A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Innovation for Our Energy Future

Validation of Dynamic Model of Wind Power Plants

Eduard Muljadi

Abraham Ellis

IEEE Power and Energy Society - General Meeting

Pittsburgh, Pennsylvania July 20-24, 2008

NREL is operated by Midwest Research Institute • Battelle

Dynamic Model Verification

- Two basic types, based on the transient nature of the event
 - Fault event
 - Switching event
- Data
 - Monitored data at the wind power plant (event triggered)
 - High speed data (time, V, I, P, Q, F)
 - Network data
 - Preprocessed data
- Model Equivalencing
- Case Study: Taiban Mesa

Simplified single-line diagram of a wind power plant

Single-machine equivalent representation

The major components equivalent representations:

• The equivalent generator and associated power factor correction capacitors represents the total output of all the WTGs in the WPP.

- The equivalent generator step-up transformer (pad-mounted transformer) represents the aggregate effect of all WTG step-up transformers
- The equivalent collector system branch represents the aggregate effect of the WPP collector system.

Load Flow – Steady State Initialization

- Set the bus A voltage to match recorded prefault voltage at bus A.
- Adjust WTG's P_{gen} to match the initial $P_{measured} = P_{simulated} = 115$ MW at bus A
- Adjust the regulated voltage V_{reg} at bus C to match the initial Q_{measured} = $Q_{simulated} = 23$ MVAR at bus A

REL National Renewable Energy Laboratory

Wind Power Plant Data

- Nature of the event: Fault event single line to ground 9 cycles
- 136 turbines 204 MW rated
- V, I, recorded, P, Q, computed
- Method used: replay the voltage recorded and compare the PQ output
- Comparison of P, Q plots (recorded versus simulation data)
- Comparison: Measurement, Multiple Turbine Representation, Complete Model.

REL National Renewable Energy Laboratory

Event Representation

Block Diagram Type 3 WTG

Reactive Power Control for Type 3 WTG

Sample of the Recorded Fault Data

REL National Renewable Energy Laboratory

Data Conversion Process

Voltage and Frequency

Validation Technique

Real Power Comparison

Reactive Power Comparison

136 Wind Turbine Simulation

Voltages at different WTGs in per unit.

Conclusions

• This paper presents the methods to validate positive-sequence wind dynamic models. This technique was applied to the WECC generic model as an example.

• The validation method described in this paper is applicable for all the four types of wind turbine generators.

• The preliminary results of the simulations demonstrated that a generic model of DFIG generators provides an adequate representation of the actual wind turbines under fault conditions.

• It is also shown that modeling the wind power plant with an equivalent representation preserves the basic response of the wind power plant.

