Power grid vulnerability, new models, algorithms and computing

Daniel Bienstock
Abhinav Verma

Columbia University, New York
July, 2009

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

- Used to model "natural" blackouts

"Small" set of arcs = very small

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount $D^{\text {min }}$ of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the " $\mathrm{N}-1$ " problem

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount $D^{m i n}$ of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the " $\mathrm{N}-1$ " problem

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount $D^{m i n}$ of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the " N -1" problem
- Of interest: delete $k=2,3,4, \ldots$ edges

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount $D^{m i n}$ of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the " N - 1 " problem
- Of interest: delete $\boldsymbol{k}=\mathbf{2}, \mathbf{3}, \mathbf{4}, \ldots$ edges

The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs, such that in the resulting network all feasible flows have small throughput

- Used to model "natural" blackouts
- "Small" throughput: we satisfy less than some amount $D^{\text {min }}$ of total demand
- "Small" set of arcs = very small
- Delete 1 arc = the " N - 1 " problem
- Of interest: delete $\boldsymbol{k}=\mathbf{2}, \mathbf{3}, \mathbf{4}, \ldots$ edges
- Naive enumeration blows up

Linear power flow model

We are given a network G with:

- A set of S of supply nodes (the "generators"); for each generator \boldsymbol{i} an "operating range" $0 \leq \boldsymbol{S}_{\boldsymbol{i}}^{L} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\boldsymbol{U}}$,
- For each arc $(\boldsymbol{i}, \boldsymbol{j})$ values $\boldsymbol{x}_{i j}$ and $\boldsymbol{u}_{i j}$

Linear power flow model

We are given a network G with:

- A set of S of supply nodes (the "generators"); for each generator i an "operating range" $0 \leq S_{i}^{L} \leq S_{i}^{U}$,
- A set D of demand nodes (the "loads"); for each load ia "maximum demand" $0 \leq D_{i}^{\text {max }}$.

Linear power flow model

We are given a network G with:

- A set of S of supply nodes (the "generators"); for each generator i an "operating range" $0 \leq S_{i}^{L} \leq \boldsymbol{S}_{i}^{U}$,
- A set D of demand nodes (the "loads"); for each load ia "maximum demand" $0 \leq D_{i}^{\text {max }}$.
- For each arc $(\boldsymbol{i}, \boldsymbol{j})$ values $\boldsymbol{x}_{\boldsymbol{i j}}$ and $\boldsymbol{u}_{i j}$.

Feasible power flows

A power flow is a solution \boldsymbol{f}, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{j i}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$\boldsymbol{S}_{i}^{L} \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{i}^{U} \quad$ OR $\quad \boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}, \quad$ for each $\boldsymbol{i} \in \boldsymbol{S}$,
$0 \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{i}^{\max }$ for $\boldsymbol{i} \in \boldsymbol{D}$,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.

Feasible power flows

A power flow is a solution \boldsymbol{f}, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} f_{j i}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$\boldsymbol{S}_{\boldsymbol{i}}^{L} \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{i}^{U} \quad$ OR $\quad \boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}, \quad$ for each $\boldsymbol{i} \in \boldsymbol{S}$,
$0 \leq-b_{i} \leq D_{i}^{\text {max }}$ for $i \in D$,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all (i, j). (Ohm's equation)

Feasible power flows

A power flow is a solution f, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$S_{i}^{L} \leq b_{i} \leq S_{i}^{U} \quad$ OR $\quad b_{i}=0, \quad$ for each $i \in S$,
$0 \leq-b_{i} \leq D_{i}^{\max }$ for $i \in D$,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all (i, j). (Ohm's equation)

Lemma Given a choice for \boldsymbol{b} with $\sum_{i} \boldsymbol{b}_{i}=\mathbf{0}$, the system has a unique solution.

Feasible power flows

A power flow is a solution f, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$S_{i}^{L} \leq b_{i} \leq S_{i}^{U} \quad$ OR $\quad b_{i}=0, \quad$ for each $i \in S$,
$0 \leq-b_{i} \leq D_{i}^{\text {max }}$ for $i \in D$,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all (i, j). (Ohm's equation)

Lemma Given a choice for \boldsymbol{b} with $\sum_{i} \boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, the system has a unique solution.

The solution is feasible if $\left|\boldsymbol{f}_{\boldsymbol{i j}}\right| \leq \boldsymbol{u}_{\boldsymbol{i j}}$ for every $(\boldsymbol{i}, \boldsymbol{j})$.

