

NYSEG - SENECA COMPRESSED AIR ENERGY STORAGE PROJECT Dresser Rand (Cycle 1) Generation and Compression Cycle Summary

Generation Cycle Data, 1 x 138 MW Air Expander

Item	Description	Max Generation	75% Load	50% Load	25% Load	10% Load	Remarks
1	Gross Power Output, kW	137,867	103,401	68,934	34,467	14,045	From Dresser Rand data dated 8/24/2011
2	Plant Auxiliary Power Requirements, kW	2,065	1,847	1,614	1,356	1,071	Incl. transformers, cooling tower, pumps, etc.
3	Net Power Output to Grid, kW	135,802	101,554	67,320	33,111	12,974	Power sent to grid.
4	Average Mass Flow Rate, lbs/hr	1,440,021	1,131,931	818,384	521,865	305,998	Between 1150 - 1500 psig Cavern pressure. Flowrate based on 92 deg F recuperator air inlet temperature.
5	Net Generation Specific Air Consumption, lbs/kW-hr	10.60	11.15	12.16	15.76	23.59	- Ditto -
6	Fuel Consumption HHV, MMBTU/hr	589	446	304	158	67	HHV/LHV Ratio = 1.109
7	Net Heat Rate, BTU/kW-hr - HHV	4,335	4,396	4,512	4,775	5,152	
8	Total Hours of Generation	12.36	15.73	21.75	34.11	58.17	Time until cavern is depleted for the given generation.
9	Net Energy Ratio @ 45 deg F Ambient	0.77	0.81	0.88	1.15	1.72	
10	Net Energy Ratio @ -2 deg F Ambient	0.72	0.76	0.83	1.08	1.61	
11	Net Energy Ratio @ 87 deg F Ambient	0.82	0.86	0.94	1.22	1.82	Based on 170 MW Compression
12	Total Usable Air Storage in Cavern @ 1500 psig, lbs	17,800,000					Usable air mass between 1500 and 1150 psig (125 to 85 deg F respectively).
13	Emissions (after control)						
	NOx, lbs/hr	4.66	3.69	2.69	1.73	1.14	From DR document StartupEmissions-10MinStart 5-25- 11. Corrected to 2 ppmvd. 10% Load lbs/hr values
	NOx, lbs/MW-hr (Net)	0.034	0.036	0.040	0.052	0.088	estimated from 25% load values.
	CO ₂ , lbs/hr	73,715	55,877	37,962	19,696	9,153	From DR document, Gen Performance Tab. 5-20-2011. 10% Load lbs/hr values prorated from 25% load values.
	CO ₂ , lbs/MW-hr (Net)	543	550	564	595	705	
14	Additional Consumption Rates						
	19% Aqueous NH3, lbs/hr	290	228	166	106	69	2 ppmVd@15% O2 NOx at Stack, 5 ppm NH3 slip. NH3
	19% Aqueous NH3, lbs/MW-hr	2.13	2.25	2.47	3.20	5.32	lbs/hr values prorated from 25% load.
	Demin Water, Ibs/hr	10,127	7,677	5,224	2,718	0	From Dresser Rand data dated 8/24/2011
	Demin Water, Ibs/MW-hr	74.57	75.60	77.59	82.09	0	

Compression Cycle Data

	Description	45 deg F	, 60% RH	-2 deg F, 60% RH	87 deg F, 46% RH	Pomarka
Item	Description	110 MW Compression	170 MW Compression	170 MW Compression	170 MW Compression	Remarks
1	Compression Power, kW	110,000	168,202	168,000	168,000	From Dresser Rand Proposal, 1 x40%, 1 x 60% compressors
2	Plant Auxiliary Power Requirements, kW	2,033	2,890	2,683	3,303	Incl. transformers, cooling tower, pumps, etc.
3	Total Power Required, kW	112,033	171,092	170,683	171,303	Total power required from grid for compression cycle.
4	Average Mass Flow Rate, lbs/hr	1,549,296	2,350,656	2,499,552	2,217,600	Between 1150 - 1500 psig Cavern pressure. Flow adjusted for average and low ambient from 87 deg F ambient data.
5	Average Net Compression Specific Air Consumption, Ibs/kW- hr	13.83	13.74	14.64	12.95	- Ditto -
6	Total Hours of Compression	11.49	7.57	7.12	8.03	Time required to bring cavern from 1150 to 1500 psig.

