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PREFACE 

 
The Public Interest Energy Research (PIER) Program supports public interest energy research 
and development that will help improve the quality of life in California by bringing 
environmentally safe, affordable, and reliable energy services and products to the marketplace. 
 
The PIER Program, managed by the California Energy Commission (Commission), annually 
awards up to $62 million to conduct the most promising public interest energy research by 
partnering with Research, Development, and Demonstration (RD&D) organizations, including 
individuals, businesses, utilities, and public or private research institutions. 
 
PIER funding efforts are focused on the following six RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy 
• Environmentally-Preferred Advanced Generation 
• Energy-Related Environmental Research 
• Energy Systems Integration 

 
What follows is the final report for the Residential DR Scoping Study Project, 500-03-026 Task 
4J, conducted by Energy and Environmental Economics (E3). The report is entitled “Residential 
Demand Response Evaluation Scoping Study.” This project contributes to the Energy Systems 
Integration Program. 
 
For more information on the PIER Program, please visit the Commission's Web site at: 
http://www.energy.ca.gov/research/index.html or contact the Commission's Publications Unit at 
916-654-5200. 
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ABSTRACT 

The primary goals of this scoping study were to (1) summarize existing methods for 
estimating demand response, (2) evaluate these methods' abilities to accurately estimate 
residential demand response for the purpose of program evaluation, (3) recommend a 
preferred approach, and (4) outline any remaining knowledge gaps. This study was 
motivated by the CPUC directive (D.05-11-009) of developing measurement and 
evaluation protocols for demand response.   

Our evaluation considers both day-matching and regression techniques, outlining the 
following alternative methods: (1) prior-day averaging, (2) weather-matching techniques, 
(3) regression-based load profile comparison, and (4) econometric demand analysis. 
Based on a review of these methods for evaluating demand response, we find that 
customer-specific regression analysis is likely to give accurate, transparent and intuitive 
results. Depending on program requirements, this method can be modified to estimate 
hourly demand response before, during and after events, providing hourly kW response 
results and load profiles. 

Beyond basic demand response estimation, several issues need to be addressed before a 
practical method for residential demand response program evaluation can be determined. 
Among them are the ability to evaluate multiple events on consecutive days, an 
understanding of how advance notification affects demand response, and incorporation of 
considerations affecting the extrapolation of results from a voluntary pilot to a large-scale 
program.  

1. INTRODUCTION  

In April 2005, the Partner Planning Committee of the Demand Response Research Center 
(DRRC) agreed on establishing the “Value of Demand Response” as their top research 
priority.  To find the value of residential demand response, however, it is necessary to 
accurately measure customer load impacts resulting from price or reliability triggered 
demand reduction events (Herter, McAuliffe and Rosenfeld, 2006; Horowitz and Woo, 
2006).  Hence, the primary focus of this scoping study is to identify methods that, when 
applied to actual customer load data,1 can produce unbiased load impact estimates.2   

After fully incorporating the valuable input from the project's Technical Advisory Group 
(TAG),3 this final report summarizes existing methods for estimating demand response, 
evaluates these methods' abilities to accurately estimate residential demand response for 
                                                 
1 The recorded load data may come from a demand response experiment or an on-going program.   
2 Thus, the study is not a review of engineering estimates for a kW change due to a higher thermostat 
setting on a hot summer day.  Nor is the study an assessment of the ability of a particular method to 
accurately predict demand response to program designs as yet to be implemented.  Such an assessment is 
beyond the scope of this study.   
3 The TAG team includes: Adrienne Kandel and David Hungerford of the California Energy Commission, 
Susan McNicoll of Pacific Gas and Electric Company, and Ed Vine of Lawrence Berkeley National 
Laboratory. The team's detailed comments have greatly improved the report's content and exposition. 
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the purpose of program evaluation (rather than individual customer response), 
recommend a preferred approach, and outlines any remaining knowledge gaps.  These 
results help meet the CPUC directive (D.05-11-009) of developing measurement and 
evaluation protocols for demand response.  They also contribute to the DRRC’s effort in 
refining the cost-effectiveness tests in the Standard Practice Manual (Baskette, Horii, 
Kollman and Price, 2006).  

We define demand response as the difference between (a) the unperturbed load profile 
absent the event; and (b) the perturbed load profile as a result of the event.  We refer to 
the unperturbed load profile in (a) as the “baseline” load profile.  Since the perturbed 
profile in (b) is actually observed, accurate demand response estimation predicates on 
accurate estimation of the baseline loads.   

The common methods of demand response estimation include: 

• Prior-days averaging techniques, which compare the load profile on an event day to 
the average profile over multiple days prior to the event. The average non-event 
profile is at times adjusted to match the actual loads in the morning before the event 
hours.  

• Weather-matching techniques, which compare the load profile on one or more event 
days to the average profile over non-event days with similar weather characteristics. 

• Regression-based load comparison, which entails estimating customer-specific 
hourly load regressions that incorporate the effects of time, weather and event 
variables. 

• Econometric demand models based on a system of electricity demand equations, 
typically derived from utility-maximization behavior of electricity consuming 
households.4 

A detailed summary and critique of these methods, along with an assessment of critical 
knowledge gaps, will be presented in this summary report.  The mathematical details of 
each method are provided in an appendix. 

