0.92	0.357	8453668	2.338135
dap		.9784295	.8418868	1.16	0.246	675963	2.632822
ptr		.95259	.8758812	1.09	0.277	7686048	2.673785
tou		.0318734	.8636136	0.04	0.971	-1.665214	1.728961
bihd		.9823568	.4348185	2.26	0.024	.1278947	1.836819
aihd		1.358747	.5006381	2.71	0.007	.3749426	2.342551
pct		1.787829	.7028211	2.54	0.011	.4067151	3.168944
bill_prot	L	5295303	.7650654	-0.69	0.489	-2.032961	.9739005
purch_tech		3744645	.8005962	-0.47	0.640	-1.947717	1.198788
full_educ	I	0813874	.8961324	-0.09	0.928	-1.842378	1.679603

SFSH	2.098714	1.756329	1.19	0.233	-1.352649	5.550078
MFNS	258161	.3656959	-0.71	0.481	9767903	.4604682
MFSH	-1.083385	.7544003	-1.44	0.152	-2.565858	.3990872
_cons	3.446087	1.150336	3.00	0.003	1.18556	5.706614

Appendix C: Responses to Final Survey

As was discussed in Section 6 of the Phase 2 report, two surveys were conducted over the course of the CAP. The first survey, distributed in March 2010 (during the enrollment process), contained questions related to customer attitudes towards energy conservation, usage behaviors, and customer demographics. A second (final) survey was conducted from late April through mid-July 2011, as customers were returned to the standard ComEd tariff. The latter survey included 50 questions covering topics addressed in the initial survey as well as questions regarding various elements of the CAP.

This appendix contains the text of each question in the CAP final survey and tables showing the distribution of responses to each question. The responses for questions 25 through 35 are related to customer demographics and housing characteristics. These questions were asked on both the initial and the final survey, and, as such, the corresponding tables present the combined responses from both surveys.

1. For the following statements, rate your level of agreement or disagreement by selecting the appropriate number:

Question:		Strong	ly Disag	ree						9	Strongly	Agree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
Conserving electricity helps the environment.	#	12	9	6	18	16	87	49	104	217	304	1575	26	2423
	%	0.5	0.4	0.2	0.7	0.7	3.6	2.0	4.3	9.0	12.5	65.0	1.1	100
I always shop for the lowest prices, even if it	#	13	19	36	72	82	283	194	309	428	315	652	20	2423
takes more time.	%	0.5	0.8	1.5	3.0	3.4	11.7	8.0	12.8	17.7	13.0	26.9	0.8	100
I am too busy to be concerned about	#	543	496	352	297	152	172	91	94	77	61	58	30	2423
conserving electricity in my home.	%	22.4	20.5	14.5	12.3	6.3	7.1	3.8	3.9	3.2	2.5	2.4	1.2	100
I think smart meters are a good thing.	#	53	39	38	55	65	483	174	222	330	305	590	69	2423
	%	2.2	1.6	1.6	2.3	2.7	19.9	7.2	9.2	13.6	12.6	24.3	2.8	100
I am very concerned about the environment.	#	13	19	21	33	28	149	105	226	404	403	998	24	2423
	%	0.5	0.8	0.9	1.4	1.2	6.1	4.3	9.3	16.7	16.6	41.2	1.0	100
Conserving electricity in my home helps m save money.	#	15	29	13	14	20	82	65	108	268	407	1378	24	2423
save money.	%	543 496 352 297 152 172 91 94 77 61 58 30 22.4 20.5 14.5 12.3 6.3 7.1 3.8 3.9 3.2 2.5 2.4 1.2 53 39 38 55 65 483 174 222 330 305 590 69 2.2 1.6 1.6 2.3 2.7 19.9 7.2 9.2 13.6 12.6 24.3 2.8 13 19 21 33 28 149 105 226 404 403 998 24 0.5 0.8 0.9 1.4 1.2 6.1 4.3 9.3 16.7 16.6 41.2 1.0 15 29 13 14 20 82 65 108 268 407 1378 24 0.6 1.2 0.5 0.6 0.8 3.4 2.7	100											
I've already done everything I can to	#	31	40	75	115	131	352	242	348	407	233	417	32	2423
conserve electricity in my home.	%	1.3	1.7	3.1	4.7	5.4	14.5	10.0	14.4	16.8	9.6	17.2	1.3	100
I am usually one of the first to try new	#	73	108	172	228	186	481	280	274	245	153	202	21	2423
products and services.	%	3.0	4.5	7.1	9.4	7.7	19.9	11.6	11.3	10.1	6.3	8.3	0.9	100
I look for products that are good for the	#	17	21	28	57	72	328	248	364	456	329	481	22	2423
environment.	%	0.7	0.9	1.2	2.4	3.0	13.5	10.2	15.0	18.8	13.6	19.9	0.9	100
Energy efficiency products are too	#	95	101	149	161	169	407	290	298	306	177	243	27	2423
expensive.	%	3.9	4.2	6.1	6.6	7.0	16.8	12.0	12.3	12.6	7.3	10.0	1.1	100
Saving energy means being uncomfortable	#	276	295	293	291	197	325	204	166	160	73	121	22	2423
or giving up things I enjoy.	%	11.4	12.2	12.1	12.0	8.1	13.4	8.4	6.9	6.6	3.0	5.0	0.9	100
I like to purchase the most up-to-date	#	87	150	195	237	189	473	219	233	217	167	238	18	2423
appliances or electronic devices with the newest features.	%	3.6	6.2	8.0	9.8	7.8	19.5	9.0	9.6	9.0	6.9	9.8	0.7	100