Notes:

1. Plant load percentage based on Max Generation as 100% Load Point.

2. Minimum air expander load is 10% for emission compliance based on Dresser Rand email dated 10/3/2011.

3. Compression flow rates estimated from 87 deg F ambient temperature data.

4. All generation data is valid for all ambient conditions unless specified otherwise, and a recuperator inlet air temperature of 92 deg F.

NYSEG - SENECA COMPRESSED AIR ENERGY STORGE PROJECT Dresser Rand (Cycle 1A-210 MW Option) Generation and Compression Cycle Summary

Generation Cycle Data, 2 x 105 MW Air Expander Trains (One HP and LP Expander per Train)

			DUAL TRAIN OPERATION	N	SINGLE TRAIN OPERATION					
Item Description	Max Generation	75% Load	50% Load	25% Load	Min Load (16%)	50% Load	25% Load	Min Load (8%)	Remarks	
1 Air Expander Power Output, each, kW	106,450	79,838	53,225	26,613	16,254	106,450	53,225	16,254	From Dresser Rand data dated 10/21/2011	
2 Air Expanders Operating	2	2	2	2	2	1	1	1		
3 Gross Plant Power Output, kW	212,900	159,675	106,450	53,225	32,508	106,450	53,225	16,254	From Dresser Rand data dated 10/21/2011	
4 Plant Auxiliary Power Requirements, kW	2,956	2,645	2,313	1,943	1,793	2,292	1,939	1,641	Incl. transformers, cooling tower, pumps, etc.	
5 Net Plant Power Output to Grid, kW	209,944	157,030	104,137	51,282	30,715	104,158	51,286	14,613	Power sent to grid.	
6 Total Average Mass Flow Rate, lbs/hr	2,226,295	1,757,543	1,321,896	856,923	633,613	1,113,148	660,948	316,807	Between 1150 - 1500 psig Cavern pressure. Flowrate based on 100 deg F recuperator inlet air temperature.	
7 Net Generation Specific Air Consumption, lbs/kW-hr	10.60	11.19	12.69	16.71	20.63	11	13	22	- Ditto -	
8 Total Fuel Consumption HHV, MMBTU/hr	919	699	475	241	153	459	238	76	HHV/LHV Ratio = 1.109	
9 Net Heat Rate, BTU/kW-hr - HHV	4,376	4,450	4,565	4,692	4,968	4,410	4,635	5,221		
Total Hours of Generation	8.00	10.13	13.47	20.77	28.09	16	27	56	Time until cavern is depleted for the given generation.	
11 Net Energy Ratio @ 45 deg F Ambient (1 x 170 MW Compressor)	0.75	0.79	0.90	1.18	1.45	1	1	2		
12 Total Usable Air Storage in Cavern @ 1500 psig, lbs	17,800,000								Usable air mass between 1500 and 1150 psig (125 to 85 deg F respectively).	
13 Total Emissions (after control)										
NOx, lbs/hr	7.30	5.76	4.32	2.79	2.16	4	2	1	From DR provided data	
NOx, lbs/MW-hr (Net)	0.035	0.037	0.042	0.054	0.070	0	0	0	Calculated	
CO ₂ , lbs/hr	108,860	82,799	56,335	28,514	18,082	54,430	28,167	9,041	Calculated, Assumed pure CH4, Fuel LHV: 20,949	
CO ₂ , lbs/MW-hr (Net)	519	527	541	556	589	523	549	619		
14 Additional Consumption Rates										
19% Aqueous NH3, lbs/hr	453	357	268	245	157	226	134	79	2 ppmVd@15% O2 NOx at Stack, 5 ppm NH3 slip. NH3	
19% Aqueous NH3, lbs/MW-hr	2.16	2.27	2.57	4.77	5.13	2	3	5	lbs/hr values provided by DR.	
Demin Water, lbs/hr	15,444	11,750	8,179	0	0	7,534	3,900	0	From Dresser Rand data dated 10/21/2011	
Demin Water, lbs/MW-hr	73.56	74.83	78.54	0.00	0.00	72.33	76.04	0.00		