Feasible power flows

A power flow is a solution f, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$S_{i}^{L} \leq b_{i} \leq S_{i}^{U} \quad$ OR $\quad b_{i}=0, \quad$ for each $i \in S$,
$0 \leq-b_{i} \leq D_{i}^{\text {max }}$ for $i \in D$,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=\mathbf{0}$ for all $(\boldsymbol{i}, \boldsymbol{j})$. (Ohm's equation)

Lemma Given a choice for \boldsymbol{b} with $\sum_{\boldsymbol{i}} \boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, the system has a unique solution.

The solution is feasible if $\left|\boldsymbol{f}_{\boldsymbol{i j}}\right| \leq \boldsymbol{u}_{\boldsymbol{i j}}$ for every $(\boldsymbol{i}, \boldsymbol{j})$.
Its throughput is $\sum_{i \in D}-\boldsymbol{b}_{\boldsymbol{i}}$.

Three types of successful attacks

Type 1: Network becomes disconnected with a mismatch of supply and demand.

Three types of successful attacks

Type 2: Lower bounds on generator ouptuts cause line overload

1 generator, output $>=60$

Three types of successful attacks

Type 3: Uniqueness of power flows means exceeded capacities or insufficient supply.

A game:

The controller's problem: Given a set \mathcal{A} of arcs that has been deleted by the attacker, choose a set \mathcal{G} of generators to operate, so as to feasibly meet demand (at least) $D^{\text {min }}$

A game:

The controller's problem: Given a set \mathcal{A} of arcs that has been deleted by the attacker, choose a set \mathcal{G} of generators to operate, so as to feasibly meet demand (at least) $D^{m i n}$.

A game:

The controller's problem: Given a set \mathcal{A} of arcs that has been deleted by the attacker, choose a set \mathcal{G} of generators to operate, so as to feasibly meet demand (at least) $D^{m i n}$.

The attacker's problem: Choose a set \mathcal{A} of arcs to delete, so as to defeat the controller, no matter how the controller chooses \mathcal{G}.

The controller's problem for a given choice of generators

The controller's problem for a given choice of generators

Given a set \mathcal{A} of arcs that has been deleted by the attacker, AND a choice \mathcal{G} of which generators to operate, set demands and supplies so as to feasibly meet total demand (at least) $D^{\text {min }}$.

This a linear program:

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:

$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:

$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{j i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\max }$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$ otherwise.

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:

$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{j i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\max }$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=0$ otherwise.

$$
x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0 \text { for all }(i, j) \notin \mathcal{A}
$$

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:

$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=0$ otherwise.
$x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all $(i, j) \notin \mathcal{A}$
$-\sum_{i \in D} b_{i}+D^{\text {min }} \boldsymbol{t} \geq \mathbf{2} \boldsymbol{D}^{\text {min }}$

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:
$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{j i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\max }$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=0$ otherwise.
$x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all $(i, j) \notin \mathcal{A}$
$-\sum_{i \in \boldsymbol{D}} \boldsymbol{b}_{\boldsymbol{i}}+\boldsymbol{D}^{\text {min }} \boldsymbol{t} \geq \mathbf{2 D}^{\text {min }}$
$u_{i j} t \geq\left|f_{i j}\right|$ for all $(i, j) \notin \mathcal{A}$

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:
$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{j i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=0$ otherwise.
$x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all $(i, j) \notin \mathcal{A}$
$-\sum_{i \in D} \boldsymbol{b}_{i}+D^{\text {min }} \boldsymbol{t} \geq \mathbf{2} \boldsymbol{D}^{\text {min }}$
$\boldsymbol{u}_{i j} \boldsymbol{t} \geq\left|\boldsymbol{f}_{i j}\right|$ for all $(\boldsymbol{i}, \boldsymbol{j}) \notin \mathcal{A}$
$\boldsymbol{f}_{i j}=\mathbf{0}$ for all $(i, j) \in \mathcal{A}$

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:
$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=0$ otherwise.
$x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all $(i, j) \notin \mathcal{A}$
$-\sum_{i \in D} \boldsymbol{b}_{i}+D^{\text {min }} \boldsymbol{t} \geq \mathbf{2} \boldsymbol{D}^{\text {min }}$
$u_{i j} t \geq\left|f_{i j}\right|$ for all $(i, j) \notin \mathcal{A}$
$\boldsymbol{f}_{i j}=\mathbf{0}$ for all $(i, j) \in \mathcal{A}$
Lemma: $\boldsymbol{t}_{\mathcal{A}}(\mathcal{G})>\mathbf{1}$ iff the attack is successful against the choice \mathcal{G}.