2.	Please indicate whether you agree or disagree with each statement below about the electricity pricing plan you started in May, 2010. If you are
	not sure, select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I was previously aware that a new pricing plan went into effect May,	#	1253	433	724	13	2423
2010.	%	51.7	17.9	29.9	0.5	100
The price I pay for electricity (per kWh) is the same all day, every day.	#	244	1323	840	16	2423
	%	10.1	54.6	34.7	0.7	100
The price I pay for electricity (per kWh) changes based upon the total	#	1177	434	788	24	2423
amount of electricity I use per month.	%	48.6	17.9	32.5	1.0	100
The price I pay for electricity (per kWh) changes based upon the time of	#	1484	221	703	15	2423
day.	%	61.2	9.1	29.0	0.6	100
On certain days and times during the summer, the price I pay for electricity	#	1837	146	421	19	2423
can increase significantly.	%	75.8	6.0	17.4	0.8	100
On certain days and times during the summer, I can earn a rebate (credit	#	577	276	1548	22	2423
applied to my bill) if I reduce my usage.	%	23.8	11.4	63.9	0.9	100
During the summer, ComEd asks customers to reduce electricity usage	#	1706	115	585	17	2423
between 1 p.m. and 5 p.m.	%	70.4	4.7	24.1	0.7	100
During the summer, ComEd asks customers to reduce electricity usage	#	457	839	1106	21	2423
between 5 p.m. and 9 p.m.	%	18.9	34.6	45.6	0.9	100
My pricing plan includes a rate guarantee.	#	247	515	1644	17	2423
	%	10.2	21.3	67.8	0.7	100

3. For the following items, please rate your agreement or disagreement regarding the electricity pricing plan you started in May of 2010. If you are not aware that you started a new pricing plan in May, 2010, skip to question #4:

Question:		Stro	ngly D	isagre	ee					Stro	ongly	Agree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The pricing plan holes me reduce my electric	#	100	105	75	94	87	425	168	167	194	93	203	712	2423
The pricing plan helps me reduce my electric bill.	# %	4.1	4.3	3.1	3.9	3.6	17.5	6.9	6.9	8.0	3.8	8.4	29.4	100
The pricing plan is compatible with my lifestyle.	#	93	98	69	103	88	446	150	182	212	113	153	716	2423
	%	3.8	4.0	2.8	4.3	3.6	18.4	6.2	7.5	8.7	4.7	6.3	29.6	100
The pricing plan is easy to understand.	#	112	108	95	132	115	346	148	162	196	119	173	717	2423
	%	4.6	4.5	3.9	5.4	4.7	14.3	6.1	6.7	8.1	4.9	7.1	29.6	100
If possible, I want to remain on the pricing plan.	#	110	82	64	47	70	501	141	133	176	128	256	715	2423
	%	4.5	3.4	2.6	1.9	2.9	20.7	5.8	5.5	7.3	5.3	10.6	29.5	100
I would recommend the pricing plan to my	#	110	94	73	66	83	509	141	142	155	118	237	695	2423
family, friends, and neighbors.	%	4.5	3.9	3.0	2.7	3.4	21.0	5.8	5.9	6.4	4.9	9.8	28.7	100

4. You may have received (or were offered) a device that displays your electricity usage and cost. We are interested in your experience with the In-Home energy Display (called an "IHD"). For the following items, please indicate whether you agree or disagree with the statement. If you are not sure, select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I received an offer from ComEd for a free IHD.	#	771	590	953	109	2423
	%	31.8	24.3	39.3	4.5	100
I received an offer from ComEd to purchase an IHD.	#	131	1066	1084	142	2423
	%	5.4	44.0	44.7	5.9	100
I received an IHD in the mail.	#	653	956	706	108	2423
	%	27.0	39.5	29.1	4.5	100
My IHD is currently operating.	#	281	1233	761	148	2423
	%	11.6	50.9	31.4	6.1	100

