Power grid vulnerability, new models, algorithms and computing

Daniel Bienstock Abhinav Verma

Columbia University, New York

July, 2009

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 1 / 43

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the "N-1" problem
- Of interest: delete $k = 2, 3, 4, \ldots$ edges

Naive enumeration blows up

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the "N-1" problem
- Of interest: delete $k = 2, 3, 4, \ldots$ edges
- Naive enumeration blows up

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the "N-1" problem
- Of interest: delete $k = 2, 3, 4, \ldots$ edges

Naive enumeration blows up

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small

```
Delete 1 arc = the "N-1" problem
```

```
• Of interest: delete k = 2, 3, 4, \ldots edges
```

Naive enumeration blows up

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the "N-1" problem
- Of interest: delete $k = 2, 3, 4, \ldots$ edges

Naive enumeration blows up

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the "N-1" problem
- Of interest: delete $k = 2, 3, 4, \ldots$ edges

Naive enumeration blows up

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount *D^{min}* of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the "N-1" problem
- Of interest: delete $k = 2, 3, 4, \ldots$ edges
- Naive enumeration blows up

Linear power flow model

We are given a network **G** with:

- A set of S of supply nodes (the "generators"); for each generator *i* an "operating range" 0 ≤ S^L_i ≤ S^U_i,
- A set *D* of **demand** nodes (the "loads"); for each load *i* a "maximum demand" 0 ≤ *D_i^{max}*.
- For each arc (i, j) values x_{ij} and u_{ij} .

Linear power flow model

We are given a network **G** with:

- A set of S of supply nodes (the "generators"); for each generator *i* an "operating range" 0 ≤ S^L_i ≤ S^U_i,
- A set *D* of demand nodes (the "loads"); for each load *i* a "maximum demand" 0 ≤ *D_i^{max}*.

For each arc (i, j) values x_{ij} and u_{ij}.

Linear power flow model

We are given a network **G** with:

- A set of S of supply nodes (the "generators"); for each generator *i* an "operating range" 0 ≤ S^L_i ≤ S^U_i,
- A set *D* of demand nodes (the "loads"); for each load *i* a "maximum demand" 0 ≤ *D_i^{max}*.
- For each arc (i, j) values x_{ij} and u_{ij} .

A power flow is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all i , where
 $S_i^L \le b_i \le S_i^U$ OR $b_i = 0$, for each $i \in S$,
 $0 \le -b_i \le D_i^{max}$ for $i \in D$,

and $b_i = 0$, otherwise.

• $x_{ij}f_{ij} - \theta_i + \theta_j = 0$ for all (i, j). (Ohm's equation)

Lemma Given a choice for **b** with $\sum_i b_i = 0$, the system has a **unique** solution.

The solution is **feasible** if $|f_{ij}| \le u_{ij}$ for every (i, j).

Its throughput is $\sum_{i \in D} -b_i$.

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

ヘロト ヘ戸 ト イヨト イヨト

A power flow is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all i , where
 $S_i^L \le b_i \le S_i^U$ OR $b_i = 0$, for each $i \in S$,
 $0 \le -b_i \le D_i^{max}$ for $i \in D$,

and $b_i = 0$, otherwise.

• $x_{ij}f_{ij} - \theta_i + \theta_j = 0$ for all (i, j). (Ohm's equation)

Lemma Given a choice for **b** with $\sum_i b_i = 0$, the system has a **unique** solution.

The solution is **feasible** if $|f_{ij}| \le u_{ij}$ for every (i, j).

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

A power flow is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all i , where
 $S_i^L \le b_i \le S_i^U$ OR $b_i = 0$, for each $i \in S$,
 $0 \le -b_i \le D_i^{max}$ for $i \in D$,
and $b_i = 0$, otherwise.

• $\mathbf{x}_{ij}\mathbf{f}_{ij} - \mathbf{\theta}_i + \mathbf{\theta}_j = \mathbf{0}$ for all (i, j). (Ohm's equation)

Lemma Given a choice for **b** with $\sum_{i} b_{i} = 0$, the system has a **unique** solution.

The solution is **feasible** if $|f_{ij}| \le u_{ij}$ for every (i, j).

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

・ロト ・得ト ・モト ・モト

A power flow is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all i , where
 $S_i^L \le b_i \le S_i^U$ OR $b_i = 0$, for each $i \in S$,
 $0 \le -b_i \le D_i^{max}$ for $i \in D$,

and $b_i = 0$, otherwise.

• $\mathbf{x}_{ij}\mathbf{f}_{ij} - \theta_i + \theta_j = \mathbf{0}$ for all (i, j). (Ohm's equation)

Lemma Given a choice for **b** with $\sum_{i} b_{i} = 0$, the system has a **unique** solution.

The solution is **feasible** if $|f_{ij}| \le u_{ij}$ for every (i, j).

A power flow is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all i , where
 $S_i^L \le b_i \le S_i^U$ OR $b_i = 0$, for each $i \in S$,
 $0 \le -b_i \le D_i^{max}$ for $i \in D$,

and $b_i = 0$, otherwise.

• $\mathbf{x}_{ij}\mathbf{f}_{ij} - \theta_i + \theta_j = \mathbf{0}$ for all (i, j). (Ohm's equation)

Lemma Given a choice for **b** with $\sum_{i} b_{i} = 0$, the system has a **unique** solution.

The solution is **feasible** if $|f_{ij}| \le u_{ij}$ for every (i, j).

Its throughput is $\sum_{i \in D} -b_i$.

Three types of successful attacks

Type 1: Network becomes disconnected with a mismatch of supply and demand.

