

NATIONAL ENERGY TECHNOLOGY LABORATORY

The Smart Grid ??

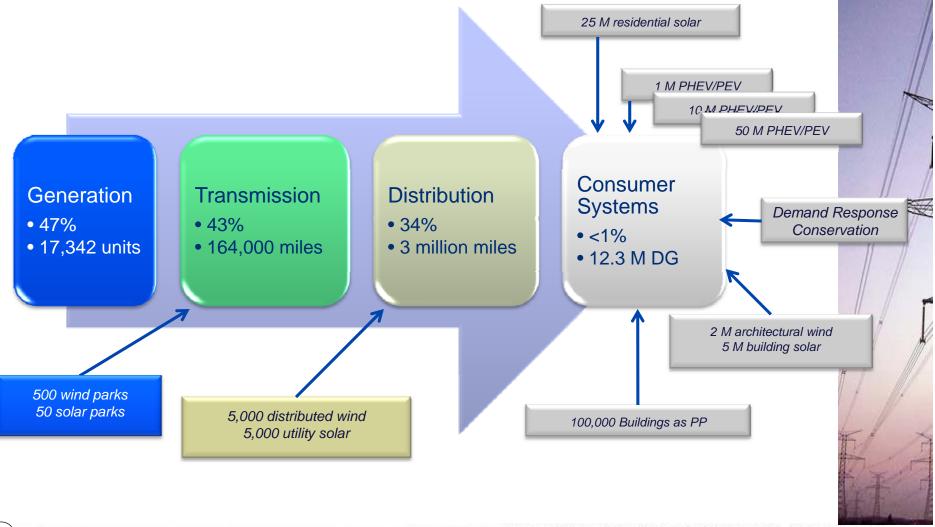
AEE – National Capital Chapter

Keith Dodrill US Dept of Energy National Energy Technology Laboratory

May 25, 2010

Topics

- The "Case for Action"
- What is the Smart Grid?
- Key Technology Areas
- The Smart Grid business case
- Challenges and Barriers
- Current Activities
- Summary


Case for Action

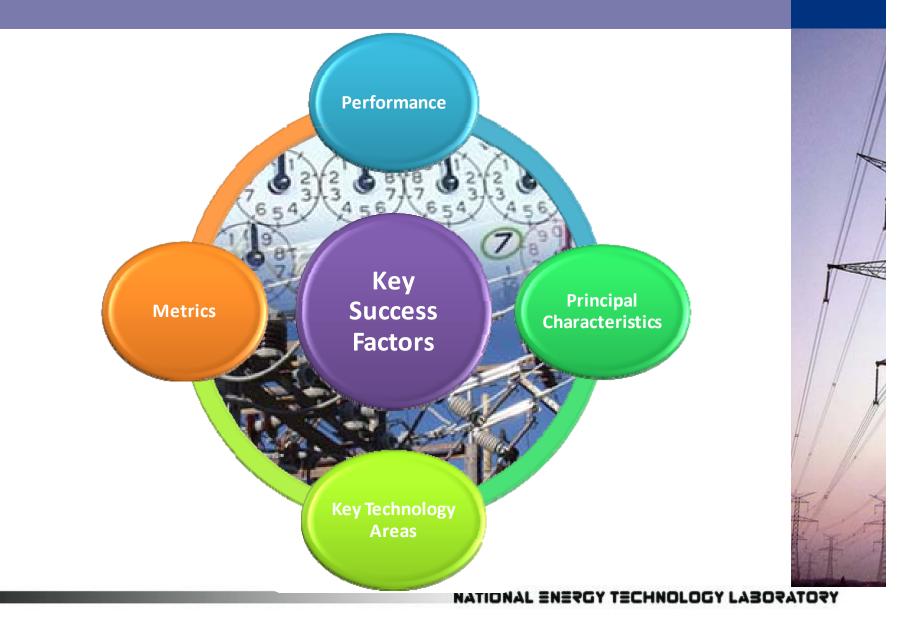
- Today's grid is aging and outmoded
- Unreliability is costing consumers billions of dollars
- Today's grid is vulnerable to attack and natural disaster
- An extended loss of today's grid could be catastrophic to our security, economy and quality of life
- Today's grid does not address the 21st century power supply challenges
- Missed opportunity to enjoy the benefits of a Smart Grid
- Disturbing trends in prices, reliability, peak loads, transmission congestion, & asset utilization

But is it worth it?