Based on the findings detailed below, we conclude that a regression-based load 
comparison approach is likely to provide a reasonable estimate of residential demand 
response to a utility-triggered event.  However, critical knowledge gaps in the effort to 
evaluate residential demand response remain.  By no means exhaustive, the list of gaps 
includes: (a) validation of the accuracy of response estimates; (b) modeling the effect of 
consecutively triggered events on response estimates; (c) modeling the effect of a day-
ahead notice in the presence of public appeal for voluntary load curtailment; and (d) 
estimating aggregate load impact under a voluntary tariff.   Hence, we urge the DRRC to 
continue its support of demand response estimation as part of its on-going research. 
                                                 
4 The popular double-log and linear demand equations are consistent with utility maximization (Hausman, 
1981).  As noted by a TAG member, however, a demand model may be empirically based, purely driven by 
price/quantity data.   
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2.  CHALLENGES  

A sound method should overcome challenges frequently encountered in any demand 
response estimation: ease of implementation, accuracy, and transparency.  These 
challenges are discussed below. 

2.1 Ease of implementation 

When choosing a method for evaluating individual customer demand response, simple 
calculation is a top priority, since both customers and program administrators are 
expected to make use of the method (Goldberg and Agnew, 2003). In the case of program 
evaluation, however, ease of implementation is less critical, as it is conducted by those 
familiar with analysis techniques. At the same time, a complex method requiring 
substantial time and money for expert analysis is undesirable. Ideally, the method will be 
as simple to use as possible without sacrificing accuracy or usefulness. The following 
questions address some of the challenges a good method should overcome. 

Can the method easily handle voluminous hourly datasets? 

Demand response estimation typically uses hourly load and climate data over multiple 
months or years from multiple customers dispersed across geographical zones.  These 
datasets can quickly become rather cumbersome.  For example, the recent 15-month 
pricing experiment in California generated about 22 million hourly load data values and 
over 600,000 temperature values for the roughly 2,000 participating customers in four 
climate zones.  

Such large datasets present a challenge to the identification and quantification of 
customer response.  Hence, a good approach must be computationally efficient, 
overcoming the "too much data" problem.  It should do so without imposing potentially 
restrictive assumptions on the data, such as might be done by averaging over like groups 
(e.g. all customers within a climate zone).5   

Can the method easily estimate load shifting and spill-over effects? 

Part or all of residential response to an event can be the result of shifting loads from the 
event hours to (a) neighboring hours in the event day, (b) hours in the preceding day after 
receiving the advance notice; or (c) hours in the following day. Some household activities, 
like clothes and dish washing, can be done earlier or later than planned with little or no 
inconvenience. Even air-conditioning can be activated in the hours before an event to pre-
cool the house, allowing reduced air-conditioning load during event hours.  Where air-
conditioning is forgone during events, increased indoor temperatures are likely to raise 
air-conditioner utilization in the post-event hours. 

                                                 
5 A TAG member notes that industries like banking and telecommunication daily handle large data files, 
with little or no problem in real-time processing bills or extracting data.  However, data analysis is not the 
same as data processing and retrieval.  Personal communication with a vice president of the E-commerce 
division of a very large bank confirms that it is difficult to accurately analyze the pattern of customer credit 
card purchases using very large data files.   
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Prediction of load shifts to hours outside the event period is important for enabling 
system operators to simultaneously shift supply to those hours.  It is also important for 
estimating the effects of tariffs or programs on emissions, because of the time-varying 
difference in emissions rates of generation sources.  Hence, a thorough understanding of 
the effects of price or reliability events requires an approach that can calculate these spill-
over effects, which have not been fully investigated in the extant literature reviewed 
below.   

2.2 Accuracy  

The second set of challenges arises from the nature of residential demand response.  A 
sound method should account for the possibility that demand response may depend on 
such factors as weather, timing, and customer demographics; otherwise, the resulting 
estimates may be biased, a consequence of under-specification.  When modeling these 
dependencies, however, the approach must not impose excessive computational time and 
complexity that can render it impractical for frequent applications.6 

Does the method control for the effects of time on response? 

Customer responses are time dependent.  Residential loads vary substantially by time-of-
day and day-of-week.  They are also likely to have a seasonal pattern, or month-of-year 
effects.  A good approach must be sufficiently rich to capture the kW variance due to the 
effects of time-of-day, day-of-week and month-of-year. Constraining responses to be 
time insensitive likely introduces estimation bias. 

Does the method control for the effects of weather on response? 

Residential response is also weather-dependent (Herter, McAuliffe and Rosenfeld, 2006). 
Any accurate model comparing baseline and perturbed loads must control for hourly 
weather effects. In addition, they should recognize effects of persistent extreme weather 
on household load: thermal loads can increase on subsequent days of a prolonged heat 
wave or cold spell due to building heat retention or loss. Thus, a customer's response 
might also increase or decrease as the extreme weather persists.7  

Does the method account for heterogeneous response? 