Three types of successful attacks

Type 2: Lower bounds on generator ouptuts cause line overload

July, 2009 6 / 43

- ∃ →

Type 3: Uniqueness of power flows means exceeded capacities or insufficient supply.

< ∃⇒

A game:

The *controller's problem:* Given a set \mathcal{A} of arcs that has been deleted by the attacker, choose a set \mathcal{G} of generators to operate, so as to feasibly meet demand (at least) \mathcal{D}^{min} .

The *attacker's problem:* Choose a set \mathcal{A} of arcs to delete, so as to defeat the controller, no matter how the controller chooses \mathcal{G} .

A game:

The *controller's problem:* Given a set \mathcal{A} of arcs that has been deleted by the attacker, choose a set \mathcal{G} of generators to operate, so as to feasibly meet demand (at least) D^{min} .

The *attacker's problem:* Choose a set \mathcal{A} of arcs to delete, so as to defeat the controller, no matter how the controller chooses \mathcal{G} .

A game:

The *controller's problem:* Given a set \mathcal{A} of arcs that has been deleted by the attacker, choose a set \mathcal{G} of generators to operate, so as to feasibly meet demand (at least) D^{min} .

The *attacker's problem:* Choose a set \mathcal{A} of arcs to delete, so as to defeat the controller, no matter how the controller chooses \mathcal{G} .

< ロ > < 回 > < 回 > < 回 > < 回 >

The controller's problem for a given choice of generators

Given a set \mathcal{A} of arcs that has been deleted by the attacker, **AND** a choice \mathcal{G} of which generators to operate, set demands and supplies so as to feasibly meet total demand (at least) \mathcal{D}^{min} .

This a linear program:

The controller's problem for a given choice of generators

Given a set \mathcal{A} of arcs that has been deleted by the attacker, **AND** a choice \mathcal{G} of which generators to operate, set demands and supplies so as to feasibly meet total demand (at least) \mathcal{D}^{min} .

This a linear program:

Subject to:

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0$, for all nodes *i*,

 $m{S}^{min}_i \leq m{b}_i \leq m{S}^{max}_i$ for $\ i \in \mathcal{G}, \quad m{0} \leq -m{b}_i \leq m{D}^{max}_i$ for $\ i \in m{D}$ $m{b}_i = m{0}$ otherwise.

 $x_{ij}f_{ij} - \theta_i + \theta_j = \mathbf{0}$ for all $(i, j) \notin \mathcal{A}$

 $-\sum_{i\in D} b_i + D^{\min} t \geq 2D^{\min}$

 $u_{ij}t \geq |f_{ij}|$ for all $(i,j) \notin \mathcal{A}$

 $f_{ij} = 0$ for all $(i, j) \in \mathcal{A}$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 11 / 43

Subject to:

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i,$ $S_i^{min} \le b_i \le S_i^{max} \text{ for } i \in \mathcal{G}, \quad 0 \le -b_i \le D_i^{max} \text{ for } i \in D$ $b_i = 0 \text{ otherwise.}$

 $\begin{aligned} \mathbf{x}_{ij} \mathbf{f}_{ij} &- \theta_i + \theta_j = \mathbf{0} \text{ for all } (i, j) \notin \mathcal{A} \\ &- \sum_{i \in D} \mathbf{b}_i + \mathbf{D}^{\min} \mathbf{t} \geq 2\mathbf{D}^{\min} \\ \mathbf{u}_{ij} \mathbf{t} \geq |\mathbf{f}_{ij}| \text{ for all } (i, j) \notin \mathcal{A} \\ &\mathbf{f}_{ii} = \mathbf{0} \text{ for all } (i, i) \in \mathcal{A} \end{aligned}$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 11 / 43

Subject to:

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i,$ $S_i^{min} \le b_i \le S_i^{max} \text{ for } i \in \mathcal{G}, \quad 0 \le -b_i \le D_i^{max} \text{ for } i \in D$ $b_i = 0 \text{ otherwise.}$

 $x_{ij}f_{ij} - \theta_i + \theta_j = \mathbf{0}$ for all $(i, j) \notin \mathcal{A}$

 $-\sum_{i\in D} b_i + D^{\min} t \geq 2D^{\min}$

 $u_{ij}t \geq |f_{ij}|$ for all $(i,j) \notin \mathcal{A}$

 $f_{ij} = 0$ for all $(i, j) \in \mathcal{A}$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 11 / 43

Subject to:

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0$, for all nodes *i*, $S_i^{min} < b_i < S_i^{max}$ for $i \in \mathcal{G}, \quad 0 < -b_i < D_i^{max}$ for $i \in D$ $b_i = 0$ otherwise. $\mathbf{x}_{ii}\mathbf{f}_{ii} - \mathbf{\theta}_i + \mathbf{\theta}_i = \mathbf{0}$ for all $(i, j) \notin \mathcal{A}$ $-\sum_{i\in D} b_i + D^{\min} t > 2D^{\min}$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 11 / 43

Subject to:

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i,$ $S_i^{min} \leq b_i \leq S_i^{max} \text{ for } i \in \mathcal{G}, \quad 0 \leq -b_i \leq D_i^{max} \text{ for } i \in D$ $b_i = 0 \text{ otherwise.}$ $x_{ij}f_{ij} - \theta_i + \theta_j = 0 \text{ for all } (i, j) \notin \mathcal{A}$ $-\sum_{i \in D} b_i + D^{min} t \geq 2D^{min}$ $u_{ij}t \geq |f_{ij}| \text{ for all } (i, j) \notin \mathcal{A}$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 11 / 43

