Smart House and Smart Grid www.smarthouse-smartgrid.eu

2011 IEEE SmartGridComm, European Smart Grid projects workshop Brussels, 17.10.2011

Tel.: 0561 7294 – 234, david.nestle@iwes.fraunhofer.de

SHSG Project Goals

- Demonstrate how ICT-enabled collaborative aggregations of Smart Houses can achieve maximum energy efficiency
- Concept:

Aggregate houses as intelligent networked collaborations instead of seeing them as isolated passive units in the energy grid

- Develop real-life technology
 with potential for mass application across Europe
 for enabling energy efficiency gains
- EU co-funded, timeline Sept 2008 Aug 2011

SHSG Key Issues

ICT and Interfaces for mass scale integration of Smart Houses into Smart Grids

Source: SHSG Deliverable D2.1, "In-house architecture and interface description", June 2009, www.smarthouse-smartgrid.eu Source: SHSG Deliverable D1.2, "Technology Trends for SmartHouse/SmartGrid", Feb 2009, www.smarthouse-smartgrid.eu

SH/SG Architecture Functionalities

Amalgamated Service Architecture Basic Concepts

SmartHouse/SmartGrid

Simulation Team A – Study 1 setup

3000 Households, 1500 with micro CHP, 1500 with heat pumps

- Scaling down from 2040 Dutch network scenario
- Offshore wind installed power: 750 ... 1000 kW
- Comparision of operation in 2 November weeks with and without PowerMatcher controlling micro CHP and heat pumps

Simulation Team A – Study 1 results

Effects of PowerMatcher control:

- Energy Exports reduced by 90 ... 65 % \rightarrow less need for export capacity
 - Energy Imports reduced by 14 ... 21 % \rightarrow potential CO₂ reduction

AMO	OUNT OF TOTAL	IMPORT FOR EAC	H CASE
Offshore Wind	Traditional	PowerMatcher	Reduction
750 kW	27389 kWh	23447 kWh	14%
800 kW	26287 kWh	22154 kWh	16%
850 kW	25218 kWh	20920 kWh	17%
900 kW	24178 kWh	19739 kWh	18%
1000 kW	22194 kWh	17478 kWh	21%

Simulation Team A – Study 2 Results (cable losses)

Considering fictive LV feeder, 25 households, 12 with heat pumps, 13 with micro CHP

- Cable loss reduction from 11.7MJ to 7.0MJ by adding PowerMatcher control
 - I.e. 1.3kWh of energy / day or annually 100+ euro / 25 households

Source: The SH/SG Team, 2011

Simulation Team C overview

Simulation for the year 2030 of the autonomous system of Crete

for various load control scenarios

- Steady-state simulation
 - economic dispatch
 - load flow analysis
- Transient analysis

The Cretan System:

- 1. 690MW installed thermal capacity on 3 power plants (Chania, Atherinolakkos, Linoperamata)
- 2. 166MW installed wind power capacity (December 2009), most on the eastern part of the island
- 3. Since 2000, wind energy accounts for around 10% of the annual energy demand of the island

Simulation Team C load control scenarios

SmartHouse/SmartGrid Scenario 1 (Business as usual): no load control actions considered

Scenario 2 Various levels of controllable load (water heaters & A/C) considered (varying from 10% to 30%)

- Scenario 2A: load control is performed equally to all the regions of Crete
- Scenario 2B: load control is performed primarily to the households of Chania and Iraklio, which are the most populated cities of the island

Reduction of peak demand: as high as 4.49% (annual average) depending on the scenario

Source: The SH/SG Team, 2011

Simulation Team C results

CO2 emissions (tonnes) per Scenario –

Percent change of CO2 emissions with respect to Scenario 1

	Scenario 1	Scenario	o 2A	Scenario	2B	
10%		1,467,728	-0.04%	1,465,906	-0.17%	
20%	1,468,351	1,466,253	-0.14%	Higher I	oad cont	rol
30%		1,464,271	-0.28%	penetration	level imp	proves
				CO2	reduction	

Operational cost (€) per Scenario – percent change with respect to Scenario 1

	Scenario 1	Scenario	2A	Scenario 2B	
10%		215,204,940	-0.35%	214,455,919	-0.70%
20%	215,957,553	212,843,853	-1.44%	An optimu	im load c
30%		213,694,172	-1.05%	penetratio	on level e
				Controller lo	cation is

Transient analysis: Load shedding supports system frequency from reaching low levels - should be part of a complete protection scheme

Field Test B (Mannheim, Germany)

OGEMA Key Facts

- OGEMA defines gateway core specification
- Environment for parallel execution of different applications with access to smart grid data and devices (e.g. controllable loads)

- Standardized data models and services for different home automation systems
- Support of different in-house and smart grid communication systems
- OGEMA defines a public open standard
- Public (open source) reference implementation for quick start

Open Gateway Energy Management Alliance (OGEMA)

Open source OGEMA for Energy **Operating system** management (e.g. Linux) KWK-Dater 2,3 kW System Of **Display** \$ command _____ **Device Control App** shell disk CHP OGEMA <mark>ېل</mark>ډ network Resource editor operating system **Administration** Loads - - D X **Emergency load** graphics card browser shutdown

Smart Meter

© Fraunhofer IWES

www.ogema-alliance.org

Open Gateway Energy Management Alliance (OGEMA)

OGEMA features:

- applications from different manufacturers run in parallel
- standardized data models
- flexible and modularized architecture

OGEMA goals:

- develop an open, manufacturerindependent standard
 - develop and test open source reference implementation
 - pave the way for energy management gateway mass-roll out

www.ogema-alliance.org

Open Gateway Energy Management Alliance (OGEMA)

www.ogema-alliance.org

Thank you for your attention!

http://www.ogema-alliance.org

http://www.modellstadt-mannheim.de

http://www.smarthouse-smartgrid.eu

Dr.-Ing. David Nestle Fraunhofer IWES, Königstor 59, D-34119 Kassel, Tel.: +49 561 7294 – 234, Email: david.nestle@iwes.fraunhofer.de

This report is based on a research project partly funded by the EU FP7 project SmartHouse/SmartGrid (Grant no.: FP7-ICT-2007-224628) and by research partially funded by the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety of Germany (Project: moma – Modellstadt Mannheim, FKZ Nr. 0325089A). The authors are responsible for the content of this publication.