Customer responses are heterogeneous, reflecting diverse customer characteristics like 
income, house size, and geographic location.  One may estimate a single model of 

                                                 
6 A TAG member comments that the ultimate choice of a specific method is more driven by the application 
at hand (e.g., circuit load estimation vs. individual load estimation) than its computational time or 
complexity.  Concurring with this comment, the discussion below shows that a load-regression approach is 
not the easiest computation among the alternatives considered.  However, it is a reasonable method to 
accurately quantify the kW impact using actual customer load data, the primary focus of the scoping study. 
7 A TAG member notes that the core TOU rate structure of the CPP tariff may cause a permanent change in 
air-conditioning use, as indicated by demand studies of time of use pricing (Aigner, 1986).  The load-
regression approach described in the Appendix below can analyze if a permanent change has occurred, 
given suitable data that allows a comparison of (a) the kW profile under non-TOU rates, (b) the kW profile 
under TOU rates only; and (c) the kW profile under CPP rates with TOU core. 
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customer response with parameters that link response differences to variations in 
customer characteristics – for example, an income coefficient for the income variable, a 
house size coefficient for the house size variable, etc.  The resulting model, however, 
implicitly asserts that heterogeneous responses can be sufficiently represented by these 
parameters that are not allowed to vary across customers.8  A more accurate and flexible 
model would estimate the parameters for each customer. 

Moreover, given the weather-dependency of demand response, a single model of 
customer response, despite the inclusion of parameters that control for weather effects, 
would overlook the fact that weather-dependent response estimates can in turn depend on 
individual customer characteristics.  For example, a customer with central air-
conditioning is likely to respond differently than one without central air-conditioning.  
While the single model can use cross-product terms to account for the interaction 
between weather and demographics, it can become so large that its parameters are hard to 
track and interpret.  

 2.3 Usefulness  

The last challenges relate to the substantive question: are the results useful in program 
evaluation, design and acceptance?  

Is the method transparent?  

A good method should be transparent, producing estimates that are easy to understand 
and verify.  A demand response estimate from a black box, even if valid, is less credible 
than one found under a direct and intuitive approach.  A program design based on non-
transparent results invite skepticisms, hampering its acceptance by stakeholders (e.g., 
regulatory staff, utility staff, consumer advocates, and ratepayers). 

Are the results intuitive? 

A good method should produce a direct measurement of a customer's demand response, 
strictly adhering to its definition of kW difference between the customer's baseline and 
the perturbed load profiles.  If the baseline profile comes from a complicated simulation 
exercise,9 the load impact results are less convincing than those found from a simple one. 

3.  POTENTIAL METHODS FOR EVALUATING AGGREGATE 
RESIDENTIAL DEMAND RESPONSE 

Our evaluation considers both day-matching and regression techniques, outlining the 
following alternative methods: (1) prior-day averaging, (2) weather-matching techniques, 
(3) regression-based load profile comparison, and (4) econometric demand analysis.  The 

                                                 
8 One may estimate a random coefficient model to reflect taste variance.  But such an approach is 
computationally difficult and non-transparent. 
9 An example is the simulation of baseline profiles via price scenarios created as input data to a large 
system of estimated demand equations. 
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resulting discussion applies to the evaluation of hourly data produced by either the price 
events of a dynamic rate or the reliability events of a dispatchable load control program. 

3.1 Day-matching techniques 

These techniques assume the existence of one or more “non-event” days whose hourly 
load values can be averaged to provide the baseline load profile.  As will be seen below, 
there are two types of day matching, neither of which has formally been shown to have 
the statistical property of unbiased estimation. 

3.1.1 Prior day averaging 

For use in estimating individual non-residential customer baseline loads,10 Goldberg and 
Agnew (2003) recommend using the average load profile of days prior to the event scaled 
to match the event day's morning loads, thereby partially correcting for weather effects 
(equations given in the Appendix). The benefits of this approach include easy 
implementation and intuitive results.  

For residential program evaluation, however, prior day averaging with scaling is 
troublesome for many reasons. For example, it is designed to evaluate the response 
during a single event, so evaluation of an entire season would require more complex 
analysis. Also, where programs or tariffs provide for advance notification of events, a 
method that calculates baselines using the day before and adjustments based on load a 
few hours before the event are likely to be biased.  This can lead to overestimation of 
response where pre-cooling strategies are employed or underestimation of response 
where load drop precedes the exact event onset. Load shifting effects can be calculated 
using a prior-day baseline that excludes any hours after notification is given; however, 
these calculations must be done separately for each day, making the analysis less 
transparent. Finally, this method does not control for any potential day-of-week effects 
and might not accurately control for weather effects. 

3.1.2 Weather-based matching 

Herter, McAuliffe and Rosenfeld (2006) identify baseline loads for a residential pricing 
pilot by averaging load profiles of non-event days with weather conditions closely 
matching those of the critical peak pricing (CPP) event days (equations given in the 
Appendix).  A direct comparison of average baseline loads and average observed loads 
on the CPP-event day yields the average load impact estimates. 