Subject to:

$$\begin{split} \sum_{ij} f_{ij} &- \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i, \\ S_i^{min} &\leq b_i \leq S_i^{max} \text{ for } i \in \mathcal{G}, \quad 0 \leq -b_i \leq D_i^{max} \text{ for } i \in D \\ b_i &= 0 \text{ otherwise.} \\ x_{ij}f_{ij} &- \theta_i + \theta_j = 0 \text{ for all } (i,j) \notin \mathcal{A} \\ &- \sum_{i \in D} b_i + D^{min} t \geq 2D^{min} \\ u_{ij}t \geq |f_{ij}| \text{ for all } (i,j) \notin \mathcal{A} \\ f_{ij} &= 0 \text{ for all } (i,j) \in \mathcal{A} \end{split}$$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

▲ ■ ▶ ■ つへで July, 2009 11 / 43

Subject to:

$$\begin{split} \sum_{ij} f_{ij} &- \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i, \\ S_i^{min} &\leq b_i \leq S_i^{max} \text{ for } i \in \mathcal{G}, \quad 0 \leq -b_i \leq D_i^{max} \text{ for } i \in D \\ b_i &= 0 \text{ otherwise.} \\ x_{ij}f_{ij} &- \theta_i + \theta_j = 0 \text{ for all } (i,j) \notin \mathcal{A} \\ &- \sum_{i \in D} b_i + D^{min} t \geq 2D^{min} \\ u_{ij}t \geq |f_{ij}| \text{ for all } (i,j) \notin \mathcal{A} \\ f_{ij} &= 0 \text{ for all } (i,j) \in \mathcal{A} \end{split}$$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 11 / 43

(a)

Subject to:

$$\begin{split} \sum_{ij} f_{ij} &- \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i, \\ S_i^{min} &\leq b_i \leq S_i^{max} \text{ for } i \in \mathcal{G}, \quad 0 \leq -b_i \leq D_i^{max} \text{ for } i \in D \\ b_i &= 0 \text{ otherwise.} \\ x_{ij} f_{ij} &- \theta_i + \theta_j = 0 \text{ for all } (i, j) \notin \mathcal{A} \\ &- \sum_{i \in D} b_i + D^{min} t \geq 2D^{min} \\ u_{ij} t \geq |f_{ij}| \text{ for all } (i, j) \notin \mathcal{A} \\ \text{for all } (i, j) \in \mathcal{A}, t \geq 1 + |f_{ij}| / u_{ij} \end{split}$$

Lemma: $t_{\mathcal{A}}(\mathcal{G}) > 1$ iff the attack is successful against the choice \mathcal{G} .

July, 2009 12 / 43

Attack problem

min $\sum_{ij} z_{ij}$

Subject to:

 $\begin{aligned} & z_{ij} = 0 \text{ or } 1, \text{ for all arcs } (i, j), \quad (\text{choose which arcs to delete}) \\ & t_{suppt(z)}(\mathcal{G}) > 1, \quad \text{for every subset } \mathcal{G} \text{ of generators.} \\ & [suppt(v) = \text{support of } v] \end{aligned}$

ightarrow Use LP dual to represent $t_{suppt(z)}(\mathcal{G})$

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

3.5

Attack problem

min $\sum_{ij} z_{ij}$

Subject to:

 $\begin{aligned} & z_{ij} = 0 \text{ or } 1, \text{ for all arcs } (i, j), \quad (\text{choose which arcs to delete}) \\ & t_{suppt(z)}(\mathcal{G}) > 1, \quad \text{for every subset } \mathcal{G} \text{ of generators.} \\ & [suppt(v) = \text{support of v}] \end{aligned}$

 \rightarrow Use LP dual to represent $t_{suppt(z)}(\mathcal{G})$

July, 2009 13 / 43

3.5

Building the dual

 $t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:

 $\sum_{ii} f_{ii} - \sum_{ii} f_{ii} - b_i = 0$, for all nodes *i*, (α_i) $S_i^{min} < b_i < S_i^{max}$ for $i \in \mathcal{G}$, $\mathbf{0} < -\mathbf{b}_i < \mathbf{D}_i^{max}$ for $i \in \mathbf{D}$ $b_i = 0$ otherwise. $\mathbf{x}_{ii}\mathbf{f}_{ii} - \mathbf{\theta}_i + \mathbf{\theta}_i = \mathbf{0}$ for all $(i, j) \notin \mathcal{A}$ (β_{ii}) $-(\sum_{i \in D} b_i) / D^{min} + t > 2$ $u_{ii}t \geq |f_{ii}|$ for all $(i, j) \notin \mathcal{A}$ (p_{ii}, q_{ii}) $u_{ij}t \geq u_{ij} + |f_{ij}|$ for all $(i, j) \in \mathcal{A}$ (r_{ij}^+, r_{ij}^-)
Building the dual

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i, \qquad (\alpha_i)$ $x_{ij} f_{ij} - \theta_i + \theta_j = 0 \text{ for all } (i, j) \notin \mathcal{A} \qquad (\beta_{ij})$ $u_{ij} t \ge |f_{ij}| \text{ for all } (i, j) \notin \mathcal{A} \qquad (p_{ij}, q_{ij})$ $u_{ij} t \ge u_{ij} + |f_{ij}| \text{ for all } (i, j) \in \mathcal{A} \qquad (r_{ij}^+, r_{ij}^-)$ $\sum_{ij} \beta_{ij} - \sum_{ji} \beta_{ji} = 0 \quad \forall i$ $\alpha_i - \alpha_j + x_{ij} \beta_{ij} = p_{ij} - q_{ij} + r_{ij}^+ - r_{ij}^- \quad \forall (i, j)$