The "Market" will create new stresses

NATIONAL ENERGY TECHNOLOGY LABORATORY

4



NATIONAL ENERGY TECHNOLOGY LABORATORY

What is the Smart Grid?

The Systems View

6

What's different with the Smart Grid?

- Decentralized supply and control
- Two-way power flow
- Two-way information flow

Creating the intelligence and capability to optimize:

- Reliability
- Security
- Economics
- Efficiency
- Environment
- Safety

In order to succeed, we must view the Smart Grid as a vision AND as a system...

... for all stakeholders

Smart Grid Characteristics

The Smart Grid is "transactive" and will:

- *Enable* active participation by consumers
- Accommodate all generation and storage options
- *Enable* new products, services, and markets
- Provide power quality for the digital economy
- *Optimize* asset utilization and operate efficiently
- Anticipate & respond to system disturbances (self-heal)
- Operate resiliently against attack and natural disaster

...the enabler

Smart Grid Domains

Domain	Actors in the Domain
Customers	The end users of electricity. May also generate, store, and manage the use of energy. Traditionally, three customer types are discussed, each with its own domain: home, commercial/building, and industrial.
Markets	The operators and participants in electricity markets
Service Providers	The organizations providing services to electrical customers and utilities
Operations	The managers of the movement of electricity
Bulk Generation	The generators of electricity in bulk quantities. May also store energy for later distribution.
Transmission	The carriers of bulk electricity over long distances. May also store and generate electricity.
Distribution	The distributors of electricity to and from customers. May also store and generate electricity.