While transparent, weather-based matching can be difficult to implement if there are too 
few non-event days with weather characteristics similar to the event day. For example, if 
CPP events are always called on the hottest days of the year, there may not be enough hot 
non-event days to create a statistically believable baseline. Even if one can find a non-
event day with identical weather as the CPP-event day, these two days are not exactly 
matched due to the chronological differences that can affect baseline loads.  Finally, as in 
                                                 
10 Goldberg and Agnew (2003) do not comment on the potential usefulness of this method for residential 
program evaluation. 
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the prior-days averaging technique, estimating the spill-over effects of a CPP event can 
only be done separately, one day at a time, doubling or tripling the effort needed to find 
the effects on the event day alone.   

3.2  Regression techniques 

3.2.1 Regression-based load profile comparison 

A regression based-load profile comparison is a statistical implementation of the prior 
day averaging and weather matching techniques based on analysis of covariance 
(ANCOVA) in studying hourly loads (model specification given in the Appendix). This 
method can be used to calculate response to either a dynamic rate or a load control 
program (see for example Quantum, 2006). 

One can estimate a single model for all load data across customers (e.g., Hartway, Price 
and Woo, 1999; Aigner and Hirschberg, 1985; Aigner and Lillard, 1984).11  However, we 
consider customer-specific regressions to be advantageous for several reasons. First, the 
method is flexible in that the customer-specific response estimates can be averaged to any 
desired degree of detail (e.g., local weather zone vs. state-wide), or even used 
individually if desired. This is an important consideration in program design, evaluation 
and implementation.  A program that induces large response in a given area but not others 
might be better suited for a targeted rather than state-wide implementation.  

Second, it eliminates the need for customer demographic data, because variation of 
demographic variables within-customer over a short time period (e.g., one or two summer 
seasons) is unlikely to be large. This is not the case for regression models that pool all 
customer data, because demographic characteristics vary significantly across customers. 
This is an important benefit of individual versus pooled regressions for program 
evaluation, because demographic characteristics are unlikely to be available for all 
customers in the sample.12    

This regression-based approach offers a number of advantages.  First, its empirical 
implementation is relatively straightforward, using the least squares regression routine 
available in any statistical package. For example, using SAS, the estimation of a large 

                                                 
11 With hourly dummy variables, a single model may be one hourly load regression for all customers, 
which can be accurately and easily estimated using ordinary least squares (OLS).  Alternatively, a single 
model can be a system of 24 hourly equations, each of which corresponds to a particular hour.  The system 
can be jointly estimated using the seemingly unrelated regression technique, possibly with cross-equation 
constraints to improve statistical efficiency. 
12 For large-scale programs, utilities are likely to have only hourly load and weather data for each customer, 
since a survey of participant demographics is a costly and time-consuming proposition, and missing data 
can bias results.  A TAG member comments that if the research focus is average response, the missing 
demographic data may not be an issue.  The comment is valid if the probability of a variable (e.g., income) 
with missing values does not correlate with the size of kW load.  If customers who do not report income are 
also large users, excluding these customers from the regression can cause sample selection bias (Heckman, 
1979). 
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number of customer-specific regressions can be easily done on a personal computer using 
the BY option of PROC REG.13   

Second, the approach is a statistical implementation of the intuitively appealing day-
matching techniques, isolating the customer-specific kW impact of a CPP event while 
controlling for both time (as in prior-day averaging) and weather (as in weather-
matching). This technique further improves on the day-matching techniques by easily 
calculating spillover effects on the days preceding and following an event.  Thus, the 
approach can accurately quantify heterogeneous customer responses that may be weather-
dependent, without the laborious exercise of finding matching days.  

Third, the customer-specific response estimates found via least squares have the desirable 
statistical properties of being unbiased and consistent (Kmenta, 1986).14  An unbiased 
estimate is accurate: any deviation between the estimate and its true but unobserved value 
has an expected value of zero.  A consistent estimate converges to its true but unobserved 
value when the sample size increases.  Hence, the kW response estimate's validity 
improves with increasing sample size, which can be the result of a longer sample period 
during which more data are collected.  This is an important consideration for assessing 
the load impact of an on-going program already in place because updating the load 
impact estimates after receiving more data over time will move the estimates closer to 
their true but unobserved values.  

Finally, the results of the regression can easily produce intuitive results in the form of 
average hourly response estimates and load profiles.15 

3.2.2 Econometric demand analysis 

An econometric demand analysis relies on the microeconomic theory of an electricity 
consumer that can be a household or a firm (see the Appendix for the model 
specification).  It requires sufficient price variations for the identification and estimation 
of a demand model's price coefficients.  As a result, the approach is better suited for a 

                                                 
13 As noted by a TAG member, hourly load data likely has serial correlation.  In the presence of serial 
correlation, OLS produces unbiased, though inefficient, estimates.  To improve statistical efficiency, 
however, one can use autoregression techniques that account for serially-correlated errors.  
14 A TAG member comments that the load-regression approach may fail to produce accurate load impact 
estimates when the load data only contains as few as one event.  Accurate estimates can still be obtained in 
this special case using the following steps: (1) estimate the baseline load profile after excluding data on the 
day-before, day-of, and day-after the events; (2) predict the baseline load profile for the day-before, day-of, 
and day-after the single event; and (3) compare the predicted baseline load profile with the actually metered 
load data for the day-before, day-of, and day-after the single event.   
15 As noted by a TAG member, a customer-specific regression approach may not yield accurate load impact 
estimates for the special case that an area has mostly very cool weather and extremely rare hot days on 
which the utility invokes the high-price or load curtailment signal.  This is because the extrapolation of the 
baseline profile inferred from the data collected on cool days can be an inaccurate representation of the 
baseline profile on the extremely hot days.  To improve accuracy in this special case, one should use a 
regression that employs a pooled data sample.  While plausible, this special case is unlikely. For example, 
this case does not exist in the critical peak pricing data sample that geographically encompasses the entire 
California (Herter, McAuliffe and Rosenfeld, 2006).   
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pricing program/experiment than a load control program/experiment, as the latter is 
seldom designed for an investigation of price-induced effects on a customer's load profile. 