Question:		St	rongly	Disa	gree				S	trong	ly Agı	ree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The IHD helps me reduce my electric bill.	#	159	85	59	61	40	126	59	57	54	51	81	1591	2423
	%	6.6	3.5	2.4	2.5	1.7	5.2	2.4	2.4	2.2	2.1	3.3	65.7	100
The IHD has little value to me.	#	132	95	62	78	64	129	46	30	52	45	105	1585	2423
	%	5.4	3.9	2.6	3.2	2.6	5.3	1.9	1.2	2.1	1.9	4.3	65.4	100
The IHD is easy to use.	#	132	71	48	50	39	144	56	50	74	70	102	1587	2423
	%	5.4	2.9	2.0	2.1	1.6	5.9	2.3	2.1	3.1	2.9	4.2	65.5	100
The IHD helps me monitor my electricity usage.	#	144	63	35	39	47	116	58	55	92	65	115	1594	2423
	%	5.9	2.6	1.4	1.6	1.9	4.8	2.4	2.3	3.8	2.7	4.7	65.8	100
The price alerts received on the IHD helped me	#	175	84	58	57	46	142	46	53	55	39	75	1593	2423
reduce energy.	%	7.2	3.5	2.4	2.4	1.9	5.9	1.9	2.2	2.3	1.6	3.1	65.7	100
The budget feature on my IHD helped me manage	#	196	90	62	57	45	152	53	36	51	32	61	1588	2423
my energy cost.	%	8.1	3.7	2.6	2.4	1.9	6.3	2.2	1.5	2.1	1.3	2.5	65.5	100
I would recommend the IHD to my family, friends,	#	183	84	43	50	35	148	49	39	66	43	102	1581	2423
and neighbors.	%	7.6	3.5	1.8	2.1	1.4	6.1	2.0	1.6	2.7	1.8	4.2	65.2	100

5. If you have (or had) an IHD in your home, please rate your agreement or disagreement regarding the IHD. Otherwise, skip to question #7:

6. How often did you look at the information the IHD display?

Question:		About once a month	About once a week	At Least Once Each Day	More Than Once A Week But Not Daily	Never	Blank	Total
During the first month:	#	86	100	205	145	334	1553	2423
_	%	3.5	4.1	8.5	6.0	13.8	64.1	100
In later months:	#	142	97	66	104	415	1599	2423
	%	5.9	4.0	2.7	4.3	17.1	66.0	100

7. ComEd may have mailed you information describing your new pricing plan, how to track your results, and suggestions on how you can save electricity and reduce your bill. For the following items, please indicate whether you agree or disagree with the statements regarding the information you may have received. If you are not sure, select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I received information about my pricing plan in the mail.	#	1179	291	911	42	2423
	%	48.7	12.0	37.6	1.7	100
I requested additional information to be mailed to me.	#	204	1617	548	54	2423
	%	8.4	66.7	22.6	2.2	100
I shared the information with others who live in my home.	#	654	1249	440	80	2423
	%	27.0	51.5	18.2	3.3	100

8. If you received information in the mail about the pricing plan, please rate your agreement or disagreement regarding the information you received. Otherwise, skip to question #9:

Question:		St	rongly	y Disa	gree				St	rongl	y Agr	ee	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The information helps me reduce my electric bill.	#	119	69	70	58	74	268	129	132	167	110	180	1047	2423
	%	4.9	2.8	2.9	2.4	3.1	11.1	5.3	5.4	6.9	4.5	7.4	43.2	100
The information is easy to understand.	#	91	52	52	54	65	224	113	163	184	159	212	1054	2423
	%	3.8	2.1	2.1	2.2	2.7	9.2	4.7	6.7	7.6	6.6	8.7	43.5	100
The information has little value to me.	#	212	140	148	152	117	260	91	65	67	42	71	1058	2423
	%	8.7	5.8	6.1	6.3	4.8	10.7	3.8	2.7	2.8	1.7	2.9	43.7	100

9. ComEd sends monthly bills to your home. For the following items, please indicate whether you agree or disagree with the statements below regarding your monthly bill:

Question:		Strong	gly Dis	agree						Stro	ongly	Agree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The information in the monthly bill helps	#	179	169	177	170	156	500	212	241	195	127	245	52	2423
me reduce my electric bill.	%	7.4	7.0	7.3	7.0	6.4	20.6	8.7	9.9	8.0	5.2	10.1	2.1	100
I changed my energy use in at least one	#	242	191	204	153	123	307	192	240	264	172	277	58	2423
way because of something I read in the monthly bill.	%	10.0	7.9	8.4	6.3	5.1	12.7	7.9	9.9	10.9	7.1	11.4	2.4	100
The information in the monthly bill has	#	283	262	259	243	197	433	137	130	139	111	170	59	2423
little value to me.	%	11.7	10.8	10.7	10.0	8.1	17.9	5.7	5.4	5.7	4.6	7.0	2.4	100
The monthly bill clearly presents the	#	185	152	135	160	153	645	194	173	191	124	220	91	2423
charges for the new pricing plan.	%	7.6	6.3	5.6	6.6	6.3	26.6	8.0	7.1	7.9	5.1	9.1	3.8	100