Source: NIST

NATIONAL ENERGY TECHNOLOGY LABORATORY

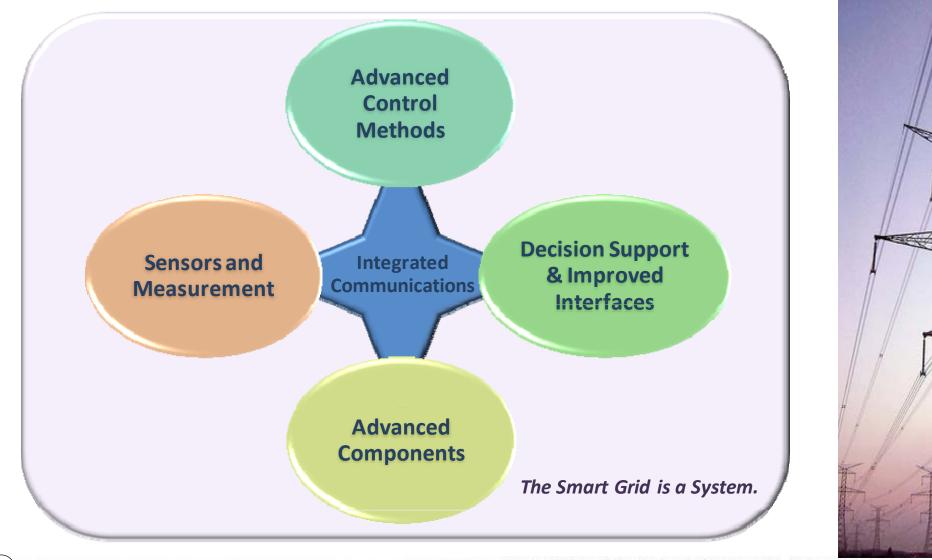
9

Updated 02/25/2008

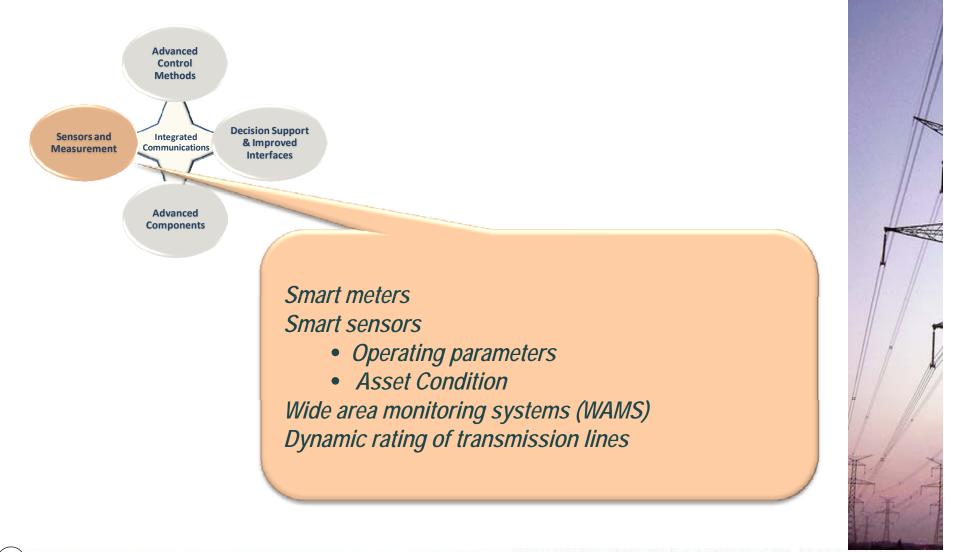
Smart Rates Can Work

Rate	Peak Time Pricing		Peak Time Rebate		8-Hour time of Use	
Customers	Rate Alone	Rate w/Controlling Technology	Rate Alone	Rate w/Controlling Technology	Rate Alone	Rate w/Controlling Technology
Residential	-16.1%	-23.3%	-10.9%	-17.8%		3.7%
Business	-2.8%	-7.2%	0.0%	-4.1%		0.0%

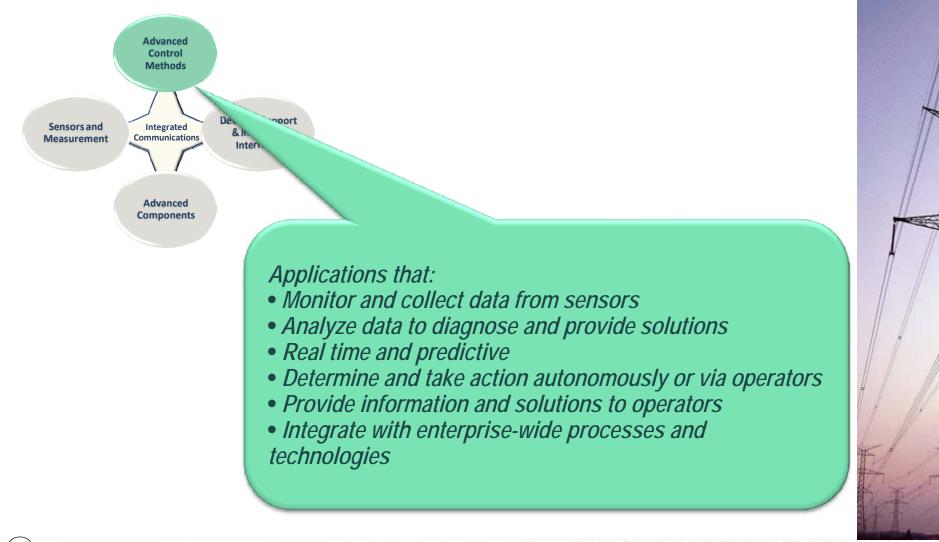
Connecticut L&P Plan-it Wise Results—Reduction in Peak Load