Compression Cycle Data

Itom	Description	45 deg F, 60% RH, 170	MW Total Compression	Pomarks	
nem	Description	2 x 50% Compressors	1 x 100% Compressor	Relliaiks	
1	Number of Operating Compressors	2.00	1		
2	Compressor Size, each, kW	85000.00	170,000	Nominal Compressor(s) Size	
3	Total Compression Power, kW	168000.00	168,300	From Dresser Rand Proposal	
4	Plant Auxiliary Power Requirements, kW	2890.00	3,060	Incl. transformers, cooling tower, pumps, etc.	
E	Total Dower Required kW	170900 00	171 260	Total power required from grid for compression	
5	Total Power Required, RW	170890.00	171,500	cycle.	
6	Total Average Mass Flow Rate, lbs/hr	2294756.00	2,430,000	Between 1150 - 1500 psig Cavern pressure.	
7	Average Net Compression Specific Air Consumption, lbs/kW-	12.42	14 19	Ditto	
/	hr	15.45	14.10	- Ditto -	
		7 70	7.00	Time required to bring cavern from 1150 to 1500	
8	I otal Hours of Compression	7.76	/.33	psig.	

Notes:

1. Plant load percentage based on Max Generation as 100% Load Point.

2. Compression flow rates provided by Dresser Rand.

3. All generation data is valid for all ambient conditions unless specified otherwise, and a recuperator inlet air temperature of 100 deg F.

4. Min Load points are within emission compliance based on Dresser Rand email dated 10/3/2011.

5. All strikethrough data not updated from Rev A.

NYSEG - SENECA COMPRESSED AIR ENERGY STORAGE PROJECT Energy Storage and Power (Cycle 2) Generation and Compression Cycle Summary

Generation Cycle Data, 45 deg F, 60% RH

Item	Description	210 MW (100% Load)	75% Load	50% Load	25% Load	Remarks
1	Gross Power Output, kW	212,092	159,353	106,354	53,940	Data based on ESP Cycle parameters
2	Plant Auxiliary Power Requirements, kW	2,225	1,940	1,635	1,296	Incl. transformers, cooling tower, pumps, etc.
3	Net Power Output to Grid, kW	209,867	157,413	104,719	52,644	Power sent to grid.
4	Average Mass Flow Rate, lbs/hr	2,125,800	1,631,880	936,000	187,200	Between 1150 - 1500 psig Cavern pressure.
5	Net Generation Specific Air Consumption, lbs/kW-hr	10.13	10.37	8.94	3.56	- Ditto -
6	Fuel Consumption HHV, MMBTU/hr	895	699	647	647	HHV/LHV Ratio = 1.109
7	Net Heat Rate, BTU/kW-hr - HHV	4,267	4,439	6,181	12,294	
8	Total Hours of Generation	8.37	10.91	19.02	95.09	Time until cavern is depleted for the given generation.
9	Net Energy Ratio	0.74	0.75	0.65	0.26	Based on 170 MW Compression
10	Total Usable Air Storage in Cavern @ 1500 psig, lbs	17,800,000				Usable air mass between 1500 and 1150 psig (125 to 85 deg F respectively).
11	Emissions (after control)					
	NOx, lbs/hr	6.48	5.05	4.68	4.68	Calculated from GE provided emission rates.
	NOx, lbs/MW-hr (Net)	0.031	0.032	0.045	0.089	
	CO ₂ , lbs/hr	103,840	81,039	75,065	75,065	
	CO ₂ , lbs/MW-hr (Net)	495	515	717	1,426	
12	Additional Consumption Rates					
	19% Aqueous NH3, lbs/hr	90	70	65	65	Based on 2 ppmVd@15% O2 NOx at Stack
	19% Aqueous NH3, lbs/MW-hr	0.43	0.45	0.62	1.24	
	Demin Water, Ibs/hr	0	0	0	0	N/A for CAES 2 Plant
	Demin Water, lbs/MW-hr	0.00	0.00	0.00	0.00	

Compression Cycle Data

Item	Description	145 MW Compression	170 MW Compression	Remarks
1	Compression Power, kW	145,000	168,000	From Man Turbo Proposal
2	Plant Auxiliary Power Requirements, kW	2,544	2,890	Incl. transformers, cooling tower, pumps, etc.
3	Total Power Required, kW	147,544	170,890	Total power required from grid for compression cycle.
4	Average Mass Flow Rate, Ibs/hr	2,061,000	2,350,800	Between 1150 - 1500 psig Cavern pressure. Based on 45 deg F ambient air. Flow based on Man Turbo charts.
5	Average Net Compression Specific Air Consumption, Ibs/kW- hr	13.97	13.76	- Ditto -
6	Total Hours of Compression	8.64	7.57	Time required to bring cavern from 1150 to 1500 psig.