10. ComEd may have mailed Home Energy Reports to your home from time to time. This would have been mailed separately from your monthly bill. For the following items, please indicate whether you agree or disagree with the statement regarding the Home Energy Reports. If you are not sure, please select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I received one or more Home Energy Reports in the mail	#	1625	204	561	33	2423
	%	67.1	8.4	23.2	1.4	100
I shared the Home Energy Report with others who live in my home.	#	978	983	383	79	2423
	%	40.4	40.6	15.8	3.3	100

11. If you received one or more of the Home Energy Reports, please rate your agreement or disagreement with the statements below. If you did not receive the Home Energy Report, skip to question #12:

Question:		Stron	gly Dis	agree						Stro	ongly A	Agree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The Home Energy Reports help me reduce	#	147	128	127	123	99	299	171	175	197	134	229	594	2423
my electric bill.	%	6.1	5.3	5.2	5.1	4.1	12.3	7.1	7.2	8.1	5.5	9.5	24.5	100
The Home Energy Report is easy to	#	70	70	60	50	86	241	158	224	299	223	341	601	2423
understand.	%	2.9	2.9	2.5	2.1	3.5	9.9	6.5	9.2	12.3	9.2	14.1	24.8	100
The neighbor comparison in the Home	#	144	133	100	70	83	197	110	188	251	207	330	610	2423
Energy Report encourages me to save	%	5.9	5.5	4.1	2.9	3.4	8.1	4.5	7.8	10.4	8.5	13.6	25.2	100
energy.														
The Home Energy Reports have little value to	#	291	294	236	178	131	246	92	78	91	65	112	609	2423
me.	%	12.0	12.1	9.7	7.3	5.4	10.2	3.8	3.2	3.8	2.7	4.6	25.1	100
I changed my energy use in at least one	#	152	142	112	96	62	265	146	174	217	191	265	601	2423
way because of something I read in the	%	6.3	5.9	4.6	4.0	2.6	10.9	6.0	7.2	9.0	7.9	10.9	24.8	100
Home Energy Report.														

12. ComEd may have mailed Rate Comparison Reports to your home from time to time. This was a separate letter from your monthly bill that compared your new pricing plan to your old pricing plan. For the following items, please indicate whether you agree or disagree with the statement regarding the Rate Comparison Reports. If you are not sure, please select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I received one or more Rate Comparison Reports in the mail.	#	815	415	1145	48	2423
	%	33.6	17.1	47.3	2.0	100
I shared the Rate Comparison Report with others who live in my home.	#	476	1014	822	111	2423
	%	19.6	41.8	33.9	4.6	100

13. If you received the Rate Comparison Report, please rate your agreement or disagreement with the statements below. If you did not receive the Rate Comparison Report, skip to question #14:

Question:		Stro	ngly D	isagre	e					Stro	ngly A	gree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The Rate Comparison Report is easy to	#	66	53	33	45	41	196	94	105	141	109	214	1326	2423
understand.	%	2.7	2.2	1.4	1.9	1.7	8.1	3.9	4.3	5.8	4.5	8.8	54.7	100
I changed my energy use in at least one	#	99	83	47	60	51	179	109	95	121	82	165	1332	2423
way because of something I read in the	%	4.1	3.4	1.9	2.5	2.1	7.4	4.5	3.9	5.0	3.4	6.8	55.0	100
Rate Comparison Report.														
The Rate Comparison Reports help me	#	102	90	56	59	55	196	97	85	109	75	168	1331	2423
reduce my electric bill.	%	4.2	3.7	2.3	2.4	2.3	8.1	4.0	3.5	4.5	3.1	6.9	54.9	100
The Rate Comparison Reports have little	#	186	163	125	93	73	172	50	51	44	43	90	1333	2423
value to me.	%	7.7	6.7	5.2	3.8	3.0	7.1	2.1	2.1	1.8	1.8	3.7	55.0	100

14. ComEd provided access to the SmartTools website, which displays on-line information regarding your energy usage. The SmartTools website is updated each day with the previous day's information. For the following items, please indicate whether you agree or disagree with each statement. If you are unsure, select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I have heard of the SmartTools website.	#	753	716	861	93	2423
	%	31.1	29.6	35.5	3.8	100
I viewed my energy usage information on the SmartTools website more than three times.	#	171	1462	686	104	2423
	%	7.1	60.3	28.3	4.3	100

15. If you accessed the SmartTools website, please rate your agreement or disagreement regarding the statements below. If you did not access the SmartTools website, please skip to question #16:

Question:		Strongly Disagree							Strongly Agree			Blank	Total	
		0	1	2	3	4	5	6	7	8	9	10		
The SmartTools website helps me reduce	#	117	67	35	30	33	81	38	44	34	13	47	1884	2423
my electric bill.	%	4.8	2.8	1.4	1.2	1.4	3.3	1.6	1.8	1.4	0.5	1.9	77.8	100
The SmartTools website has little value to	#	119	68	57	39	39	76	35	19	27	16	43	1885	2423
me.	%	4.9	2.8	2.4	1.6	1.6	3.1	1.4	0.8	1.1	0.7	1.8	77.8	100
The SmartTools website is easy to use.	#	103	56	21	19	29	89	41	40	46	34	56	1889	2423
	%	4.3	2.3	0.9	0.8	1.2	3.7	1.7	1.7	1.9	1.4	2.3	78.0	100
I want to continue to have access to the	#	102	57	22	22	20	89	31	30	45	36	85	1884	2423
SmartTools website.	%	4.2	2.4	0.9	0.9	0.8	3.7	1.3	1.2	1.9	1.5	3.5	77.8	100