NATIONAL ENERGY TECHNOLOGY LABORATORY

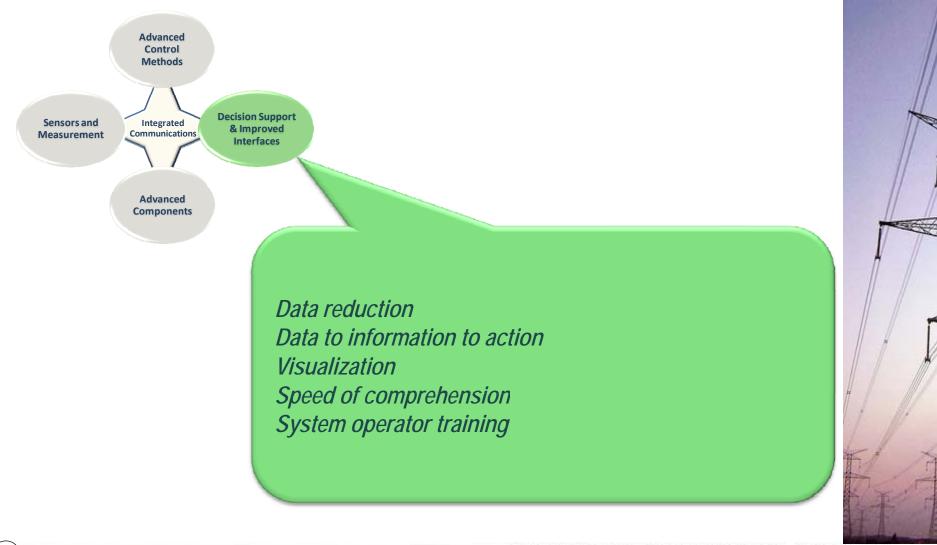
Key Technology Areas



Smart Grid Key Technology Areas

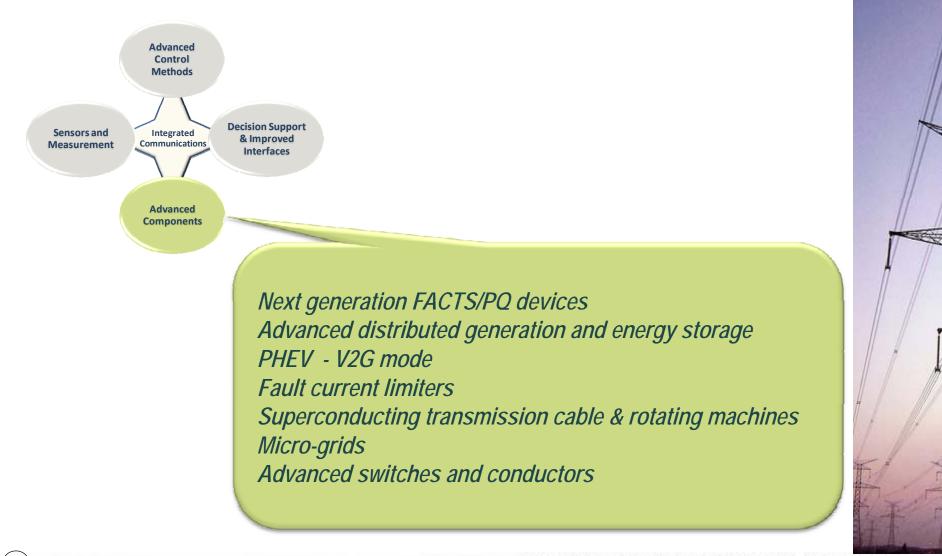

(12

Sensors and Measurement

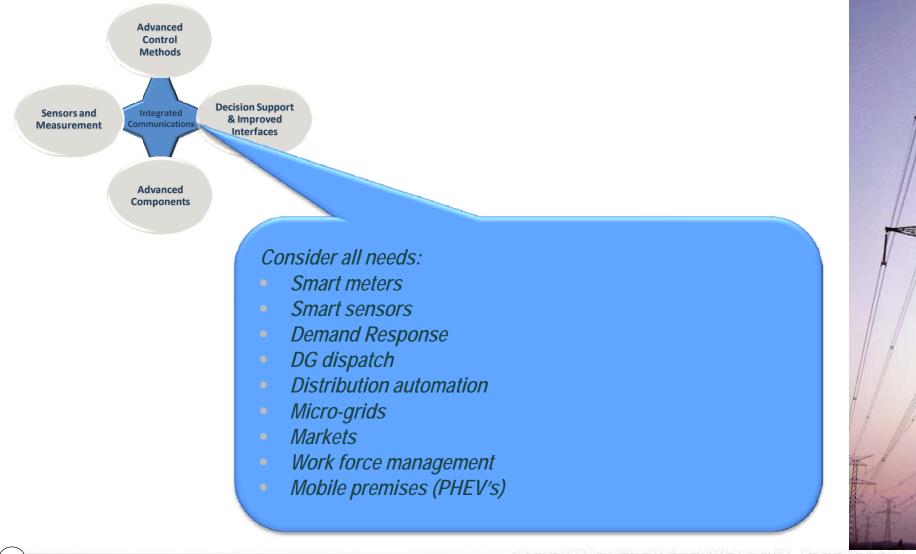

Advanced Control Methods

NATIONAL ENERGY TECHNOLOGY LABORATORY

(14


Decision Support & Improved Interfaces

15


Advanced Components

16

Integrated Communications

17

NATIONAL ENERGY TECHNOLOGY LABORATORY

The SG Business Case

EPRI's Perspective on the Value Proposition

Benefit of Modernization

years

\$638B - \$802B over 20

Overall benefit to cost

ratio is 4:1 to 5:1

Cost to Modernize

- \$165B over 20 years
 - \$127B for Distribution
 - \$38B for Transmission
- ~\$8.3B per year (incremental to business-asusual)
- Current annual investment - \$18B