In the case of a household, the approach postulates a system of electricity demand 
equations which, if one chooses, can be derived from the household's utility-
maximization behavior (Varian, 1984, Chapter 3).16  Estimating the electricity demand 
system under time-of-use (TOU) pricing yields price elasticity estimates by TOU period 
(Aigner, 1986; Acton, 1982).  Notable examples are Atkinson (1979), Aigner and 
Hausman (1980), Caves Christensen and Herriges (1984, 1987), and Herriges, Caves and 
Christensen (1984).17  Faruqui and George (2005) apply a similar framework for their 
CPP analysis.   

In the case of a firm, the approach assumes a system of electricity demand equations 
derived from the firm's cost-minimization behavior (Varian, 1984, Chapter 1).  
Estimating the electricity input demand system under TOU pricing yields price elasticity, 
as demonstrated by Hirschberg and Aigner (1983), Woo (1985), Tishler (1983) and 
Taylor, Schwartz and Cochell (2005). 

Implementation of an econometric demand framework to analyze customer response to 
high prices is not simple. Specifying and estimating a system of 24 hourly demand 
equations with numerous parameters is an extremely complicated exercise (Taylor, 
Schwartz and Cochell, 2005). One can reduce the number of parameters to be estimated 
by grouping load data in broad TOU periods (e.g., on- and off-peak), but the grouping 
implicitly treats within period loads identically. Response estimates obtained under this 
type of restricted specification then represent only average load values across the CPP 
event hours, and do not reflect any hourly shape. 

Second, the approach is not easily amenable to analyze the day-before and day-after spill-
over effects in customer response. To estimate these effects, a suitably specified demand 
system would allow inter-day substitution of hourly kW, expanding the already large 
number of parameters to be estimated.  This worsens the non-convergence problem in 
estimating a system of hourly demand equations (Zarnikau, Landreth, Hallett and 
Kumbhakar, 2006).18   

Third, the numerous elasticity estimates do not clearly convey the kW magnitude of 
demand response; this is notwithstanding that the kW estimates are of most interest to 
resource planners and policy makers. While one may use price elasticity estimates to 
make load impact predictions (Faruqui and George, 2005),19 a direct and transparent 
                                                 
16 As noted by a TAG member, a demand model may be purely driven by price/quantity data, without 
making the assumption of utility maximization. 
17 While one can postulate a kW demand system as shown in the Appendix, the primary focus of these 
TOU studies is price elasticity estimation (Aigner, 1986).   
18 The estimable form of a demand model is not always linear.  For instance, the Generalized Leontief (GL) 
expenditure function implies non-linear cost share equations to be estimated using iterative techniques 
(Woo, 1985).  When the number of equations is large and the sample size is also large, non-convergence is 
a frequent problem that is not easy to overcome. 
19 There are many definitions of price elasticity (e.g., elasticity of substitution, own- and cross-price 
elasticities of demand based on electricity expenditure, and own- and cross-price elasticities of demand 
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method is preferable, especially when the parametric specification of a demand system 
can at times wrongly influence the size of elasticity estimates (Woo, 1985).20   

Finally, an econometric demand model may not be applicable to a direct-load-control 
(DLC) program that allows an electric utility to interrupt/curtail a customer's loads.  This 
is partly because a DLC program seldom produces sufficient price variations for the 
identification and estimation of the demand model.  Assuming sufficient price variations, 
one may consider using econometric models of household/firm behavior to estimate the 
effect of service interruption on consumption (Woo, 1994; Woo and Lo, 1993).  However, 
extending that approach to a system of hourly electrical demand equations is difficult 
because of the resulting large number of parameters to be estimated.   

3.3  Recommendation 

The key finding from the preceding discussions is that the regression-based load 
comparison is a reasonable approach to accurately estimate demand response to 
dispatchable events.  This finding leads to our recommendation of using this approach for 
residential demand response estimation based on load data collected from an experiment 
or on-going program. 

4.  CRITICAL KNOWLEDGE GAPS 

Notwithstanding our recommendation, critical knowledge gaps remain.  By no means 
exhaustive, the list of gaps include: (a) validation of the accuracy of response estimates; 
(b) modeling the effect of consecutively triggered events on response estimates; (c) 
modeling the effect of a day-ahead notice in the presence of public appeal for voluntary 
load curtailment; and (d) estimating aggregate load impact under a voluntary tariff.  Each 
gap is discussed below. 