16. ComEd may have notified you when it needed help to conserve energy (called "Defeat the Peak"). For the following items, please indicate whether you agree or disagree with the statements below. If you are not sure, please select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I received phone notifications.	#	775	1002	597	49	2423
	%	32.0	41.4	24.6	2.0	100
I received e-mail notifications.	#	256	1426	667	74	2423
	%	10.6	58.9	27.5	3.1	100
I received text notifications.	#	151	1641	74	557	2423
	%	6.2	67.7	3.1	23.0	100

17. If you received price or conservation notifications, (regardless of the method of notification), please indicate your agreement or disagreement with the statements below. Otherwise please skip to question #18:

Question:		Strong	gly Di	sagree	3					Stro	ongly .	Agree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The notifications encouraged me to reduce	#	95	59	42	30	37	145	98	127	177	147	265	1201	2423
electricity consumption in my home.	%	3.9	2.4	1.7	1.2	1.5	6.0	4.0	5.2	7.3	6.1	10.9	49.6	100
I didn't have the time to take action when I was	#	202	176	157	109	104	166	72	56	66	39	59	1217	2423
notified.	%	8.3	7.3	6.5	4.5	4.3	6.9	3.0	2.3	2.7	1.6	2.4	50.2	100
The notifications were easy to understand.	#	73	42	28	14	26	145	91	115	202	185	297	1205	2423
	%	3.0	1.7	1.2	0.6	1.1	6.0	3.8	4.7	8.3	7.6	12.3	49.7	100
The notifications helped me reduce my electric	#	121	72	68	55	65	229	96	99	129	104	180	1205	2423
bill.	%	5.0	3.0	2.8	2.3	2.7	9.5	4.0	4.1	5.3	4.3	7.4	49.7	100
The notifications have little value to me.	#	251	188	162	97	82	176	54	56	47	37	61	1212	2423
	%	10.4	7.8	6.7	4.0	3.4	7.3	2.2	2.3	1.9	1.5	2.5	50.0	100

18. The SmartTools call center provided customers with information and assistance with the pricing plan. Please indicate whether you agree or disagree with the statements below. If you are unsure, please select "Don't Know.":

Question:		Agree	Disagree	Don't Know	Blank	Total
I contacted the SmartTools call center.	#	183	1484	689	67	2423
	%	7.6	61.2	28.4	2.8	100
A SmartTools representative contacted me.	#	133	1412	807	71	2423
	%	5.5	58.3	33.3	2.9	100

19. If you contacted the dedicated SmartTools call center (or were contacted by the call center), please rate your agreement or disagreement with the statements below regarding the SmartTools call center. Otherwise please skip to question #20:

Question:		Stro	ngly C	Disagr	ee					Stron	ngly A	gree	Blank	Total
		0	1	2	3	4	5	6	7	8	9	10		
The information provided by the SmartTools call	#	112	63	29	29	31	68	32	27	21	21	61	1929	2423
center helped me reduce my electric bill.	%	4.6	2.6	1.2	1.2	1.3	2.8	1.3	1.1	0.9	0.9	2.5	79.6	100
I found the SmartTools call center easy to do	#	101	47	22	25	18	72	32	33	31	34	63	1945	2423
business with.	%	4.2	1.9	0.9	1.0	0.7	3.0	1.3	1.4	1.3	1.4	2.6	80.3	100
The SmartTools call center has little value to me.	#	112	63	46	34	28	67	28	23	20	20	41	1941	2423
	%	4.6	2.6	1.9	1.4	1.2	2.8	1.2	0.9	0.8	0.8	1.7	80.1	100
My overall experience with the SmartTools call	#	92	50	20	20	20	73	36	25	37	37	72	1941	2423
center was positive.	%	3.8	2.1	0.8	0.8	0.8	3.0	1.5	1.0	1.5	1.5	3.0	80.1	100

20. As a direct result of your participation in ComEd's electricity pricing program, which one tool do you think was the most helpful in letting you manage your electricity cost? (Select only one.):

	Monthly Bill	My In- Home Display	Rate Comparison Report	The Home Energy Report	The SmartTools Website	The Customer Information Mailed To You	The Dedicated SmartTools Call Center	The Pricing Notification	The Pricing Plan I Was On	None Of These	Blank	Total
#	700	183	141	373	37	155	7	44	209	478	96	2423
%	28.9	7.6	5.8	15.4	1.5	6.4	0.3	1.8	8.6	19.7	4.0	100

