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Outline
1. Current system operations: worst-case dispatch
2. Future electric power system: smart grid
3. Renewables and demand response increase uncertainty
4. Smart grid increases information and control
5. Risk-limiting dispatch
6. Preserving the interface: bundling unreliable supply/demand
7. Preserving the interface: unreliable energy transactions
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Current electric power system operations

• ISO schedules generators/loads  
s.t. constraints are met:
– Power balance
– Operating limits
– (N-1) contingencies

• Objective
– Min cost

s.t. constraints

• Uncertainty
– Peak load demand
– Forced outage (fault)

• Recourse
– Balance 

• Emergency
– Load shedding
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Operating risk and worst-case dispatch

• Operating risk
– Not meeting constraints

• Constraints
– Power balance

– Operating limits

• u is such that for each 
contingency x(t) is 
stable

• Stochastic uncertainty
– Outage, peak  demand

• (N-1) contingencies
• Dispatch reliable power

– r ~ 0.05 = reserve margin
– D = peak demand

• Reserve margin increases 
capacity cost and carbon 
emissions
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Future electric power system
• Renewables

– Wind
– Solar
– Storage
– microgrid

• Smart grid infrastructure
– Smart meters, sensors
– Intelligent appliances
– Communication
– Demand  response
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Renewable generation increases uncertainty

• Generation availability

• Rated capacity = 1500KW
• Average capacity = 700KW
• Reliable capacity = 150KW 

(reliable capacity ~ thermal)
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Wind power and worst-case dispatch
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• Rated capacity = M
• Reliable capacity = 0.1-0.2M
• If M is scheduled need 

reserve capacity of 0.8M
• If 0.2M is scheduled it 

should displace 0.8M of 
thermal power, which 
becomes reserve
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California example1/2

8Source:  Y. Makarov and D. Hawkins, CALISO



California example2/2
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Demand response increases uncertainty

• Demand response

• Worse-case dispatch 
cannot use demand 
response to reduce 
reserves

10

Demand reduced by |D(h)| for at least h hours/year

D(80) = - 300W



Case against worst-case dispatch
• Worst-case dispatch designed for system with reliable power 

transactions in which 
– Generators have 0-1 failure characteristic
– Short-term peak demand is predictable 
– Information is scarce and decisions cannot be refined

• Wind power generation and demand response are highly 
uncertain

• Consequently, renewable generation and demand response are 
unfairly treated by worst-case dispatch
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Greater information and control
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• More accurate information
– Smart meters, sensors

• More refined control
– Intelligent appliances
– Demand  response

• Tighter feedback 
– Communication

• Enable risk-limiting (vs. worst-case) dispatch



Risk-limiting dispatch: scheduling
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• Scheduling
– Decision       : Generation/demand 
– Max objective such that the risk of not meeting 

operating constraints is less than (1-p*) based 
on information           at scheduling time 
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Risk-limiting dispatch: recourse
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• Recourse
– Decision         : Generation, demand response
– Max objective such that the risk of not meeting 

operating constraints is less than (1-p*) based 
on information             at recourse time   
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Risk-limiting dispatch: emergency
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• Emergency
– Decision         : Generation, interruptible load
– operating constraints must be satisfied based on 

information              at emergency time
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Risk-limiting dispatch: summary
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• Optimization for system operation:

scheduling

σTt −

operating time

t

recourse

ρTt − εTt −

emergency

* See: Bouffard and Galliana, Trans Power Syst, 2008; Morales et al. Trans Power Syst, 2009

• Impossible stochastic sequential dispatch problem



Wind power offer in reliable-power-only market
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Worst-case dispatch
Revenue = c1 0.2M

Reliable-equivalent dispatch
Net revenue = 1/2 c1

2/ c2 M

c1 < c2 Comparisons

PIRP dispatch
Revenue = 1/2 c1 M
Subsidy = 1/2 c1 0.8M
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Interruptible power transactions
• Interruptible power contracts parameterized by (c, ρ) with per 

MW price c delivers power with probability ρ, and no power 
with probability (1- ρ)

• Suppose market creates contracts (c1, ρ1), …, (ck, ρk) with     
1= ρ1 > … > ρk and c1 > … > ck 

• Note ρ1 is reliable power
• How will wind generator react?  Take k = 4
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Wind generator example 

• At scheduling time, supplier 
sells wi units of ρi reliability 
power

• Assume availability state  si  
is known at recourse time

• At time t deliver contracts   
ρ1 ... ρi

• Revenue of             with no 
subsidy
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How will customers behave
• Recall that less reliable power is cheaper: c1 > … > ck 

• Customers may select bundle to

– U(D) is utility of consuming D 
– L(D) is loss of not consuming D
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Incremental deployment
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• Permit interruptible power in distribution system and 
reliable power in bulk power system



Conclusion 
• Federal programs are deploying smart grid elements on large 

scale
• Current practice of worst-case dispatch requires subsidies for 

renewable sources and demand response
• More accurate and timely information and more refined 

control suggest shift to risk-limiting dispatch, which does not 
require subsidies

• Risk-limiting dispatch can be introduced incrementally in 
distribution system 
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