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 15 / 43

Building the dual

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i, \qquad (\alpha_i)$ $x_{ij}f_{ij} - \theta_i + \theta_j = 0 \text{ for all } (i,j) \notin \mathcal{A} \qquad (\beta_{ij})$ $u_{ij}t \ge |f_{ij}| \text{ for all } (i,j) \notin \mathcal{A} \qquad (p_{ij}, q_{ij})$ $u_{ij}t \ge u_{ij} + |f_{ij}| \text{ for all } (i,j) \in \mathcal{A} \qquad (r_{ij}^+, r_{ij}^-)$ $\sum_{ij} \beta_{ij} - \sum_{ji} \beta_{ji} = 0 \quad \forall i$ $\alpha_i - \alpha_j + x_{ij}\beta_{ij} = p_{ij} - q_{ij} + r_{ij}^+ - r_{ij}^- \quad \forall (i,j)$

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July. 2009 15 / 43

Building the dual

 $\sum_{ij} f_{ij} - \sum_{ij} f_{ji} - b_i = 0, \text{ for all nodes } i, \qquad (\alpha_i)$ $\mathbf{x}_{ij} f_{ij} - \theta_i + \theta_j = 0 \text{ for all } (i, j) \notin \mathcal{A} \qquad (\beta_{ij})$ $u_{ij} t \ge |f_{ij}| \text{ for all } (i, j) \notin \mathcal{A} \qquad (p_{ij}, q_{ij})$ $u_{ij} t \ge u_{ij} + |f_{ij}| \text{ for all } (i, j) \in \mathcal{A} \qquad (r_{ij}^+, r_{ij}^-)$ $\sum_{ij} \beta_{ij} - \sum_{ji} \beta_{ji} = 0 \quad \forall i$ $\alpha_i - \alpha_j + \mathbf{x}_{ij} \beta_{ij} = \mathbf{p}_{ij} - \mathbf{q}_{ij} + r_{ij}^+ - r_{ij}^- \quad \forall (i, j)$

July. 2009 15 / 43

Again:

 $\sum_{ij} \beta_{ij} - \sum_{ji} \beta_{ji} = \mathbf{0} \quad \forall i$ $\alpha_i - \alpha_j + \mathbf{x}_{ij} \beta_{ij} = \mathbf{p}_{ij} - \mathbf{q}_{ij} + \mathbf{r}_{ij}^+ - \mathbf{r}_{ij}^- \quad \forall (i, j)$

0-1 -ify: form mip-dual

 $p_{ij} + q_{ij} \leq M_{ij}(1 - z_{ij})$ $r_{ij}^+ + r_{ij}^- \leq M_{ij}' z_{ij}$

 \rightarrow "big M" formulation: what's the problem

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

√ ৰ ট > ট প ৭০ July, 2009 16 / 43

Again:

$$\sum_{ij} \beta_{ij} - \sum_{ji} \beta_{ji} = \mathbf{0} \quad \forall i$$

$$\alpha_i - \alpha_j + \mathbf{x}_{ij} \beta_{ij} = \mathbf{p}_{ij} - \mathbf{q}_{ij} + \mathbf{r}_{ij}^+ - \mathbf{r}_{ij}^- \quad \forall (i, j)$$

0-1 -ify: form mip-dual

 $p_{ij} + q_{ij} \leq M_{ij}(1 - z_{ij})$ $r_{ij}^+ + r_{ij}^- \leq M'_{ij}z_{ij}$

 \rightarrow "big M" formulation: what's the problem

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 16 / 43

< 🗇 🕨 < 🖻 🕨

Again:

$$\sum_{ij} \beta_{ij} - \sum_{ji} \beta_{ji} = \mathbf{0} \quad \forall i$$

$$\alpha_i - \alpha_j + \mathbf{x}_{ij} \beta_{ij} = \mathbf{p}_{ij} - \mathbf{q}_{ij} + \mathbf{r}_{ij}^+ - \mathbf{r}_{ij}^- \quad \forall (i, j)$$

0-1 -ify: form mip-dual

 $p_{ij} + q_{ij} \leq M_{ij}(1 - z_{ij})$ $r_{ij}^+ + r_{ij}^- \leq M'_{ij}z_{ij}$

 \rightarrow "big M" formulation: what's the problem

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 16 / 43

I hate math

 $M_{ij} = \sqrt{x_{ij}} \max_{(k,l)} (\sqrt{x_{kl}} u_{kl})^{-1}$

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 17 / 43

<ロ> < □> < □> < □> < □> <

A formulation for the attack problem

min $\sum_{ij} z_{ij}$

Subject to:

 $z_{ij} = 0$ or 1, for all arcs (i, j), (choose which arcs to delete)

 $t_{suppt(z)}(\mathcal{G}) > 1$, for every subset \mathcal{G} of generators.

A formulation for the attack problem

min $\sum_{ij} \mathbf{z}_{ij}$

Subject to:

 $z_{ij} = 0$ or 1, for all arcs (i, j), (choose which arcs to delete)

value of dual mip $(\mathcal{G}) > 1$, for every subset \mathcal{G} of generators.

ightarrow very large

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

- E - N

A formulation for the attack problem

min $\sum_{ij} \mathbf{z}_{ij}$

Subject to:

 $z_{ij} = 0$ or 1, for all arcs (i, j), (choose which arcs to delete)

value of dual mip $(\mathcal{G}) > 1$, for every subset \mathcal{G} of generators.