$t_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:
$\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes \boldsymbol{i},
$\boldsymbol{S}_{\boldsymbol{i}}^{\min } \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}, \quad \mathbf{0} \leq \boldsymbol{-} \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=0$ otherwise.
$x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all $(i, j) \notin \mathcal{A}$
$-\sum_{i \in D} \boldsymbol{b}_{i}+D^{\text {min }} \boldsymbol{t} \geq \mathbf{2} \boldsymbol{D}^{\text {min }}$
$\boldsymbol{u}_{i j} \boldsymbol{t} \geq\left|\boldsymbol{f}_{i j}\right|$ for all $(\boldsymbol{i}, \boldsymbol{j}) \notin \mathcal{A}$
for all $(i, j) \in \mathcal{A}, t \geq 1+\left|\boldsymbol{f}_{i j}\right| / u_{i j}$
Lemma: $\boldsymbol{t}_{\mathcal{A}}(\mathcal{G})>\mathbf{1}$ iff the attack is successful against the choice \mathcal{G}.

Attack problem

$\min \sum_{i j} z_{i j}$
Subject to:
$z_{i j}=0$ or 1 , for all arcs $(i, j), \quad$ (choose which arcs to delete)
$t_{\text {suppt }(z)}(\mathcal{G})>1$, for every subset \mathcal{G} of generators.
[suppt(v) $=$ support of v]

Attack problem

$\min \sum_{i j} z_{i j}$
Subject to:
$z_{i j}=0$ or 1 , for all arcs $(i, j), \quad$ (choose which arcs to delete)
$t_{\text {suppt }(z)}(\mathcal{G})>1$, for every subset \mathcal{G} of generators.
[suppt(v) $=$ support of v]
\rightarrow Use LP dual to represent $t_{\text {suppt }(z)}(\mathcal{G})$

Building the dual

$\boldsymbol{t}_{\mathcal{A}}(\mathcal{G}) \doteq \min t$

Subject to:
$\sum_{i j} \boldsymbol{f}_{\boldsymbol{i j}}-\sum_{i \boldsymbol{j}} \boldsymbol{f}_{\boldsymbol{j} \boldsymbol{i}}-\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, for all nodes $\boldsymbol{i}, \quad\left(\alpha_{i}\right)$
$\boldsymbol{S}_{\boldsymbol{i}}^{\text {min }} \leq \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{S}_{\boldsymbol{i}}^{\text {max }}$ for $\boldsymbol{i} \in \mathcal{G}$,
$\mathbf{0} \leq-\boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{D}_{\boldsymbol{i}}^{\max }$ for $\boldsymbol{i} \in \boldsymbol{D}$
$\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$ otherwise.
$x_{i j} f_{i j}-\theta_{i}+\theta_{j}=\mathbf{0}$ for all $(i, j) \notin \mathcal{A}$
$-\left(\sum_{i \in D} b_{i}\right) / \boldsymbol{D}^{\min }+\boldsymbol{t} \geq \mathbf{2}$
$u_{i j} t \geq\left|f_{i j}\right|$ for all $(i, j) \notin \mathcal{A} \quad\left(p_{i j}, q_{i j}\right)$
$u_{i j} t \geq u_{i j}+\left|f_{i j}\right|$ for all $(i, j) \in \mathcal{A} \quad\left(r_{i j}^{+}, r_{i j}^{-}\right)$

Building the dual

$$
\begin{aligned}
& \sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{j i}-\boldsymbol{b}_{i}=\mathbf{0}, \text { for all nodes } \boldsymbol{i}, \quad\left(\alpha_{i}\right) \\
& \boldsymbol{x}_{i j} \boldsymbol{f}_{i j}-\theta_{i}+\theta_{j}=\mathbf{0} \text { for all }(\boldsymbol{i}, \boldsymbol{j}) \notin \mathcal{A} \quad\left(\beta_{i j}\right) \\
& u_{i j} \boldsymbol{t} \geq\left|\boldsymbol{f}_{i j}\right| \text { for all }(\boldsymbol{i}, \boldsymbol{j}) \notin \mathcal{A} \quad\left(p_{i j}, q_{i j}\right) \\
& \boldsymbol{u}_{i j} \boldsymbol{t} \geq \boldsymbol{u}_{i j}+\left|\boldsymbol{f}_{i j}\right| \text { for all }(i, j) \in \mathcal{A} \quad\left(r_{i j}^{+}, r_{i j}^{-}\right)
\end{aligned}
$$

