Research activities: Integration of renewable resources

Mark O'Malley

Director: Electricity Research Centre http://ee.ucd.ie/erc

National Renewable Energy Laboratory, Colorado

EPRI Workshop, Dec 9th 2008

ERC Industry Members

Mission

- Research in Electricity
 - Infrastructure
 - Environmental
 - Market

Grid integration of renewables

Build human capacity

Research Question

With large quantities of distributed generation (renewable energy) how do we use the existing networks in an optimal manner ?

Maximizing network as energy harvesting device

38kV 7 Bus Test System

Constrained optimization problem

$$\begin{aligned} &Max \left(\sum_{j=1}^{N} [P_{DGi}(1-\eta_{ji}) - P_{LDi}(1-\rho_{ji})] \right) \\ &subject \ to \\ &V_i \leq V_{maxi} \\ &\frac{P_{Geni}}{SCL_i.Cos(\phi)} \times 100 \leq 10\% \\ &P_{Installed i} \leq P_{DGi} \leq P_{Availi} \\ &etc. \\ &i \ \forall \ N. \end{aligned}$$

Keane, A and M.J. O'Malley, "Optimal Allocation of Embedded Generation on Distribution Networks", *IEEE Transactions on Power Systems*", Vol. 20, pp. 1640 - 1646, 2005.

Maximizing network as energy harvesting device

Keane, A and M.J. O'Malley, "Optimal Allocation of Embedded Generation on Distribution Networks", *IEEE Transactions on Power Systems*", Vol. 20, pp. 1640 - 1646, 2005.

Keane, A. and M. J. O'Malley, "Optimal utilisation of distribution networks as energy harvesting devices", *IEEE Transactions on Power Systems*", Vol. 22, pp. 467 – 475, 2007.

Impact of Wind Turbine Control Strategies on Voltage Performance

> Eknath Vittal 9 December 2008

Introduction

- Impact of control strategy of the DFIG

 Terminal voltage control vs. fixed power factor
- Generated voltage probability density functions
 Rural bus vs. urban bus
- Impact of interconnection

8

– Distribution level vs. transmission level

Results – Distribution Level Control

• What would happen if distribution connected farms implemented terminal voltage control?

9

- Applied terminal control to next highest kV bus interconnected to farm
- Observed total Q production and V from the distribution connected farms

Results – Distribution Level Control

- Simulations on SNV
- Case A no capability to provide positive Q
- Average Q:
 - Case A (-25 MVAr)
 - Case B 1.68 MVAr

Results – Distribution Level Control

- Change of 26.68 MVAr allows for:
 - Higher voltage
 - Target V achieved
- Significant since higher V at distributed level improves performance at transmission level

Average Voltage (pu)

Bus (kV)	Case A	Case B	Improvement
A (20 kV)	1.0143	1.0027	0.0127
B (20 kV)	1.0132	1.0267	0.0135
C (20 kV)	1.0114	1.0100	1.01 target
D (20 kV)	0.9793	1.0000	0.0207
E (20 kV)	1.0048	1.0090	0.0042
F (6.6 kV)	1.0269	1.0328	0.0059
G (20 kV)	1.0092	1.0090	1.009 target
H (20 kV)	1.0035	1.0090	0.0055

Conclusion

- Research driven by large amounts of wind
- Demonstration on active control of voltage on distribution network