 \rightarrow very large

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algor

July, 2009 20 / 43

æ

< A

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

Solve master MIP, obtain 0 – 1 vector z*.

 Solve controller problem to test whether supp(z*) is a successful attack:

- If successful, then *z** is an optimal solution
- If not, then for some set of generators \mathcal{G} , $t_{supp(z^*)}(\mathcal{G}) \leq 1$.

3. Add to master MIP a system that cuts off z* and go to 1.

July, 2009 21 / 43

< 同 > < 三 > < 三 >

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

Solve master MIP, obtain 0 – 1 vector z*.

2. Solve controller problem to test whether $supp(z^*)$ is a successful attack:

- If successful, then *z** is an optimal solution
- If not, then for some set of generators \mathcal{G} , $t_{supp(z^*)}(\mathcal{G}) \leq 1$.

3. Add to master MIP a system that cuts off z* and go to 1.

July, 2009 21 / 43

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain 0 - 1 vector z^* .

2. Solve controller problem to test whether $supp(z^*)$ is a successful attack:

- If successful, then *z** is an optimal solution
- If not, then for some set of generators \mathcal{G} , $t_{supp(z^*)}(\mathcal{G}) \leq 1$.

3. Add to master MIP a system that cuts off z* and go to 1.

July, 2009 21 / 43

< 同 > < 回 > < 回 >

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain 0 - 1 vector z^* .

2. Solve controller problem to test whether $supp(z^*)$ is a successful attack:

- If successful, then *z** is an optimal solution
- If not, then for some set of generators $\mathcal{G}, t_{supp(z^*)}(\mathcal{G}) \leq 1$.

3. Add to master MIP a system that cuts off z* and go to 1.

< 同 > < 回 > < 回 >

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP obtain 0 - 1 vector z^* .

2. Solve controller problem to test whether $supp(z^*)$ is a successful attack:

If successful, then z* is an optimal solution

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain 0 - 1 vector z^* .

2. Solve controller problem to test whether $supp(z^*)$ is a successful attack:

- If successful, then *z** is an optimal solution
- If not, then for some set of generators \mathcal{G} , $t_{supp(z^*)}(\mathcal{G}) \leq 1$.

3. Add to master MIP a system that cuts off z* and go to 1.

→ Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain 0 - 1 vector z^* .

2. Solve controller problem to test whether $supp(z^*)$ is a successful attack:

- If successful, then *z** is an optimal solution
- If not, then for some set of generators \mathcal{G} , $t_{supp(z^*)}(\mathcal{G}) \leq 1$.
- 3. Add to master MIP a system that cuts off z* and go to 1.

Cutting planes = Benders' cuts

For a given 0 - 1 vector \hat{z} , and a set of generators \mathcal{G} ,

$$t_{suppt(\hat{z})}(\mathcal{G}) = \max \mu^T y$$

s.t.

$$Ay \leq b\hat{z}$$

 $y \in P$

for some vectors μ , **b**, matrix **A** and polyhedron **P**, (all dependent on \mathcal{G} , but not \hat{z}).

 \rightarrow If $t_{suppt(\hat{z})}(\mathcal{G}) \leq 1$, use LP duality to separate \hat{z} , getting a cut $\alpha^t z \geq \beta$ violated by \hat{z} .

July. 2009

22 / 43

Cutting planes = Benders' cuts

For a given $\mathbf{0} - \mathbf{1}$ vector $\hat{\mathbf{z}}$, and a set of generators \mathcal{G} ,

$$t_{suppt(\hat{z})}(\mathcal{G}) = \max \mu^T y$$

s.t.

$$Ay \leq b\hat{z}$$

 $y \in P$

for some vectors μ , **b**, matrix **A** and polyhedron **P**, (all dependent on \mathcal{G} , but not \hat{z}).

$$\rightarrow$$
 If $t_{suppt(\hat{z})}(\mathcal{G}) \leq 1$, use LP duality to separate \hat{z} ,

getting a cut $\alpha^t z \ge \beta$ violated by \hat{z} .

Plus:

Given an **unsuccessful** attack **z***,

"Pad" it: choose arcs a_1, a_2, \ldots, a_k such that

 $supp(z^*) \cup \{a_1, a_2, \dots, a_{k-1}, a_k\}$ is successful, but

 $supp(z^*) \cup \{a_1, a_2, ..., a_{k-1}\}$ is not

Then separate $supp(z^*) \cup \{a_1, a_2, \ldots, a_{k-1}\}$

→ other definitions of "padding"

・ 同 ト ・ ヨ ト ・ ヨ

Plus:

Given an **unsuccessful** attack **z***,

"Pad" it: choose arcs a_1, a_2, \ldots, a_k such that

 $supp(z^*) \cup \{a_1, a_2, \dots, a_{k-1}, a_k\}$ is successful, but

$$supp(z^*) \cup \{a_1, a_2, \ldots, a_{k-1}\}$$
 is not

Then separate $supp(z^*) \cup \{a_1, a_2, ..., a_{k-1}\}$

→ other definitions of "padding"

- ∃ →

Plus:

Given an **unsuccessful** attack **z***,

"Pad" it: choose arcs a_1, a_2, \ldots, a_k such that

 $supp(z^*) \cup \{a_1, a_2, \dots, a_{k-1}, a_k\}$ is successful, but $supp(z^*) \cup \{a_1, a_2, \dots, a_{k-1}\}$ is not

Then separate $supp(z^*) \cup \{a_1, a_2, \ldots, a_{k-1}\}$

 \rightarrow other definitions of "padding"

Plus, combinatorial relaxations

Strengthen controller or weaken attacker \rightarrow obtain valid attacks (e.g. upper bounds)

Example: fractional controller

Strengthen attacker or weaken controller \rightarrow obtain valid lower bounds.

