

NATIONAL ENERGY TECHNOLOGY LABORATORY

Smart Grid Primer

Energy Bar Association – Primer for Lawyers

Joe Miller – Smart Grid Implementation Strategy Team Lead

December 4, 2009

This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

New Smart Grid role for NETL

- "Modern Grid Strategy" to "Smart Grid Implementation" Strategy
- Develop materials to support SG implementation
 - Implementation Planning
 - Building the business case
 - Best practices and lessons learned
- Share, communicate, and educate stakeholders
- Provide strategic implementation support

Integrate the capabilities of the existing MGS into the greater DOE OE Smart Grid "machine", in an implementation support role.

NATIONAL ENERGY TECHNOLOGY LABORATORY

What is the Smart Grid – really?

What's different with the Smart Grid?

- Decentralized supply and control
- Two-way power flow
- Two-way information flow

Creating the intelligence and capability to optimize:

- Reliability
- Security
- Economics
- Efficiency
- Environment
- Safety

...for all stakeholders

Smart Grid Characteristics

The Smart Grid is "transactive" and will:

- Enable active participation by consumers
- Accommodate all generation and storage options
- Enable new products, services, and markets
- Provide power quality for the digital economy
- Optimize asset utilization and operate efficiently
- Anticipate & respond to system disturbances (self-heal)
- Operate resiliently against attack and natural disaster

...the enabler

Is it worth it?

The Beneficiaries

- Utilities
- Consumers
- Society

Maybe it depends on who you ask!

Utility Benefits

Operational improvements

- Metering and billing
- Outage management
- Process improvement
- Work force management
- Reduced losses (energy)
- Asset utilization

Asset Management improvements

- System planning (deferral of capital projects)
- Maintenance practices
- Engineering

These benefits are expected to improve customer satisfaction and reduce O&M and capital costs.

Consumer Value Proposition

Benefits

- More reliable service
- Reduced business losses and prices for goods & services
- Potential bill savings
- Transportation cost savings (PHEVs vs. conventional vehicles)
- Information, control, and options for managing electricity
- Option to sell consumer-owned generation and storage resources into the market

Costs

Passed on to the consumer

Answers "What's in it for me?"

An Example

Potential Bill Savings

Estimated residential bill/year	\$1,200
Expected reduction from EE/DR	10% – 15%
Potential savings/year	\$120_\$180
Assumed bill increase to pay for smart grid/year	\$60-\$120
Net consumer value/year	\$0 -\$120

Positive value but not very compelling!

Another Example

Potential Fuel Cost Savings

Assumed miles driven/year	10,000
Fuel cost (gas)/mile	\$0.10 - 0.15
Fuel cost (PHEV)/mile	\$0.03 - 0.05
Annual fuel cost (gas)	\$1,000 – \$1,500
Annual fuel cost (PHEV)	\$300 – \$500
Potential fuel cost savings/year	\$500 – \$1,200
Premium to purchase PHEV over gas	\$4,000 - \$10,000

More compelling but is it enough?

Societal Value Proposition

Benefits

- > Energy independence
 - Deep penetration of electric vehicles –Smart Grid enabled could reduce oil imports by 52%
 - Smart Grid supports conservation, demand response, and reduces T&D losses further reducing peak loads and total U.S. electricity consumption by 56 to 203B KWh's by 2030
- National security
 - Smart Grid increases the decentralization of supply, greatly reducing its vulnerability to attack
 - ➤ 2-way flow of power and information enables the grid to anticipate and respond to problems (self-heals) dramatically reducing the impact and duration of disturbances.
- ➤ Downward pressure on electricity prices through improved operating and market efficiencies, consumer involvement, deferral of capital projects

Societal Value Proposition

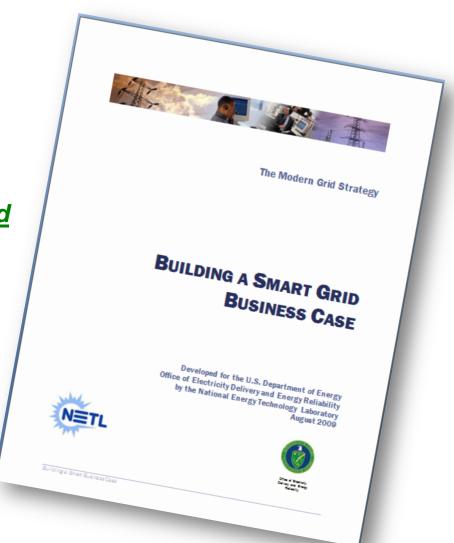
Benefits

- > Improved environment
 - Deep penetration of electric vehicles –Smart Grid enabled could reduce CO₂ emissions by 60 to 211 Million metric tons in 2030
 - New storage technologies—including EV's— will enable a much deeper penetration of intermittent renewables.
 - Smart Grid will reduce T&D losses thereby reducing the amount of generation needed to serve a given load.
- > Growing the U.S. economy
 - New jobs—280K new, 140K sustained— to support the planning, design, construction, operation and maintenance of the Smart Grid
 - Economic development for new products and services demanded by Smart Grid consumers
- Improved reliability leading to reduction in consumer losses (~\$135B)