Building the dual

$$
\begin{aligned}
& \sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} f_{j i}-b_{i}=\mathbf{0}, \text { for all nodes } \boldsymbol{i}, \\
& \boldsymbol{x}_{i j} f_{i j}-\theta_{i}+\theta_{j}=\mathbf{0} \text { for all }(\boldsymbol{i}, \boldsymbol{j}) \notin \mathcal{A} \quad\left(\beta_{i j}\right) \\
& u_{i j} t \geq\left|f_{i j}\right| \text { for all }(i, j) \notin \mathcal{A} \quad\left(p_{i j}, q_{i j}\right) \\
& u_{i j} t \geq u_{i j}+\left|f_{i j}\right| \text { for all }(i, j) \in \mathcal{A} \quad\left(r_{i j}^{+}, r_{i j}^{-}\right) \\
& \sum_{i j} \beta_{i j}-\sum_{j i} \beta_{j i}=0 \quad \forall i
\end{aligned}
$$

Building the dual

$$
\begin{aligned}
& \sum_{i j} f_{i j}-\sum_{i j} f_{j i}-b_{i}=\mathbf{0}, \text { for all nodes } i, \\
& x_{i j} f_{i j}-\theta_{i}+\theta_{j}=\mathbf{0} \text { for all }\left(\alpha_{i}\right), j \notin \mathcal{A} \quad\left(\beta_{i j}\right) \\
& u_{i j} t \geq\left|f_{i j}\right| \text { for all }(i, j) \notin \mathcal{A} \quad\left(p_{i j}, q_{i j}\right) \\
& u_{i j} t \geq u_{i j}+\left|f_{i j}\right| \text { for all }(i, j) \in \mathcal{A} \quad\left(r_{i j}^{+}, r_{i j}^{-}\right) \\
& \sum_{i j} \beta_{i j}-\sum_{j i} \beta_{j i}=0 \quad \forall i \\
& \alpha_{i}-\alpha_{j}+x_{i j} \beta_{i j}=p_{i j}-q_{i j}+r_{i j}^{+}-r_{i j}^{-} \quad \forall(i, j)
\end{aligned}
$$

Again:

$$
\begin{aligned}
& \sum_{i j} \beta_{i j}-\sum_{j i} \beta_{j i}=\mathbf{0} \quad \forall i \\
& \alpha_{i}-\alpha_{j}+x_{i j} \beta_{i j}=p_{i j}-q_{i j}+r_{i j}^{+}-r_{i j}^{-} \quad \forall(i, j)
\end{aligned}
$$

Again:

$$
\begin{aligned}
& \sum_{i j} \beta_{i j}-\sum_{j i} \beta_{j i}=\mathbf{0} \quad \forall i \\
& \alpha_{i}-\alpha_{j}+x_{i j} \beta_{i j}=p_{i j}-q_{i j}+r_{i j}^{+}-r_{i j}^{-} \quad \forall(i, j)
\end{aligned}
$$

0-1 -ify: form mip-dual

$$
\begin{aligned}
& p_{i j}+q_{i j} \leq M_{i j}\left(1-z_{i j}\right) \\
& r_{i j}^{+}+r_{i j}^{-} \leq M_{i j}^{\prime} z_{i j}
\end{aligned}
$$

Again:

$$
\begin{aligned}
& \sum_{i j} \beta_{i j}-\sum_{j i} \beta_{j i}=\mathbf{0} \quad \forall i \\
& \alpha_{i}-\alpha_{j}+x_{i j} \beta_{i j}=p_{i j}-q_{i j}+r_{i j}^{+}-r_{i j}^{-} \quad \forall(i, j)
\end{aligned}
$$

0-1 -ify: form mip-dual

$$
\begin{aligned}
& p_{i j}+q_{i j} \leq M_{i j}\left(1-z_{i j}\right) \\
& r_{i j}^{+}+r_{i j}^{-} \leq M_{i j}^{\prime} z_{i j}
\end{aligned}
$$

\rightarrow "big M" formulation: what's the problem

I hate math

$$
M_{i j}=\sqrt{x_{i j}} \max _{(k, l)}\left(\sqrt{x_{k l}} u_{k l}\right)^{-1}
$$

A formulation for the attack problem

$\min \sum_{i j} \boldsymbol{z}_{i j}$
Subject to:
$z_{i j}=0$ or 1 , for all $\operatorname{arcs}(i, j), \quad$ (choose which arcs to delete)
$t_{\text {suppt }(z)}(\mathcal{G})>1$, for every subset \mathcal{G} of generators.

A formulation for the attack problem

$\min \sum_{i j} z_{i j}$
Subject to:
$z_{i j}=0$ or 1, for all arcs $(i, j), \quad$ (choose which arcs to delete)
value of dual mip $(\mathcal{G})>1$, for every subset \mathcal{G} of generators.