21. As a direct result of your participation in ComEd's electricity pricing program, what actions, if any, did you take to reduce you	energy cost?
(Please check all that apply.):	

Question:		FALSE	TRUE	Total
Used appliances at a non-peak time	#	1462	961	2423
	%	60.3	39.7	100
Replaced light bulbs with energy efficient CFL (compact fluorescent) bulbs	#	1001	1422	2423
	%	41.3	58.7	100
Used cold water for laundry	#	1564	859	2423
	%	64.5	35.5	100
Set the thermostat to 78 degrees or higher (during summer)	#	1757	666	2423
	%	72.5	27.5	100
Turned off lights and electronics that are not in use	#	666	1757	2423
	%	27.5	72.5	100
Purchased a more efficient appliance	#	1873	550	2423
	%	77.3	22.7	100
Used timers to run appliances during non-peak times	#	2261	162	2423
	%	93.3	6.7	100
Charged re-chargeable devices during non-peak times	#	2129	294	2423
	%	87.9	12.1	100
Asked household members to use less electricity	#	1270	1153	2423
	%	52.4	47.6	100
Other. Please specify	#	2280	143	2423
	%	94.1	5.9	100
I didn't take any actions	#	2173	250	2423
	%	89.7	10.3	100

22. Thinking about your experiences with ComEd's electricity pricing plan, how satisfied are you with this pricing plan?

	Extreme	Extremely Dissatisfied Extremely Satisfied											Total
	0	1	2	3	4	5	6	7	8	9	10	Blank	Ισται
#	117	93	84	144	121	681	229	264	257	152	175	106	2423
%	4.8	3.8	3.5	5.9	5.0	28.1	9.5	10.9	10.6	6.3	7.2	4.4	100

23. Thinking about your experiences with ComEd as your electric utility, how satisfied are you with ComEd?

	Extremely Dissatisfied Extremely Satisfied											Blank	Total
	0	1	2	3	4	5	6	7	8	9	10	BIANK	Total
#	77	69	70	132	120	487	206	344	358	236	262	62	2423
%	3.2	2.8	2.9	5.4	5.0	20.1	8.5	14.2	14.8	9.7	10.8	2.6	100

24. If you could change ONE thing about the program what would it be and why?

Due to the open-ended nature of this question, responses are not provided in this Appendix.

25. How would you describe your home?

	Detached Single Family Home	Condominium	Apartment	Mobile Home	Townhouse, Duplex or Row House	Other	Blank	Total
#	1295	231	594	13	132	66	92	2423
%	53.4	9.5	24.5	0.5	5.4	2.7	3.8	100

26. Do you rent or own your home?

	Own (Or Buying)	Rent	Blank	Total
#	1769	564	90	2423
%	73.0	23.3	3.7	100

27. How many bedrooms are in your home? (check one):

	One Bedroom	Two Bedrooms	Three Bedrooms	Four or More Bedrooms	Blank	Total
#	266	733	891	441	92	2423
%	11.0	30.3	36.8	18.2	3.8	100

28. What is your home's primary method of cooling in the summer? (check one):

	Central Air Conditioning	Window or Wall Air Conditioning/Room Air Conditioners	Fans	Other	None	Blank	Total
#	1091	941	275	15	12	89	2423
%	45.0	38.8	11.3	0.6	0.5	3.7	100

29. Do you have internet access? (check all that apply)

This question was presented inconsistently between the initial and final surveys, therefore responses are not provided in this appendix.

30. In what year were your born?

	1990	1920 - 1929	1930 - 1939	1940 - 1949	1950 - 1959	1960 - 1969	1970 - 1979	1980 - 1989	Before 1920	Blank	Grand Total
#	1	89	214	431	567	408	338	139	18	210	2415
%	0.0	3.7	8.9	17.8	23.5	16.9	14.0	5.8	0.7	8.7	100

31	What hest	describes the	e level	of school	ing you	have com	pleted?
51.	vviiat Dest	uescribes in		OI SCHOOL	ing you.	nave com	pieteu:

	Elementary School	Some High School	Graduated High School	Trade Or Technical School	Some College	Graduated College	Graduate Or Professional School	Blank	Total
#	74	121	394	111	448	633	520	122	2423
%	3.1	5.0	16.3	4.6	18.5	26.1	21.5	5.0	100

32. How many people, including yourself, live in your household?

	0	1	2	3	4	5	6	7	8	9	Blank	Total
#	16	552	759	376	351	159	61	23	11	1	114	2423
%	0.7	22.8	31.3	15.5	14.5	6.6	2.5	0.9	0.5	0.0	4.7	100

33. How many in your household are under the age of 18?

	0	1	2	3	4	5	6	7	Blank	Total
#	1506	320	286	91	27	12	5	2	174	2423
%	62.2	13.2	11.8	3.8	1.1	0.5	0.2	0.1	7.2	100