EPRI 2004

Thus, based on the underlying assumptions, this comparison shows that
the benefits of the envisioned Future Power Delivery System significantly
outweigh the costs.(EPRI, 2004)

WV Smart Grid Costs & Benefits

PV 20-yr Cost and Benefits (\$1000)

Solution	Cost	Benefits
AMI	\$399	\$1,377
IT	\$170	\$1,025
DR	\$22	\$877
DMS	\$454	\$3,286
DER	\$832	\$3,671
Total	\$1,878	\$10,236

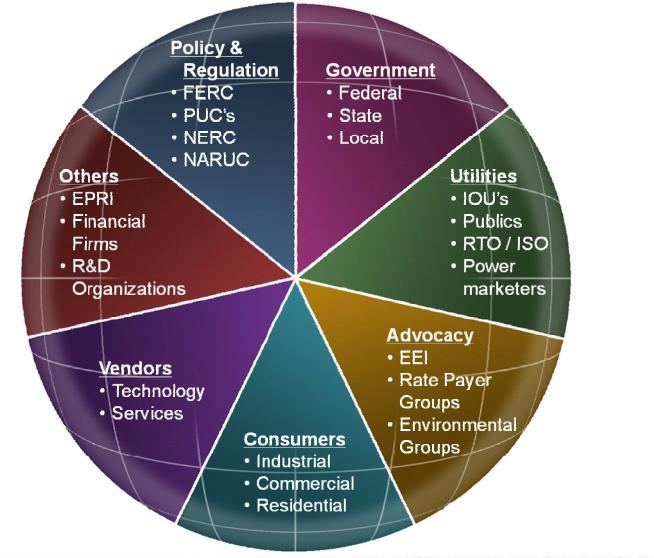
Benefit to Cost Ratio for West Virginia – **5:1** Benefit to Cost Ratio for San Diego – 6:1 Benefit to Cost Ratio for US (EPRI 2004) – 4:1 to 5:1

WV Smart Grid Annual Benefits

Key Success Factors	Benefits	Annual Benefits (\$M) (All Beneficiaries)
Reliability	Reduced Consumer Losses	\$898
	Reduce Power Quality Events	\$131
Economic	Reduce Price of Electricity	\$399
	Job Creation	\$215
	Consumer Sales of DER Resources	\$175
	Increased Energy Sales as Exports	\$7
	Reduced Transmission Congestion	\$1
	Increased Transportation Fuels Business	\$5
	Consumer Conservation	\$20
	Operational Savings	\$194
Environmental	Reduced Emissions	\$7
Security	Reduced Blackout Probability & Dependence on Foreign Oil	\$13
Safety	Reduce Hazard Exposure	\$1

NATIONAL ENERGY TECHNOLOGY LABORATORY

Challenges and Barriers



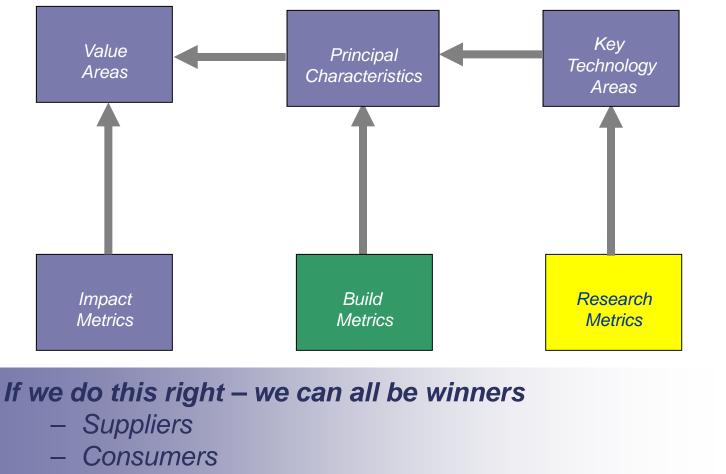
Many Challenges to Address

- Consumer acceptance
- Culture and education
- Regulatory & policy
- Technical
- Engineering
- System planning
- Operations
- Workforce training and education

Many Stakeholders Involved

The Two Big Things...