4.1 Validation of method accuracy 

Recall that demand response is the difference between (a) the unperturbed load profile 
absent the event; and (b) the perturbed load profile as a result of the event.  Since the 
perturbed profile is directly and accurately metered, a response estimate can only be as 
accurate as the unperturbed baseline profile estimate.   

Unfortunately, the unperturbed load profile can never be directly observed, unless one 
can meter a customer's unperturbed loads under the exact conditions surrounding the 
event day.  This is an impossible task because the customer does not have an identical 
                                                                                                                                                 
based on total household expenditure that includes electricity) (Acton, 1982).  While these elasticity values 
are algebraically related (Berndt and Wood, 1979), how to use them correctly is not immediately obvious to 
someone with limited exposure to electricity demand studies.  
20 A TAG member comments that a linear demand system can be used directly to predict baseline loads and 
load impact directly, without using elasticity estimates.  This comment is valid in the context of using an 
estimated version of the linear demand system.  However, it presupposes the system has already been 
estimated.  As shown in the Appendix, a linear demand system is neither simple nor easy to compute when 
compared to the other alternatives.  
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twin with the same consumption behavior living next door in an identical house.  As a 
result, the unperturbed load profile can at best be a prediction, using a model developed 
from data collected from the non-event days.   

While direct and accurate metering of demand response is impossible, validating the 
accuracy of response estimates can be done using the following steps: 

• Formally establish that the baseline load estimation is unbiased.  For instance, an 
hourly load regression estimated using least squares has unbiased coefficient 
estimates that can in turn produce unbiased load predictions.   

• Empirically verify that the within-sample load predictions match the unperturbed and 
perturbed load profiles in the sample used to build the load estimation model.21 

• Empirically verify that the beyond-sample load predictions match the unperturbed 
and perturbed load profiles outside the sample used to build the model.22 

If an approach is found to be unbiased and able to produce accurate within- and beyond-
sample load predictions for both event and non-event days, we can conclude that the 
approach's accuracy is validated to the best extent allowed by the available data.  

4.2 Further requirements for accurate program evaluation 

Consecutive events 

How consecutive events affect demand response is seldom studied, even though hourly 
load data files (e.g., CPP experiment) are available for estimating this effect.  The effect 
is important when the utility must invoke load reduction to resolve a persistent 
emergency (e.g., record 1-week heat wave plus major plant failures).  If a customer's 
demand response declines after the first event day, the program's value diminishes as well.   

To quantify the effect of consecutive events on load impact, a customer-specific 
regression can include a binary indicator, as an additional explanatory variable, to reflect 
if an event-day is immediately preceded by another event day, see the appendix for 
further details.   

Advance notice 

The CPP data indicate that advance notice induces demand response on the day of notice, 
even though the high CPP price is not in effect.  Separately, past experience from the 
2000/2001 energy crisis indicates that customers respond to public appeal for voluntary 
reduction in an emergency declared by the California Independent System Operator 
(CAISO).  A substantive question thus arises: if the advance notice coincides with the 

                                                 
21 A TAG member comments that the average of OLS within-sample predictions always matches the 
average of within-sample actual load data.  While the comment is valid, one should check if the daily 
predictions also match well with the actual data on days of interest (e.g., very hot non-event days and event 
days). 
22 An example of beyond-sample prediction comparison entails the following steps: (1) estimate the load 
regressions using the first two months of a 3-month sample period; (2) use the estimated regression 
equation to predict the kW in the last month; and (3) compare the actual and predicted kW in the last month.   
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emergency, what should be the kW effect of the advance notice?  The answer is 
important, if one were to correctly attribute the value of advance notice.   

Aggregate load impact 

A program's cost effectiveness critically depends on the value of its aggregate impact, the 
product of (a) the average impact per participant; and (b) the number of participants (= 
participation rate x number of eligible customers).  The estimation methods discussed 
thus far aim to provide estimates for the average impact in (a) due to a voluntary tariff / 
program.23  It does not discuss how (a) can be estimated under mandatory participation.  
Nor does it estimate the participation rate required to compute the number of participants 
in (b) under voluntary participation.  

While mandatory implementation implies 100% participation, possible self-selection bias 
(Ham, Mountain and Chan, 1997) complicates the use of the data of a voluntary 
experiment to infer the average load impact.  Self-selection bias arises because a 
participant of a voluntary program reveals itself to behave differently from a non-
participant.  It can be identified and corrected using the procedure developed by 
Heckman (1979). 

A demand response tariff can be voluntary, with an "opt-in" or "opt-out" implementation.  
Hence, the load response estimation discussed in Section 3 can produce an average load 
impact per participant.  But a voluntary tariff's participation rate is below 100% because 
an eligible customer who dislikes the tariff can switch to another one.  To quantify the 
tariff's participation rate, one may apply discrete choice modeling that explains the 
probability of a customer's participating decision (Hartman, Doane and Woo, 1991; 
Keane, MacDonald and Woo, 1988).   

5. SUMMARY 

A good demand response estimation method should meet the criteria of simple 
implementation, accuracy, and usefulness: 

• Is the method easy to implement?  A method is undesirable if it requires extensive 
training requirement and is time-consuming to apply.   

• Are the results accurate?  Under- or over-estimating a program's kW savings leads to 
under- or over-statement of the program's demand response value.  Hence, accuracy is 
an overarching goal of any demand response estimation method. 