Notes:

1. Plant load percentage based on 210 MW as 100% Load Point. Maximum theoretical net generation is 227 MW.

2. Minimum gas turbine load is 50% for emission compliance,

3. Operation of plant load below 40% may be undesirable due to the following reasons. Man Turbo needs to verify minimum feasible operating load.

a. Both the gas/air temperatures across the recuperator increases significantly due to less heat extracted from gas turbine exhaust.

b. The high gas side temperature may negatively impact the design, operation and life of the recuperator and catalysts.

4. All data is valid for 45 deg F ambient temperature and 60% RH

5. Data based on air expander inlet pressure of 1085 psia, and recuperator air inlet temperature of 100 deg F. Air expander assumed to operate on nozzle control.

NYSEG - SENECA COMPRESSED AIR ENERGY STORAGE PROJECT Energy Storage and Power (Cycle 2) Generation and Compression Cycle Summary

Generation Cycle Data, 87 deg F, 46% RH

Item	Description	210 MW (100% Load)	75% Load	50% Load	25% Load	Remarks
1	Gross Power Output, kW	212,159	159,327	106,749	53,636	Data based on ESP Cycle parameters
2	Plant Auxiliary Power Requirements, kW	2,225	1,940	1,635	1,296	Incl. transformers, cooling tower, pumps, etc.
3	Net Power Output to Grid, kW	209,934	157,387	105,114	52,340	Power sent to grid.
4	Average Mass Flow Rate, lbs/hr	2,171,520	1,605,600	871,200	111,600	Between 1150 - 1500 psig Cavern pressure.
5	Net Generation Specific Air Consumption, lbs/kW-hr	10.34	10.20	8.29	2.13	- Ditto -
6	Fuel Consumption HHV, MMBTU/hr	872	687	672	672	HHV/LHV Ratio = 1.109
7	Net Heat Rate, BTU/kW-hr - HHV	4,152	4,368	6,390	12,832	
8	Total Hours of Generation	8.20	11.09	20.43	159.50	Time until cavern is depleted for the given generation.
9	Net Energy Ratio	0.78	0.77	0.63	0.16	Based on 170 MW Compression
10	Total Usable Air Storage in Cavern @ 1500 psig, lbs	17,800,000				Usable air mass between 1500 and 1150 psig (125 to 85 deg F respectively).
11	Emissions (after control)					
	NOx, lbs/hr	6.30	4.98	4.86	4.86	Calculated from GE provided emission rates.
	NOx, lbs/MW-hr (Net)	0.030	0.032	0.046	0.093	
	CO ₂ , lbs/hr	101,123	79,718	77,870	77,870	
	CO ₂ , lbs/MW-hr (Net)	482	507	741	1,488	
12	Additional Consumption Rates					
	19% Aqueous NH3, lbs/hr	88	69	68	68	Based on 2 ppmVd@15% O2 NOx at Stack
	19% Aqueous NH3, lbs/MW-hr	0.42	0.44	0.64	1.29	
	Demin Water, lbs/hr	0	0	0	0	N/A for CAES 2 Plant
	Demin Water, lbs/MW-hr	0.00	0.00	0.00	0.00	

Compression Cycle Data

Item	Description	145 MW Compression	170 MW Compression	Remarks
1	Compression Power, kW	145,000	168,000	From Man Turbo Proposal
2	Plant Auxiliary Power Requirements, kW	2,909	3,303	Incl. transformers, cooling tower, pumps, etc.
3	Total Power Required, kW	147,909	171,303	Total power required from grid for compression cycle.
4	Average Mass Flow Rate, lbs/hr	1,990,800	2,268,000	Between 1150 - 1500 psig Cavern pressure. Based on 87 deg F ambient air. Flow based on Man Turbo charts.
5	Average Net Compression Specific Air Consumption, Ibs/kW- hr	13.46	13.24	- Ditto -
6	Total Hours of Compression	8.94	7.85	Time required to bring cavern from 1150 to 1500 psig.

Notes:

1. Plant load percentage based on 210 MW as 100% Load Point.

2. Minimum gas turbine load is 65% for emission compliance.

3. Operation of plant load below 40% may be undesirable due to the following reasons. Man Turbo needs to verify minimum feasible operating load.

a. Both the gas/air temperatures across the recuperator increases significantly due to less heat extracted from gas turbine exhaust.

b. The high gas side temperature may negatively impact the design, operation and life of the recuperator and catalysts.

4. All data is valid for 87 deg F ambient temperature and 46% RH

5. Data based on air expander inlet pressure of 1085 psia, and recuperator air inlet temperature of 100 deg F. Air expander assumed to operate on nozzle control.