- Defining and understanding the business case
 - Leads to logical implementation
 - Maximizes profitability
 - Minimizes impact to the consumer


Consumer education

- Needed understanding of the Smart Grid vision
 - consumer benefits
 - societal benefits
 - costs of doing nothing
 - address their concerns and questions

The consumer will pay for the Smart Grid...

Smart Grid Metric Map

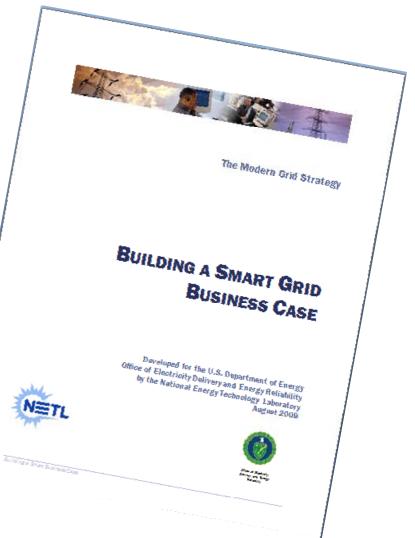
– Society

Current Smart Grid Activities

- Smart Grid Investment Grants (100 projects)
 - \$3.4 billion Federal; \$4.7 billion private sector
 - 850 PMUs covering 100% of transmission
 - 200,000 smart transformers
 - 700 automated substations
 - 40 million smart meters
 - 1 million in-home displays
- Smart Grid Demonstration Projects (32 projects)
 - \$620 million Federal; \$1 billion private sector
 - 16 storage projects
 - 16 regional demonstrations

Summary

- Motivation to move toward national Smart Grid
- Common vision being established for Smart Grid
- Benefits accrue to utilities, consumers & society
- Business case shows 4:1 to 6:1 ROI
- Different approaches to implementing Smart Grid
- Technical, regulatory, consumer & cultural barriers
- DOE ARRA projects create momentum


For More Information

For additional Information: www.netl.doe.gov/smartgrid

Federal Smart Grid Website <u>www.smartgrid.gov</u>

Smart Grid Information Clearinghouse www.sgiclearinghouse.org

Steve Bossart National Energy Technology Lab 304-285-4643 Steven.Bossart@netl.doe.gov

It will "Enable active participation by consumers"

- Consumers have access to new information, control and options to engage in electricity markets
 - Reduce consumption and energy bill
 - Enable new technologies (PHEV, HAN, EMS, smart appliances, etc.)
 - Sell resources for revenue or environmental stewardship
 - Incentives to participate (i.e. smart rates)

• Grid operators have new resource options

- Reduce peak load and prices through demand response
- Improve grid reliability
- Ancillary services

Today

Little or no info, limited use of smart pricing, few choices

|[30

Tomorrow

Full price info, choose from many plans, prices and options, buy and sell, "E-Bay"

It will "Accommodate all generation and storage options"

- Seamlessly integrates all types and sizes of electrical generation and storage systems
- "Plug-and-play" convenience
 - Simplified interconnection processes
 - Universal interoperability standards
- "Moves the needle" shifts to a more decentralized model
- Large central power plants will continue to play a major role.

Today Tomorrow Dominated by central generation. Little Many "plug and play" distributed DG, DR, storage, or renewables energy resources complement central generation BI NATIONAL ENERGY TECHNOLOGY LABORATORY

It will "Enable new products, services and markets"

- Links buyers and sellers consumer to RTO
- Supports the creation of new electricity markets
 - Demand Response
 - Energy, Capacity, Ancillary Services
 - Brokers, integrators, aggregators, etc.
 - In-home devices and applications
- Provides for consistent market operation across regions

It will "Provide power quality for the digital economy"

- Monitors, diagnoses and responds to PQ issues
- Supplies various grades of power quality at different pricing levels
- Greatly reduces consumer losses due to PQ (~\$25B/year)
- Quality Control for the grid

It will "Optimize asset utilization and operate efficiently"

• Operational improvements

- Improved load factors and lower system losses
- Integrated outage management
- Risk assessment

• Asset Management improvements

- The knowledge to build only what we need
- Improved maintenance processes
- Improved resource management processes
- More power through existing assets

• Reduction in utility costs (O&M and Capital)