• Are the results useful?  Transparency facilitates third-party review and validation.  A 
black-box approach is undesirable because it invites skepticism, diminishing a 

                                                 
23 As a TAG member noted, if the estimates are based on the data collected in an experiment or the initial 
year of a small program, one may have concern in extrapolating the estimates to the case of wide 
implementation because of the potential bias caused by the small sample size.  This concern, however, 
diminishes as estimates can be updated using an increasingly large sample resulting from the program's on-
going operation.  
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demand response program's acceptance by various stakeholders (e.g., ratepayers, 
utilities and regulators). 

Based on a review of several methods for evaluating demand response, we find that 
customer-specific regression analysis is likely to give accurate, transparent and intuitive 
results. Depending on program requirements, this method can be modified to estimate 
hourly demand response before, during and after events, providing hourly kW response 
results and load profiles. 

This recommendation is purely based on our conceptual reasoning and a careful review 
of estimation literature.  No empirical results have shown this method to be easier to 
implement, more accurate or to provide more useful results than the other methods 
described herein. Such empirical evidence is critical to a final recommendation. 

Beyond basic demand response estimation, several issues need to be addressed before a 
practical method for residential demand response program evaluation can be determined. 
Among them are the ability to evaluate multiple events on consecutive days, an 
understanding of how advance notification affects demand response, and incorporation of 
considerations affecting the extrapolation of results from a voluntary pilot to a large-scale 
program.  
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7.  APPENDIX: MODEL DETAILS 

7.1 Prior-days averaging 

The unadjusted baseline for hour j is: 

N
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where Loadnj is the load on day n in hour j and N is the number of days used to calculate 
the baseline. 

A scalar adjustment for weather can then be calculated as: 
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where Loadex is the load on the event day in hour x, the target hour for adjustment 
(typically one to three hours before the event). Finally, response is calculated as: 

AdjBaselinej – Loadej  

  

7.2 Weather-matching technique 

This technique quantifies the average hourly response in a given temperature ranges as: 
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where: i = temperature range; j = hour of the day j (1-24); p = participant; e = event day; 
n = normal day; Pij = number of participants having both normal and event values in 
temperature range i for hour j; Eip = number of event days in temp range i for participant 
p; Nip = number of normal days in temp range i for participant p; Loade = kWh usage for 
participant p, temperature bin i, and hour j on event days; Loadn = kWh usage for 
participant p, temperature bin i, and hour j on normal days. 
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7.3 Regression-based load profile comparison 

Load regression 

Consider a customer-specific hourly load regression with coefficient vectors (β, α1, α2, 
α3): 

yth  = xth β + D1t zth α1 + D2t zth α2 + D3t zth α3 + εth; or 

Hourly kW =  Hourly baseline kW for hour h on day t 

 + Day-before ∆kW impact (e.g.., advance notice effect if t = day before the event) 

 + Day-of ∆kW impact (e.g., intra-day shifting if t = day of the event) 

 + Day-after ∆kW impact (e.g., rebound effect if t = day after the event) 

 + Random error. 

The above regression is to be estimated for each customer with the following variables: 

yth = observed kW load of a participant in hour h on day t. 

xth = (1 x K) vector of explanatory variables that drive the kW load on a "normal" day, 
include the intercept, kW timing and weather variables. 

zth = (1 x M) vector of variables that drive load impact, with M = K + 2.  It has all of the 
elements in xth.  The first additional variable is the total number of events in the season as 
of day t, so as to control for the possible effect of event operation history on customer 
response.  If an increase in the cumulative number of events reduces load impact, this 
variable's coefficient estimate is negative.  The second is a binary variable, indicating if 
the event day is immediately preceded by another event-day.  This variable aims to 
capture the effect of consecutively triggered events on the event day's load impact.  If 
consecutive events reduce load impact, this variable's coefficient estimate is negative. 

D1t = 1 if day-before an event; 0, otherwise. 

D2t = 1 if day-of an event; 0, otherwise. 

D3t = 1 if day-after an event; 0, otherwise. 

εth = error term, assumed to have zero mean and finite variance.   

Based on Kmenta (1986, Chapter 11), Table A.1 shows that equation (1) can yield 
estimates of the hour's baseline load, unperturbed by an event.  It can also isolate the load 
change as a result of the event. 
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Table A.1: Load type, dummy variable values and load expectation  

Load type Dummy 
variable values 

Expected 
value  

Explanation 

Day-before 
baseline 

D1(t-1) = 0 
D2(t-1) = 0 
D3(t-1) = 0 

x(t-1)h β x(t-1)h β is the normal load that 
could have occurred based on 
the observed values of x on the 
day before the CPP event. 

Day-before load 
impact 

D1(t-1) = 1 
D2(t-1) = 0 
D3(t-1) = 0 

z(t-1)h α1 z(t-1)h α1 is the load impact based 
on the observed values of z on 
the day before the CPP event. 

Day-of baseline D1t = 0 
D2t = 0 
D3t= 0 

xth β xth β is the normal load that 
could have occurred based on 
the observed values of x on the 
day of the CPP event. 