NYSEG - SENECA COMPRESSED AIR ENERGY STORAGE PROJECT Energy Storage and Power (Cycle 2) Generation and Compression Cycle Summary

Generation Cycle Data, -2 deg F, 50% RH

Item	Description	210 MW (100% Load)	75% Load	50% Load	25% Load	Remarks
1	Gross Power Output, kW	212,110	159,485	106,353	53,874	Data based on ESP Cycle parameters
2	Plant Auxiliary Power Requirements, kW	2,225	1,940	1,635	1,296	Incl. transformers, cooling tower, pumps, etc.
3	Net Power Output to Grid, kW	209,885	157,545	104,718	52,578	Power sent to grid.
4	Average Mass Flow Rate, Ibs/hr	2,128,680	1,641,240	864,000	108,000	Between 1150 - 1500 psig Cavern pressure.
5	Net Generation Specific Air Consumption, lbs/kW-hr	10.14	10.42	8.25	2.05	- Ditto -
6	Fuel Consumption HHV, MMBTU/hr	920	719	704	704	HHV/LHV Ratio = 1.109
7	Net Heat Rate, BTU/kW-hr - HHV	4,383	4,564	6,722	13,388	
8	Total Hours of Generation	8.36	10.85	20.60	164.81	Time until cavern is depleted for the given generation.
9	Net Energy Ratio	0.70	0.72	0.57	0.14	Based on 170 MW Compression
10	Total Usable Air Storage in Cavern @ 1500 psig, lbs	17,800,000				Usable air mass between 1500 and 1150 psig (125 to 85 deg F respectively).
11	Emissions (after control)					
	NOx, lbs/hr	6.65	5.20	5.09	5.09	Calculated from GE provided emission rates.
	NOx, lbs/MW-hr (Net)	0.032	0.033	0.049	0.097	
	CO ₂ , lbs/hr	106,645	83,384	81,604	81,604	
	CO ₂ , lbs/MW-hr (Net)	508	529	779	1,552	
12	Additional Consumption Rates					
	19% Aqueous NH3, lbs/hr	93	73	71	71	Based on 2 ppmVd@15% O2 NOx at Stack
	19% Aqueous NH3, lbs/MW-hr	0.44	0.46	0.68	1.35	
	Demin Water, lbs/hr	0	0	0	0	N/A for CAES 2 Plant
	Demin Water, lbs/MW-hr	0.00	0.00	0.00	0.00	

Compression Cycle Data

Item	Description	145 MW Compression	170 MW Compression	Remarks
1	Compression Power, kW	145,000	168,000	From Man Turbo Proposal
2	Plant Auxiliary Power Requirements, kW	2,362	2,683	Incl. transformers, cooling tower, pumps, etc.
3	Total Power Required, kW	147,362	170,683	Total power required from grid for compression cycle.
4	Average Mass Flow Rate, Ibs/hr	2,158,842	2,462,400	Between 1150 - 1500 psig Cavern pressure. Flow rate estimated from Man Turbo provided data.
5	Average Net Compression Specific Air Consumption, Ibs/kW- hr	14.65	14.43	- Ditto -
6	Total Hours of Compression	8.25	7.23	Time required to bring cavern from 1150 to 1500 psig.

Notes:

1. Plant load percentage based on 210 MW as 100% Load Point.

2. Minimum gas turbine load is 50% for emission compliance.

3. Operation of plant load below 40% may be undesirable due to the following reasons. Man Turbo needs to verify minimum feasible operating load.

a. Both the gas/air temperatures across the recuperator increases significantly due to less heat extracted from gas turbine exhaust.

b. The high gas side temperature may negatively impact the design, operation and life of the recuperator and catalysts.

4. All data is valid for -2 deg F ambient temperature and 50% RH. Compression flow rates estimated from MDT data supplied for other ambient temperatures.

5. Data based on air expander inlet pressure of 1085 psia, and recuperator air inlet temperature of 100 deg F. Air expander assumed to operate on nozzle control.