Today Tomorrow Limited grid information & minimal integration with asset management Deep integration of grid intelligence enabling reduction in O&M and CapEx 34

It will "Anticipate & respond to system disturbances"

- Performs continuous self-assessments
- Detects, analyzes, responds to, and restores grid components or network sections
- Handles problems too large or too fast-moving for human intervention
- Self heals acts as the grid's "immune system"
- Supports grid reliability, security, and power quality

TodayTomorrowProtects assets following disruption
(e.g., trip relay)Prevents disruptions, minimizes
impact, restores rapidly

It will "Operate resiliently against attack and natural disaster"

- System-wide solution to physical and cyber security
- Reduces threat, vulnerability, consequences
- Deters, detects, mitigates, responds, and restores
- "Fort Knox" image
- Decentralization and self-healing enabled

	Today	Tomorrow	
	errorists and natural isasters	Deters, detects, mitigates, and restores rapidly and efficiently—"cyber proof"	R-F
24			TORY

Who are the Smart Grid Beneficiaries?

- Utilities
- Consumers
- Society

The value of Smart Grid depends on who you ask!

An Example

Potential Bill Savings

Estimated residential bill/year	\$1,200
Expected reduction from EE/DR	10% – 15%
Potential savings/year	\$120_\$180
Assumed bill increase to pay for smart grid/year	\$60-\$120
Net consumer value/year	\$0\$120

Positive value but not very compelling!

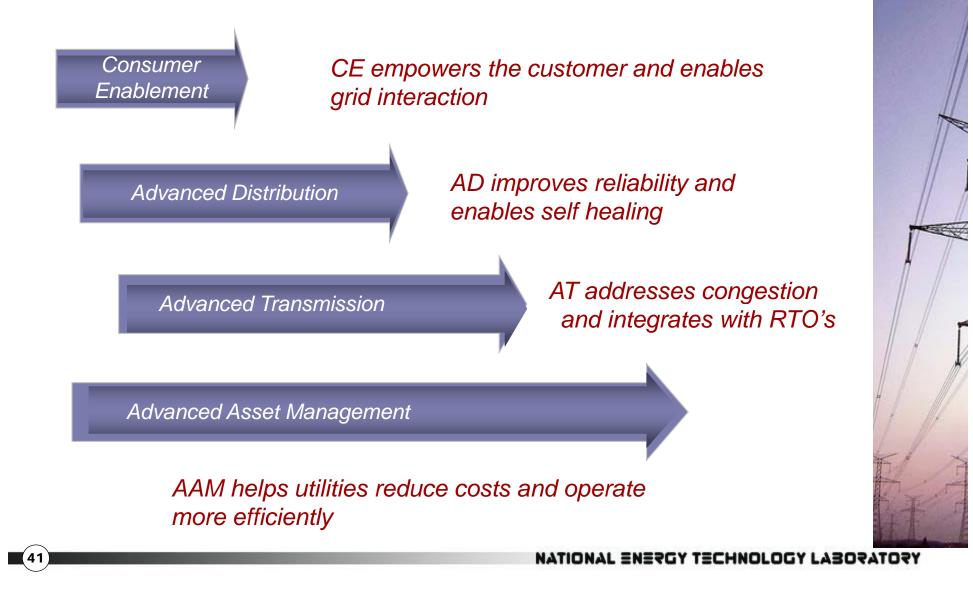
Another Example

Potential Fuel Cost Savings

Assumed miles driven/year	10,000
Fuel cost (gas)/mile	\$0.10 – 0.15
Fuel cost (PHEV)/mile	\$0.03 - 0.05
Annual fuel cost (gas)	\$1,000 - \$1,500
Annual fuel cost (PHEV)	\$300 - \$500
Potential fuel cost savings/year	\$500 – \$1,200
Premium to purchase PHEV over gas	\$4,000 - \$10,000

More compelling but is it enough?

(39


Societal Value Proposition

Benefits

- Energy independence
- National security
- Downward pressure on electricity prices
- Improved environment
- Growing U.S. economy
- Improved reliability

Implementation sequence can vary

Current Smart Grid Activities (cont.)

- DOE Renewable & Distributed Systems Integration (9 projects)
- EPRI Smart Grid Demonstrations (6 projects)
- Excel's Smart Grid City, Boulder, CO
- Smart Grid System Report to Congress – http://www.smartgrid.gov/resources