Summary

- Help the consumer "get on board"
- Develop the complete story
 - consumer benefits
 - societal benefits
 - costs of doing nothing
 - address their concerns
 - answer their questions
- If we do this right we can all be winners
 - Suppliers
 - Consumers
 - Society

We can make the Smart Grid a winner for all!

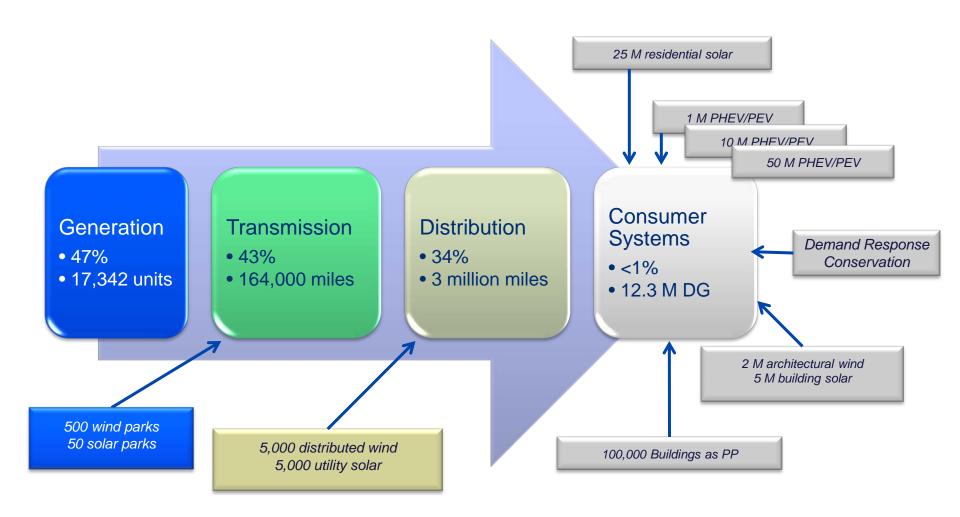


For More Information

For additional Information:

http://www.netl.doe.gov/moderngrid

Coming soon: http://www.smartgrid.gov



Back-up Slides

The Smart Grid will Optimize Supply

Some Challenges

- Technology
- Interoperability and cyber security standards
- Regulatory Policy
- Workforce training and education
- Consumer engagement (the market)

WV Smart Grid Costs & Benefits

PV 20-yr Cost and Benefits (\$1000)

Solution	Cost	Benefits
AMI	\$399	\$1,377
IT	\$170	\$1,025
DR	\$22	\$877
DMS	\$454	\$3,286
DER	\$832	\$3,671
Total	\$1,878	\$10,236

Benefit to Cost Ratio for West Virginia – **5:1**Benefit to Cost Ratio for San Diego – 6:1
Benefit to Cost Ratio for US (EPRI 2004) – 4:1 to 5:1

How do we engage the consumers?

Three Step Process

- Create Understanding of Smart Grid concepts and issues through effective communication, education, and debate
- Create Alignment using a collaborative approach and by allowing consumers to impact the direction of the Smart Grid transition in their respective areas or regions
- Motivate:
 - Value in moving forward
 - Cost/penalties of doing nothing
 - Address their questions and concerns

Addressing Consumer Concerns

Burdensome new tools

- "keeping it simple"
- Set it and forget it

Privacy

- How do we protect the privacy of consumers and gain their trust?
- Other industries have addressed this concern. Let's check with them.

Cyber vulnerability

Control and trust

- Utility control of prices that change frequently ("price of gasoline" model)
- Bad experience with de-regulation
- Worry that smart-grid technologies are just another way for utilities to make extra money off consumers

Technology obsolescence

Answering Consumers' Questions

- Why do we need to pursue the consumer side (smart meters) before smart grid upgrades are made to the distribution system?
- Why can't many of the benefits that Smart Grid provides be done with existing technologies, e.g., existing demand response technologies?
- All consumers will pay for Smart Grid investments, but only some will (can) take the initiative to achieve the benefits. Is that fair?
- Will consumers have to purchase additional devices to participate with the Smart Grid and enjoy its benefits, e.g., home area networks, in-home displays?
- Will Smart Grid technologies increase the risk of cyber security events resulting in a less secure grid?