Example: when an arc is attacked, flow goes to zero, but Ohm's law still applies

4 E N

July. 2009

24/43

Plus, combinatorial relaxations

Strengthen controller or weaken attacker \rightarrow obtain valid attacks (e.g. upper bounds)

Example: fractional controller

Strengthen attacker or weaken controller \rightarrow obtain valid lower bounds.

Example: when an arc is attacked, flow goes to zero, but Ohm's law still applies

IEEE 57 nodes, 78 arcs, 4 generators Entries show: (iteration count), CPU seconds, Attack status (F = cardinality too small, S = attack success)

	Attack cardinality				
Min.	2	3	4	5	6
thrpt					
0.75	(1), 2, F	(2), 3, S			
0.70	(1), 1, F	(3), 7, F	(48), 246, F	(51), 251, S	
0.60	(2), 2, F	(3), 6, F	(6), 21, F	(6), 21, S	
0.50	(2), 2, F	(3), 7, F	(6), 13, F	(6), 13, F	(6), 13, S
0.30	(1), 1, F	(2), 3, F	(2), 3, F	(2), 3, F	(2), 3, F

Table: IEEE 57-bus test case

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 25 / 43

118 nodes, 186 arcs, 17 generators

Entries show: (iteration count), CPU seconds,

Attack status (**F** = cardinality too small, **S** = attack success)

	Attack cardinality			
Min.	2	3	4	
thrpt				
0.92	(4), 18, S			
0.90	(5), 180, F	(6), 193, S		
0.88	(4), 318, F	(6), 595, S		
0.84	(2), 23, F	(6), 528, F	(148), 6562, S	
0.80	(2), 18, F	(5), 394, F	(7), 7755, F	
0.75	(2), 14, F	(4), 267, F	(7), 6516, F	

Table: IEEE 118-bus test case

98 nodes, 204 arcs

Entries show: (iteration count), time,

Attack status (**F** = cardinality too small, **S** = attack success)

12 generators				
	Attack cardinality			
Min. throughput	2	3	4	
0.92	(2), 318, F	(11), 7470, F	(14), 11819, S	
0.90	(2), 161, F	(11), 14220, F	(18), 16926, S	
0.88	(2), 165, F	(10), 11178, F	(15), 284318, S	
0.84	(2), 150, F	(9), 4564, F	(16), 162645, F	
0.75	(2), 130, F	(9), 7095, F	(15), 93049, F	

98 nodes, 204 arcs

Entries show: (iteration count), time,

Attack status (**F** = cardinality too small, **S** = attack success)

15 generators				
	Attack cardinality			
Min. throughput	2	3	4	
0.94	(2), 223, F	(11), 654, S		
0.92	(2), 201, F	(11), 10895, F	(18), 11223, S	
0.90	(2), 193, F	(11), 6598, F	(16), 206350, S	
0.88	(2), 256, F	(9), 15445, F	(18), 984743, F	
0.84	(2), 133, F	(9), 5565, F	(15), 232525, F	
0.75	(2), 213, F	(9), 7550, F	(11), 100583, F	

Min. Throughput	Min. Attack Size	Time (sec.)
0.95	2	2
0.90	3	20
0.85	4	246
0.80	5	463
0.75	6	2158
0.70	6	1757
0.65	7	3736
0.60	7	1345
0.55	8	2343
0.50	8	1328

Table: 49 nodes, 84 arcs, one configuration

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.

 \rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them

 \rightarrow Allow the adversary to selectively place stress on the grid in order to cause failure

 \rightarrow Allow the adversary the ability to **exceed** the laws of physics, in a limited way, so as to cause failure

A 35 b

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.

 \rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them

 \rightarrow Allow the adversary to selectively place stress on the grid in order to cause failure

 \rightarrow Allow the adversary the ability to **exceed** the laws of physics, in a limited way, so as to cause failure

4 E b

July. 2009

30/43

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.

 \rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them

 \rightarrow Allow the adversary to selectively place stress on the grid in order to cause failure

 \rightarrow Allow the adversary the ability to **exceed** the laws of physics, in a limited way, so as to cause failure

July. 2009

30/43

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algor

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.

 \rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them

 \rightarrow Allow the adversary to selectively place stress on the grid in order to cause failure

 \rightarrow Allow the adversary the ability to **exceed** the laws of physics, in a limited way, so as to cause failure

July. 2009

30 / 43

Power flows (again)

A **power flow** is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all *i*, where

- $b_i > 0$ when *i* is a generator,
- $b_i < 0$ when *i* is a demand,

and $b_i = 0$, otherwise.

•
$$x_{ij}f_{ij} - \theta_i + \theta_j = 0$$
 for all (i, j) .

Lemma Given a choice for **b** with $\sum_i b_i = 0$, the system has a **unique** solution.

 \rightarrow For fixed **b**, f = f(x)

July, 2009 31 / 43

Power flows (again)

A **power flow** is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all *i*, where

- $b_i > 0$ when *i* is a generator,
- $b_i < 0$ when *i* is a demand,

and $b_i = 0$, otherwise.

•
$$\mathbf{x}_{ij}\mathbf{f}_{ij} - \mathbf{\theta}_i + \mathbf{\theta}_j = \mathbf{0}$$
 for all (i, j) .

Lemma Given a choice for **b** with $\sum_i b_i = 0$, the system has a **unique** solution.