34. What is your racial or ethnic background? (check one):

	White, Not Of Hispanic Origin	Black, Not Of Hispanic Origin	Asian or Pacific Islander	American Indian Or Alaskan Native	Hispanic Or Latino	Other	Blank	Total
#	1315	444	53	5	378	82	146	2423
%	54.3	18.3	2.2	0.2	15.6	3.4	6.0	100

	Less Than \$20,000 A Year	Between \$20,000 and \$39,999 A Year	Between \$40,000 and \$79,999 A Year	Between \$80,000 and \$120,000 A Year	Greater Than \$120,000 A Year	Blank	Total
#	431	485	668	365	270	204	2423
%	17.8	20.0	27.6	15.1	11.1	8.4	100

35. Which of the following best describes your 2009 household income before taxes? (check one):

Appendix D: NCES Customer Demand Model

This appendix describes a version of the nested constant elasticity of substitution (NCES) demand model. The immediate application is the dynamic pricing components of Commonwealth Edison's (ComEd) Customer Applications Pilot (CAP).

Model Specification

The nested CES is derived from a cost function that allocates a customer's electricity costs separately within a day and between days. That is, overall cost is a function of *daily price indexes*, which in turn are functions of the hourly prices (or average prices for daily sub-periods) on each day. The traditional version of the model, which has typically been applied to analysis of hourly real-time pricing, allows two levels of customer flexibility to respond to changing electricity prices. One level involves the flexibility of customers to shift load between hours (or sub-periods) *within* a day; the other level allows the flexibility to shift load *between* days in response to differences in the overall average price level between different days.⁷⁴

Certain aspects of the CAP dynamic price structures, which include critical-peak pricing (CPP), peak-time rebates (PTR), and day-ahead hourly pricing (DAP), suggest modifying the usual hourly version of the NCES model. That is, while customers assigned to all three of the above rates experience day-ahead hourly pricing, there was relatively little hour-to-hour variation in prices during the summer of 2010. Largely due to a daily revenue-neutrality condition, most price variation was between peak and off-peak hours. In addition, on event days, the CPP prices and PTR credits took on essentially the same value for each hour of the four-hour event period. These conditions suggest that for efficiency sake, the hours of the day be grouped into sub-periods for purposes of estimation.

⁷⁴ For a technical description and application of the NCES model, see J.A. Herriges, S.M. Baladi, D.W. Caves and B.F. Neenan, "The Response of Industrial Customers to Electric Rates Based Upon Dynamic Marginal Costs," *Review of Economics and Statistics*, p. 446-454, 1993.

In the NCES model, the daily price index for day d, D_d , is specified via the CES functional form as a *load-weighted average of elasticity-adjusted hourly prices* P_h in that day⁷⁵:

$$D_{\rm d} = \left(\sum_{h \in d} \alpha_{\rm hd} P_{\rm h}^{(1-\sigma_{\rm w})}\right)^{\frac{1}{(1-\sigma_{\rm w})}}$$

where α_{hd} is a load shape parameter that approximates the fraction of daily load in hour (or time-period) *h*, and σ_w is the *within-day elasticity of substitution* parameter. Next, the aggregate monthly price index M_m , also expressed as a CES function, is a load-weighted average of elasticity-adjusted daily prices D_d in that month:

$$M_m = \left(\sum_d \beta_d D_d^{(1-\sigma_b)}\right)^{\frac{1}{(1-\sigma_b)}}$$

where β_d is a second load shape parameter that approximates the fraction of aggregate monthly load that occurs in day *d*, and σ_b is the *between-day elasticity of substitution* parameter.

The customer's demand for electricity may then be obtained by differentiating the cost function implied by these price indexes with respect to the input prices. It is most convenient to specify the resulting demand equations *relative to a base, or average reference load*, and in logarithm form as shown in the following equation:

$$\ln\left(\frac{E_{dh}}{\overline{E}_{h}^{m}}\right) = \sigma_{w}\left[\ln\left(\frac{D_{d}}{\overline{D}_{m}^{m}}\right) - \ln\left(\frac{P_{dh}}{\overline{P}_{h}^{m}}\right)\right] + \sigma_{b}\left[\ln\left(\frac{M_{m}}{\overline{M}_{m}^{m}}\right) - \ln\left(\frac{D_{d}}{\overline{D}_{m}^{m}}\right)\right]$$
(1)

 E_{db} represents electricity usage in hour (or time period) b on day d, P_{db} is the price in that time period on day d, and the daily and monthly price indexes are as defined above. The variables with the super bars in the denominators of each term represent averages of the variable for the comparable time period in the reference period (*e.g.*, the average load in time period b on weekdays in a given month)⁷⁶. The demand equations have two types of parameters. The *load shape parameters* (α_{bd} and β_d) characterize the inherent shape of the customer's load pattern. They are used to construct the daily and monthly price indexes, but are not estimated statistically. The *price response parameters* (σ_w and σ_b) characterize

⁷⁵ In the version of the model applied here, we define the daily price index in terms of the average prices for four time periods of interest during the day: *peak*, *off-peak*, and pre- and post-peak *shoulder* periods, where peak period is defined as the four-hour CPP/PTR event window. In this case, 24 hourly observations per day are reduced to four per day.