FOR HE

	3	2			1			
			NOTES: 1. FOR MORE P PERFORMANC 2. HEAT BALAN LINES SHOW 3. AVERAGE REI 4. NOT USED 5. PERFORMANC T P W KWe	ERFORMANCE E SUMMARY (CE DIAGRAM N ARE NOT N CUPERATOR A LEGE TEMPEF PRESSI MASS F POWER	DETAILS SEE (CAES-1-LI-021 ONLY. VALVES VECESSARILY I AIR INLET TEM ON NEW AND CND RATURE, F URE, PSIA FLOW, LBS	CYCLE 1 -0006). AND NDICATIVE OF IP ASSUMED IS CLEAN CONDIT - S/HR TS ELEC	DESIGN. 5 100°F. TON.	A
			<u>Syste</u> Ambient ten Relative hu Site elevat Gross pow	<u>M PERF(</u> MPERATU JMIDITY: FION: ER:	<u>ORMANCE</u>	<u>SUMMARY</u> 1,0(137,86	(45°F 60% DO FT 57 KW	С
			AUX POWER: NET POWER: NET HEAT R NET SP. AIR	ATE HH	√: 4,33 1P.: 10.6	2,06 135,80 35 BTU/K 30 LBS/K	5 KW 2 KW (W-HR (W-HR	D
	85-125 T 1165-1515 P 1,440,000 W C	OMPRESSED AIR	06 ISSUED FO 04 ISSUED FO 04 COMMENT REV DATE DI PRELIMINARY_STATUS LDE LDE ORIGINATING PER	R REVIEW AN ESCRIPTION DATE DATE SONNEL	ND J REPRESENTS CONCEPTS BA REVIEWED NO REPRESENTS DESIGN. ANY RETAINS PRE PROFESSIO	EV KM JEV PMP	HGE MH HGE MH ENGINEER DISC ENGINEER HOLDE D THOLD US. SEAL	E
	- T - P - W		DRAWN BY JEV CHECKED BY K. MUKHERJEE LEAD DESIGNER J.E. VEEN ENGINEER/TECH SPECIA P. PHIAMBOLIS PROJECT ENGINEERING PROJECT MANAGER M. HOLDRIDGE	ALIST MANAGER	-			F
			Copyright (WorleyParsons Servic	ay Des Pty Ltd Wor resource: N COMPRF	DRIGINALLY PREPARED PE: LIC. NO.: S & energy YSEG SSED AI	UNDER THE RESPONSIBI STATE: DATE: DATE: DATE: DATE: IR FNFR	LE SUPERVISION OF 	G
E# P	AT AND MASS BA URPOSES ONLY	LANCE	STOP HEAT AND CYCLE #1, A 45°F, 60% SCALE NONE WORLEYPARSONS DWG. N CAES-	RAGE (C) MASS VERAGE (C) MASS VERAGE (C) MASS (C) MASS	CAES) PR BALANC AMBIEN 5 MW NE DRAWING SI ARC	DJECT E DIAGR IT OPER ET OUTP <u>H D (36" x</u> 1 59	ATION YUT 24") Rev A	\caes-1-HT-021-0159.dgn 6/4/2012 11:27:33 AM