 \rightarrow For fixed **b**, f = f(x)

(日)
Power flows (again)

A **power flow** is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all *i*, where

- $b_i > 0$ when *i* is a generator,
- $b_i < 0$ when *i* is a demand,

and $b_i = 0$, otherwise.

• $x_{ij}f_{ij} - \theta_i + \theta_j = 0$ for all (i, j).

Lemma Given a choice for **b** with $\sum_i b_i = 0$, the system has a **unique** solution.

 \rightarrow For fixed **b**, f = f(x)

Power flows (again)

A power flow is a solution f, θ to:

•
$$\sum_{ij} f_{ij} - \sum_{ij} f_{ji} = b_i$$
, for all *i*, where

- $b_i > 0$ when *i* is a generator,
- $b_i < 0$ when *i* is a demand,

and $b_i = 0$, otherwise.

•
$$\mathbf{x}_{ij}\mathbf{f}_{ij} - \theta_i + \theta_j = \mathbf{0}$$
 for all (i, j) .

Lemma Given a choice for **b** with $\sum_i b_i = 0$, the system has a **unique** solution.

 \rightarrow For fixed **b**, f = f(x)

- (I) The attacker *sets* the resistance x_{ij} of any arc (i, j).
- (II) The attacker is constrained: we must have $x \in F$ for a certain known set *F*.
- (III) The output of each generator *i* is fixed at a given value P_i , and similarly each demand value D_i is also fixed at a given value.
- (IV) The objective of the attacker is to maximize the overload of any arc, that is to say, the attacker wants to solve

$$\max_{x\in F} \max_{ij} \left\{ \frac{|f_{ij}(x)|}{u_{ij}} \right\},\,$$

Example for F :

- (I) The attacker *sets* the resistance x_{ij} of any arc (i, j).
- (II) The attacker is constrained: we must have $x \in F$ for a certain known set *F*.
- (III) The output of each generator *i* is fixed at a given value P_i , and similarly each demand value D_i is also fixed at a given value.
- (IV) The objective of the attacker is to maximize the overload of any arc, that is to say, the attacker wants to solve

$$\max_{x\in F} \max_{ij} \left\{ \frac{|f_{ij}(x)|}{u_{ij}} \right\},\,$$

Example for F:

$$\sum_{ij} x_{ij} \leq B, \qquad x_{ij}^{L} \leq x_{ij} \leq x_{ij}^{U} \quad \forall (i,j),$$

Lemma (excerpt)

Let *S* be a set of arcs whose removal does not disconnect *G*.

Suppose we set $x_{st} = L$ for each arc $(s, t) \in S$.

Let f(x) denote the resulting power flow, and let \overline{f} the solution to the power flow problem on G - S.

Then

(a)
$$\lim_{L\to+\infty} f_{st}(x) = 0$$
, for all $(s, t) \in S$,

(b) For any $(u, v) \notin S$, $\lim_{L \to +\infty} f_{uv}(x) = \overline{f}_{uv}$.

How to solve the problem

$$\max_{x \in F} \max_{ij} \left\{ \frac{|f_{ij}(x)|}{u_{ij}} \right\}$$

Smooth version:

$$\begin{array}{ll} \max_{x,p} & \sum_{ij} \frac{f_{ij}(x)}{u_{ij}}(p_{ij}-q_{ij}) \\ \text{s.t.} & \sum_{ij} (p_{ij}+q_{ij}) = 1, \\ & x \in F, \quad p,q \geq 0. \end{array}$$

(but not concave)

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

How to solve the problem

$$\max_{x \in F} \max_{ij} \left\{ \frac{|f_{ij}(x)|}{u_{ij}} \right\}$$

Smooth version:

$$egin{array}{ll} \max_{x,
ho} & \sum_{ij} rac{f_{ij}(x)}{u_{ij}}(
ho_{ij}-q_{ij}) \ {
m s.t.} & \sum_{ij} (
ho_{ij}+q_{ij}) = 1, \ & x\in F, \quad
ho, q\geq 0. \end{array}$$

(but not concave)

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

• • • • • • • • • • • •

How to solve the problem

$$\max_{x \in F} \max_{ij} \left\{ \frac{|f_{ij}(x)|}{u_{ij}} \right\}$$

Smooth version:

$$egin{array}{ll} \max_{x,
ho} & \sum_{ij} rac{f_{ij}(x)}{u_{ij}}(
ho_{ij}-q_{ij}) \ {
m s.t.} & \sum_{ij} (
ho_{ij}+q_{ij}) = 1, \ & x\in F, \quad
ho, q\geq 0. \end{array}$$

(but not concave)

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 34 / 43

Methodology

 \rightarrow A recent research trend: adapt methodologies from **smooth**, convex optimization to **smooth**, non-convex optimization.

 \rightarrow Several industrial-strength codes.

Our objective:

$$F(x,p) = \sum_{ij} \frac{f_{ij}(x)}{u_{ij}}(p_{ij}-q_{ij})$$

Lemma: There exist efficient, sparse linear algebra algorithms for computing the gradient $\nabla_{x,p} F(x,p)$ and Hessian $\frac{\partial^2 F(x,p)}{\partial^2 x,p}$

A (10) > (10) > (10)

Methodology

 \rightarrow A recent research trend: adapt methodologies from **smooth**, convex optimization to **smooth**, non-convex optimization.

 \rightarrow Several industrial-strength codes.