⁷⁶ In the CAP analysis, the reference period was an average of several days of mild weather and low prices for the relevant rate treatment group.

how the load responds to changing hourly prices. Only the price response parameters are estimated.⁷⁷

Implementation

For application to the ComEd evaluation, we define four daily *sub-periods* as follows:

- 1. Off-peak (hours-ending 1-10, and 23-24)
- 2. Morning shoulder (HE 11-13)
- 3. Peak (HE 14 17)
- 4. Evening shoulder (HE 18 22).

We define the *base period* for constructing the denominator terms as the four days that had temperatures and load profiles that suggested little or no air conditioning load – June 3, 7, 8, and 14. Base period loads and weather variables are calculated as averages by time period across those four days.

For the *price indexes* in the numerators, we use approximations that effectively assume zero elasticities of substitution in forming the weighted sums.⁷⁸ Three sets of price indexes are calculated – one for each *sub-period* of each day and month, defined above (where we re-label the hourly P_b variables in the above equations as DP_s , where *s* indicates sub-period); one for each *day* of each month $(D_{d,m})$, and one for each month (M_m) . For the weights in the price indexes, we use load data for non-event weekdays. The relevant equations are:

 $DP_{s,d,m} = \sum_{b} g_{b,s} P_{b,s,d,m}$, where $g_{b,s}$ is the share of sub-period s's usage in hour *b* on the average non-holiday, non-event weekday in month *m*.⁷⁹

 $D_{d,m} = \sum_{s} \alpha_{s} DP_{s,d,m}$, where α_{s} is the share of usage in sub-period *s* on the average non-holiday, non-event weekday in month *m*.⁸⁰

 $M_m = \sum_d \beta_d D_{d,m}$, where β_d is the share of usage on day *d* in month *m*. We exclude weekend days, so for purposes of calculating β_d , the total usage is the sum of non-holiday weekday usage in the month.⁸¹

⁷⁷ As described below, the model can be made more realistic by adding weather and time-period indicator variables.

⁷⁸ We expect the elasticity values to be relatively small in any case. The more formal approach is to construct the price indexes using combinations of arithmetic and geometric averages, which produces a theoretically appropriate approximation to the "true" price index that includes the elasticity parameters.

⁷⁹ The $DP_{s,d,m}$ are calculated for each sub-period, day and month, *including* event days (i.e., calculate the $g_{b,s}$ first, using only non-event days; then calculate the price indexes).

 $^{^{80}}$ $D_{d,m}$ is calculated for each day and month, *including* event days.

⁸¹ M_m is calculated as the weighted sum across all weekdays in the month, *including* event days.

Note that each of the sets of weights sum to 1 (*e.g.*, the weights across hours in each sub-period, across sub-periods on the average day, and across days in the month).

The estimation equation is given by (1) [except that the *h* are replaced by *s*, and P_b by DP_s], plus a set of *constant terms* and a *weather term*.

The terms in the denominators with superscript bars over the variables are calculated similarly to the price indexes above, but with prices and load weights only for the four "base" days. That is, the comparable average hourly load-weights by sub-period and average sub-period loads are calculated using data for the base days. Then DP^{Base} , is calculated as the average *for each sub-period* across hours and the four days (i.e., rather than one set for each day, there is only one set that average across sub-periods <u>and</u> the four base days), and D^{Base} is calculated as the load-weighted average across sub-periods <u>and</u> the four base days (i.e., rather than one for each day and month, there is only one "average-day" price index that applies for all days and months). Finally, since there is only one average base-day price index, M^{Base} is equal to that value, and is the same for each month.

The constant term in the equation consists of the default regression constant, plus separate indicator variables for sub-periods 2, 3, and 4, as well as months July and August. The weather term is constructed analogously to the price index terms in (1). That is,

 $\tau_s (ln(WtdTHI_{s,d,m}) - ln(WtdTHI^{Base}_{s})),$

where the τ_s are parameters to be estimated, and WtdTHI_s is a weighted average of the temperature humidity index (THI) for day s and the previous two days.

The estimation equation is applied to data consisting of four sub-period observations per day for each weekday of the summer.

The Electric Power Research Institute Inc., (EPRI, www.epri.com) conducts research and development relating to the generation, delivery and use of electricity for the benefit of the public. An independent, nonprofit organization, EPRI brings together its scientists and engineers as well as experts from academia and industry to help address challenges in electricity, including reliability, efficiency, health, safety and the environment. EPRI also provides technology, policy and economic analyses to drive long-range research and development planning, and supports research in emerging technologies. EPRI's members represent more than 90 percent of the electricity generated and delivered in the United States, and international participation extends to 40 countries. EPRI's principal offices and laboratories are located in Palo Alto, Calif.; Charlotte, N.C.; Knoxville, Tenn.; and Lenox, Mass.

Together...Shaping the Future of Electricity

© 2012 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

1024865