Day-of load 
impact 

D1t = 0 
D2t = 1 
D3t = 0 

zth α2 zth α2 is the load impact based 
on the observed values of z on 
the day of the CPP event. 

Day-after 
baseline 

D1(t+1) = 0 
D2(t+1) = 0 
D3(t+1) = 0 

x(t+1)h β x(t+1)h β is the normal load that 
could have occurred based on 
the observed values of x on the 
day after the CPP event. 

Day-after load 
impact 

D1(t+1) = 0 
D2(t+1) = 0 
D3(t+1) = 1 

z(t+1)h α3 z(t+1)h α3 is the load impact 
based on the observed values of 
z on the day after the CPP event.

 

Prediction 

Suppose we have used least squares to consistently estimate equation (1), obtaining (b, a1, 
a2, a3), the estimates for (β, α1, α2, α3).  Based on Kmenta (1986, Chapter 10), the 
discussion below is specific to the day-of predictions.  The formulae for day-before and 
day-after predictions are entirely analogous. 

Suppose we are interested in the predicting the day-of baseline load at hour h on day T 
with a scenario described by xTh.  We can make xTh to reflect a very hot day when the 
system demand spikes.  The day-of baseline load prediction is: 

 yTh  = xTh b.        (2) 

Conditional on a scenario described by zTh (whose value should be consistent with xTh), 
the day-of load impact prediction is: 

 ∆2Th = zTh a2.        (3) 
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Since the load impact is customer-specific and based on the customer's own load data 
observed over event and non-event days, it does not suffer from self-selection bias.  

Average of customer-specific predictions  

The hourly baseline load prediction based on equation (2) is customer-specific; so is the 
hourly load impact prediction based on equation (3).  Averaging is necessary if our 
interest is the average load impact for a particular customer stratum (e.g., single family 
owners in a hot weather zone).  Suppose this stratum has N customers.  After suppressing 
the day and hour subscript for notational simplicity, the stratum's average load impact is: 

∆ = Σj ∆(j) / N       (4) 

where ∆(j) = load impact estimate for customer j (= 1, ..., N).   

The variance of the average load impact is (a) the variance of individual customer-
specific response estimates,24 divided by (b) the number of customers in the segment 
(Mood, Graybill and Boes, 1974).   

We can use the stratum-specific average impact and its variance to compute the system 
average and its variance.  As the sample's proportion of customers in a given stratum may 
differ from the population's proportion, we apply inverse weights (= sample proportion / 
population proportion) to inflate or deflate the influence of each stratum's estimate in the 
system average computation. 

7.4. Econometric demand analysis 

Hourly demand equation 

Consider a linear hourly demand equation for hour h' on day t: 

 qh't = θh' + Σh γh pht + Σh φh ph(t+1)  + Σj ηh'j wh'j + Σk δk dk+ µh't  

where qh't = kW at hour h' on day t (h' = 1, ..,, 24); pht = applicable price at hour h (= 1, ..., 
24) on day t; ph(t+1) = applicable price at hour h on day (t+1); wh'tj = weather variable j for 
hour h' on day t; and dk = demographic variable k (e.g., income, house size, and appliance 
holding) that do not vary within the relatively short sample period (e.g., one summer); 
and µht = error term.  The coefficients to be estimated are: θh = hourly specific intercept, 
{γh} = coefficients for the day-of prices, {φh} = coefficients for the day-ahead prices; {ηh'j} 
= coefficients for the weather variables, and {δk} = coefficients for the customer 
demographic variables.   

This demand equation measures day-of and day-after price effects using the coefficient 
vectors {γh} and {φh}, weather effects {ηh'j}, and demographic effects {δk}.  It captures 
the notice effect because the prices on the notice day t are less than those on the event day 
                                                 
24 As noted by a TAG member, the individual variance estimates should reflect the estimation method 
chosen (e.g., PROC REG vs. PROC AUTOREG in SAS). 
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(t + 1).  When day t and (t+1) are both non-event days, the prices in these two days are 
identical.  If the price effects are assumed to depend on weather and demographics, the 
price coefficients can written as linear functions of those variables. 

Since each day is represented by 24 hourly equations per day, there are 48 hourly demand 
equations to be estimated using such methods as the iterative three-stage least squares or 
maximum likelihood.  Even without allowing for price effects' dependence on other 
variables, the number of parameters to be estimated per equation can easily exceed 50, in 
light of the 48 hourly prices, several weather variables, and several demographic 
variables.   

Once can reduce the number of price coefficients by grouping hours by time-of-use 
period.  For example, an on- and off-peak grouping would reduce the number of price 
variables and the number of equations to four, at the expense of imposing the assumption 
of equal kW effects of price, weather and demographic within each period.   

Prediction 

To the extent that the system of equations is correctly specified, the resulting coefficient 
estimates are unbiased and can be used to make accurate baseline predictions under the 
assumption of no CPP price signal.  The same set of estimated equations can be used to 
make perturbed load predictions under the assumption of CPP price signal being 
dispatched.  The hourly difference between two load predictions forms the hourly 
demand response estimate. 

Average of customer-specific predictions  

This is the same as the one for regression-based load profile comparison; hence, it is not 
repeated here. 

 
 
 
 
 