8	7	6	↓	5	4		3	2		1		
							49 T 14.17 P 2,125,800 W		NOTES: 1. FOR MORE PE PERFORMANCE 2. HEAT BALANE LINES SHOWN 3. AVERAGE REE 4. CTG IS OPEF MAXIMUM GR 5. PERFORMANC	ERFORMANCE DETAILS SEE CYCLE 2 E SUMMARY (CAES-1-LI-021-0007). CE DIAGRAM ONLY. VALVES AND ARE NOT NECESSARILY INDICATIVE OF DI CUPERATOR AIR INLET TEMP ASSUMED IS 1 RATRED AT PART LOAD TO STAY WITHIN TI ID CAPACITY OF 210 MW. E IS BASED ON NEW AND CLEAN CONDITIO	IESIGN. 100°F. HE)N	A
			940 T 1086 P 1,062,900 W	AIR EXPANDER	A 67,919 kW 67,919 kW 49 T 14.26 P 1,062,900	, W			T P W KWe	LEGEND TEMPERATURE, F PRESSURE, PSIA MASS FLOW, LBS/HR POWER, KILOWATTS ELECTI	RICAL	В
		940 T 1086 P 2,125,800 W	940 T 1086 P 1,062,900 W	AIR EXPANDER	B 67,919 kW 49 T 14.26 P 1,062,900	, W	STACK		<u>SYSTE</u> AMBIENT TEN RELATIVE HU SITE ELEVAI GROSS POW	M PERFORMANCE SUMMARY IPERATURE: 4 JMIDITY: TON: 1,00C ER: 212,092	^{.5°F} (60%)FT :KW	С
				175 T 2,114,640 W					AUX POWER: NET POWER: NET HEAT R NET SP. AIR	2,225 209,867 ATE HHV: 4,267 BTU/KW CONSUMP.: 10.13 LBS/KW	KW KW V-HR V-HR	D
		943 T 1113 P 2,125,800 W		STA	ACK				Image: Description of the second s	REVIEW AND TWB KM PMP HG SCRIPTION TWB KM PMP HG DATE REPRESENTS GENERAL DESIGN CONCEPTS BASED ON ASSUMPT: REVIEWED NOT CHECKED. DATE REPRESENTS REVIEWED AND AF DESIGN. ANY PORTION MARKED RETAINS PRELIMINARY STATUS	ENGINEER MH MANAGER T MANAGER T MANA	 E
GE 7EA COMBUSTION TURBINE GENERATOR	1009 T 2,114,640 W	RECUF	SCR/CO CATALYS SCR/CO CATALYS		- T - P - W				DRAWN BY TWB CHECKED BY K. MUKHERJEE LEAD DESIGNER ENGINEER/TECH SPECIA P. PHIAMBOLIS PROJECT ENGINEERING PROJECT MANAGER M. HOLDRIDGE			F
				100 1 1147 1 2,125,80		85-12 1165-15 2,125,8	5 T 515 P 00 W COMPRESSED AIR FROM CAVERNS		Copyright (WorleyParsons Service CLIENT/PROJECT TITLE SENECA	DRIGINALLY PREPARED UNDER THE RESPONSIBLE S PE:	SUPERVISION OF	G
					FO	R HEA PL	T AND MASS BA	ALANCE	STOF HEAT ANE CYCLE #2, A 45°F, 60% SCALE NONE WORLEYPARSONS DWG. N CAES-	AGE (CAES) PROJECT MASS BALANCE DIAGRA VERAGE AMBIENT OPERA RH, 210 MW NET OUTPU PRAWING SIZE ARCH D (36" x 2 1-HT-021-0259	IM TION JT 24") REV	11/1/2011 11:49:43 AM
8	7	6		5	4		3	2		1		

7	6	5	4	3	2 1	
				42 T 14.17 P 2,128,680 W	 NOTES: 1. FOR MORE PERFORMANCE DETAILS SEE CYCLE 2 PERFORMANCE SUMMARY (CAES-1-LI-021-0007). 2. HEAT BALANCE DIAGRAM ONLY. VALVES AND LINES SHOWN ARE NOT NECESSARILY INDICATIVE OF DESI 3. AVERAGE RECUPERATOR AIR INLET TEMP ASSUMED IS 100 4. CTG IS OPERATRED AT PART LOAD TO STAY WITHIN THE MAXIMUM GRID CAPACITY OF 210 MW. 	IGN. ŰF.
		AIR EXPANDER 922 T 1086 P 1,064,340 W	A 67,087 kW 42 T 14,26 P		5. PERFORMANCE IS BASED ON NEW AND CLEAN CONDITION. LEGEND T TEMPERATURE, F P PRESSURE, PSIA W MASS FLOW, LBS/HR KWe POWER, KILOWATTS ELECTRIC	GAL
	922 T 1086 P 2,128,680 W	AIR EXPANDER 922 T 1086 P 1,064,340 W	B 67,087 kW 42 T 14 26 P		SYSTEM PERFORMANCE SUMMARY AMBIENT TEMPERATURE: -24 RELATIVE HUMIDITY: 50 SITE ELEVATION: 1,000	°F C 0% FT
		175 T 2,133,000 W	1,064,340 W	STACK	GROSS POWER: 212,110 k AUX POWER: 2,225 k NET POWER: 209,885 k NET HEAT RATE HHV: 4,383 BTU/KW-k NET SP. AIR CONSUMP.: 10.14 LBS/KW-k	
	925 T 1113 P 2,128,680 W	ST.	ACK		A 10/26 11 ISSUED FOR REVIEW AND COMMENT IWB KM PMP HGE REV DATE DESCRIPTION IWB KM PMP HGE PRELIMINARY STATUS DATE REPRESENTS GENERAL DESIGN CONCEPTS BASED ON ASSUMPTION REVIEWED NOT CHECKED. APPROVED STATUS DATE REPRESENTS REVIEWED AND APPRI DESIGN, ANY PORTION MARKED 'HO RETAINS PRELIMINARY STATUS.	
988 T 2,133,000 W	SCR\CO CATALYST		- T - P - W		ORIGINATING PERSONNEL PROFESSIONAL ENGINEER'S SEAL DRAWN BY TWB CHECKED BY K. MUKHERJEE LEAD DESIGNER ENGINEER/TECH SPECIALIST P. PHIAMBOLIS PROJECT ENGINEERING MANAGER	F
	RECUPERA	TOR 100 1146 2,128,68	T 8 P 30 W 2,12	5-125 T 5-1515 P 28,680 W COMPRESSED AIR FROM CAVERNS	M. HOLDRIDGE OneWay Copyright C WorleyParsons Services Pty Ltd WorleyParsons Services Pty Ltd WorleyParsons CLIENT/PROJECT TITLE MYSEG	rvision of
			FOR H	EAT AND MASS BAL PURPOSES ONLY	SENECA COMPRESSED AIR ENERGY STORAGE (CAES) PROJECT HEAT AND MASS BALANCE DIAGRAM CYCLE #2, LOW AMBIENT OPERATION -2°F, 50% RH, 210 MW NET OUTPUT SCALE NONE DRAWING SIZE ARCH D (36" × 24" WORLEYPARSONS DWG. NO.	>] (- >aes-1-HT-021-0219.dgn /2011 11:49:43 AM
7	6	5	4	3	2 I	