Our objective:

$$F(x,p) = \sum_{ij} \frac{f_{ij}(x)}{u_{ij}}(p_{ij}-q_{ij})$$

Lemma: There exist efficient, sparse linear algebra algorithms for computing the gradient $\nabla_{x,p} F(x,p)$ and Hessian $\frac{\partial^2 F(x,p)}{\partial^2 x,p}$

- A - E - N

Methodology

 \rightarrow A recent research trend: adapt methodologies from **smooth**, convex optimization to **smooth**, non-convex optimization.

 \rightarrow Several industrial-strength codes.

Our objective:

$$F(x,p) = \sum_{ij} \frac{f_{ij}(x)}{u_{ij}}(p_{ij}-q_{ij})$$

Lemma: There exist efficient, sparse linear algebra algorithms for computing the gradient $\nabla_{x,p} F(x,p)$ and Hessian $\frac{\partial^2 F(x,p)}{\partial^2 x,p}$

Some details

Implementation using LOQO (currently testing SNOPT) Adversarial model:

$$\sum_{ij} x_{ij} \leq B, \qquad x_{ij}^{L} \leq x_{ij} \leq x_{ij}^{U} \quad \forall (i,j),$$

where (this talk):

$$x_{ij}^L = 1, \quad x_{ij}^U = 10, \quad \forall (i,j),$$

and

$$\sum_{(i,j)} x_{ij} = \sum_{(i,j)} x_{ij}^{L} + \Delta \mathsf{B},$$

where

 $\Delta B \leq 40$

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 36 / 43

Image: A matrix

Table: 57 nodes, 78 arcs

	Iteration Limit: 700, $\epsilon = 0.01$					
	ΔΒ					
	9	18	27 36			
Max Cong	1.070	1.190	1.220	1.209		
Time (sec)	8	19	19	19		
Iterations	339	Limit	Limit	Limit		
Exit Status	<i>ϵ</i> -L-opt.	PDfeas. Iter: 700	PDfeas. Iter: 700	PDfeas. Iter: 700		

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 37 / 43

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ₹ 🖬 🕨

Table: 118 nodes, 186 arcs

Iteration Limit: 700, $\epsilon = 0.01$

	ΔΒ				
	9	18	27	36	
Max Cong	1.807	2.129	2.274	2.494	
Time (sec)	88	200	195	207	
Iterations	Limit	578	Limit	Limit	
Exit Status	PDfeas. Iter: 302	<i>ϵ</i> -L-opt.	PDfeas. Iter: 700	PDfeas. Iter: 700	

July, 2009 38 / 43

Table: 600 nodes, 990 arcs

Iteration Limit: 300, $\epsilon = 0.01$						
	ΔΒ					
	10	20	27	36	40	
obj	0.571562	1.076251	1.156187	1.088491	1.161887	
sec	11848	7500	4502	11251	7800	
lts	Limit	210	114	Limit	208	
stat	PDfeas Iter: 300	ϵ -L-opt.	ϵ -L-opt.	PDfeas Iter: 300	ϵ -L-opt.	

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

July, 2009 39 / 43

A B > < B</p>

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Table: 649 nodes, 1368 arcs, Γ(2)

	Iteration Limit: 500, $\epsilon = 0.01$					
	ΔΒ					
	20	30	40			
Max Cong	(0.06732) 1.294629	1.942652	(0.049348) 1.395284			
Time (sec)	Time (sec) 66420		54070			
Iterations	erations Limit		Limit			
Exit Status	it Status DF		DF			

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

< ≣ ► ≣ •੭ ৭ ে July, 2009 40 / 43

イロト イポト イヨト イヨト

Daniel Bienstock Abhinav Verma (ColumbPower grid vulnerability, new models, algo

æ July, 2009 41 / 43

* 臣

・ロト ・日下・ ・ ヨト

Table: Attack pattern

<i>x^u</i> = 20	$\Delta B = 57$	<i>x^u</i> = 10	$\Delta B = 27$	<i>x^u</i> = 10	$\Delta B = 36$
Range	Count	Range	Count	Range	Count
[1, 1]	8	[1, 1]	1	[1, 1]	14
(1,2]	72	(1, 2]	405	(1,2]	970
(2,3]	4	(2,9]	0	(2,5]	3
(5,6]	1	(9, 10]	3	(5,6]	0
(6,7]	1			(6,7]	1
(7,8]	4			(7,9]	0
(8,20]	0			(9, 10]	2

▲ 클 ▶ 클 ∽ ۹.C July, 2009 42 / 43

• • • • • • • • • • • • •

Impact

Ovl	Top 6 Arcs	R-3	R-3- 10%	C-all- 10%
	29(7.79), 27(7.20), 41(7.03),			
2.15	67(7.02), 54(6.72), 79(5.71)	1.718	1.335	1.671
	29(8.28), 27(7.72), 41(7.32),			
1.79	67(7.19), 54(6.92), 79(5.78)	1.431	1.112	1.386
	29(8.31), 27(7.74), 41(7.53),			
1.56	67(7.48), 54(7.18), 79(6.15)	1.227	0.953	1.213
	29(8.18), 27(7.58), 41(7.53),			
1.36	67(7.58), 54(7.22), 79(6.25)	1.073	0.834	1.055
	29(8.43), 27(7.90), 41(7.53),			
1.20	67(7.48), 54(7.18), 79(6.12)	0.954	0.741	0.936
	29(7.87), 27(7.29), 41(7.04),			
1.08	67(7.01), 54(6.70), 79(5.63)	0.859	0.668	0.839

Daniel Bienstock Abhinav Verma (Columb<mark>Power grid vulnerability, new models, algo</mark>r

▲ ■ → ■ → へへの July, 2009 43 / 43

(日) (日) (日) (日) (日)