•

FOR HE

6	5	

3	2			1		
52 T 14.17 P 2,171,520 W	N - F V	OTES: 1. FOR MORE PEPERFORMANCE 2. HEAT BALANC LINES SHOWN 3. AVERAGE REC 4. CTG IS OPER MAXIMUM GR 5. PERFORMANCE T P W KWe	ERFORMANCE DETAILS E SUMMARY (CAES-1-L CE DIAGRAM ONLY. VA NARE NOT NECESSAR CUPERATOR AIR INLET ATRED AT PART LOA ID CAPACITY OF 210 E IS BASED ON NEW <u>LEGEND</u> TEMPERATUR PRESSURE, P MASS FLOW, POWER, KILO	SEE CYCLE 2 -I-021-0007). ALVES AND MILY INDICATIVE OF DE T TEMP ASSUMED IS 19 D TO STAY WITHIN TH MW. AND CLEAN CONDITION RE, F SIA LBS/HR	ESIGN. ØØ°F. IE N.	A
	, F S	<u>SYSTE</u> AMBIENT TEN RELATIVE HL SITE ELEVAT GROSS POWI	<u>M PERFORMAN</u> //PERATURE: JMIDITY: ⁻ ION: ER:	<u>JCE SUMMARY</u> 8 1,000 212,159	7° F 46% FT KW	С
STACK	\ 1 1 1	AUX POWER: NET POWER: NET HEAT R NET SP. AIR	ATE HHV: CONSUMP.:	2,225 209,934 4,152 BTU/KW 10.34 LBS/KW	KW KW '-HR '-HR	D
	A REV PRE LDE APF	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	REVIEW AND ESCRIPTION DATE REPRES CONCEP REVIEW DATE REPRES DESIGN RETAIN SONNEL PRO	TWB KM PMP HG	E MH E MH BROJ ENGR WANAGER MA	E
	T CHE K. LEA P. PRC M.	WB ECKED BY MUKHERJEE AD DESIGNER DINEER/TECH SPECIA PHIAMBOLIS DJECT ENGINEERING DJECT MANAGER HOLDRIDGE ONEW	NLIST MANAGER			F
5-125 T 55-1515 P 171,520 W COMPRESSED AIR FROM CAVERNS	CLI	to zero harm Copyright (WorleyParsons Service ENT/PROJECT TITLE SENECA STOF	DRIGINALLY PE: PE: PE: PE: PE: PE: PE: PE: PE: PE: PE: PE: PE: LIC. NO.:_ NYSEG COMPRESSEC RAGE (CAFS)	PREPARED UNDER THE RESPONSIBLE SU DATE: DATE: Project		
EAT AND MASS BAI PURPOSES ONLY	LANCE	HEAT ANE CYCLE #2, 87°F, 46% NONE RLEYPARSONS DWG. N CAES-) MASS BALA , HIGH AMBIE RH, 210 MW DRAWI 0. 1-HT-021-	ANCE DIAGRA ENT OPERATION NET OUTPU ARCH D (36" × 2 -0299	M DN T 4") Rev A	\caes-1-ht-021-0299.dgn 11/1/2011 11:49:44 AM
3	2			1		