A formulation for the attack problem

$\min \sum_{i j} z_{i j}$
Subject to:
$z_{i j}=0$ or 1, for all $\operatorname{arcs}(i, j), \quad$ (choose which arcs to delete)
value of dual $\operatorname{mip}(\mathcal{G})>1$, for every subset \mathcal{G} of generators.
\rightarrow very large

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain $0-1$ vector z^{*}.

$$
\text { - If successful, then } z^{*} \text { is an optimal solution }
$$

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain $0-1$ vector z^{*}.
2. Solve controller problem to test whether $\operatorname{supp}\left(z^{*}\right)$ is a successful attack:

- If successful, then z^{*} is an optimal solution

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain $0-1$ vector z^{*}.
2. Solve controller problem to test whether $\operatorname{supp}\left(z^{*}\right)$ is a successful attack:

- If successful, then z^{*} is an optimal solution

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain $0-1$ vector z^{*}.
2. Solve controller problem to test whether $\operatorname{supp}\left(z^{*}\right)$ is a successful attack:

- If successful, then z^{*} is an optimal solution
- If not, then for some set of generators $\mathcal{G}, t_{\operatorname{supp}\left(z^{*}\right)}(\mathcal{G}) \leq 1$.

Algorithm outline

\rightarrow Maintain a "master (attacker) MIP":

- Made up of valid inequalities (for the attacker)
- Initially empty

Iterate:

1. Solve master MIP, obtain $0-1$ vector z^{*}.
2. Solve controller problem to test whether $\operatorname{supp}\left(z^{*}\right)$ is a successful attack:

- If successful, then z^{*} is an optimal solution
- If not, then for some set of generators $\mathcal{G}, \boldsymbol{t}_{\text {supp }\left(z^{*}\right)}(\mathcal{G}) \leq 1$.

3. Add to master MIP a system that cuts off z^{*} and go to 1.

Cutting planes = Benders' cuts

For a given $\mathbf{0}-\mathbf{1}$ vector $\hat{\mathbf{z}}$, and a set of generators \mathcal{G},

$$
t_{\text {suppt }(\hat{z})}(\mathcal{G})=\max \mu^{T} y
$$

s.t.

$$
\begin{aligned}
& \boldsymbol{A} y \leq \boldsymbol{b} \hat{z} \\
& \boldsymbol{y} \in \boldsymbol{P}
\end{aligned}
$$

for some vectors $\boldsymbol{\mu}, \boldsymbol{b}$, matrix \boldsymbol{A} and polyhedron \boldsymbol{P}, (all dependent on \mathcal{G}, but not $\hat{\mathbf{z}}$).

Cutting planes = Benders' cuts

For a given $\mathbf{0} \mathbf{- 1}$ vector $\hat{\mathbf{z}}$, and a set of generators \mathcal{G},

$$
t_{\text {suppt }(\hat{z})}(\mathcal{G})=\max \mu^{T} y
$$

s.t.

$$
\begin{aligned}
& \boldsymbol{A} y \leq \boldsymbol{b} \hat{z} \\
& \boldsymbol{y} \in P
\end{aligned}
$$

for some vectors $\boldsymbol{\mu}, \boldsymbol{b}$, matrix \boldsymbol{A} and polyhedron \boldsymbol{P}, (all dependent on \mathcal{G}, but not $\hat{\mathbf{z}}$).
\rightarrow If $\boldsymbol{t}_{\text {suppt }(\hat{z})}(\mathcal{G}) \leq \mathbf{1}$, use LP duality to separate $\hat{\mathbf{z}}$, getting a cut $\alpha^{t} \boldsymbol{z} \geq \beta$ violated by $\hat{\mathbf{z}}$.

Plus:

Given an unsuccessful attack z^{*},
"Pad" it: choose arcs $a_{1}, a_{2}, \ldots, a_{k}$ such that
$\boldsymbol{\operatorname { s u p p }}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}\right\}$ is successful, but $\operatorname{supp}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ is not

Then separate $\operatorname{supp}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$

Plus:

Given an unsuccessful attack z^{*},
"Pad" it: choose arcs $a_{1}, a_{2}, \ldots, a_{k}$ such that
$\boldsymbol{\operatorname { s u p p }}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}\right\}$ is successful, but $\operatorname{supp}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ is not

Then separate $\operatorname{supp}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$

Plus:

Given an unsuccessful attack z^{*},
"Pad" it: choose arcs $a_{1}, a_{2}, \ldots, a_{k}$ such that
$\boldsymbol{\operatorname { s u p p }}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}\right\}$ is successful, but $\operatorname{supp}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ is not

Then separate $\operatorname{supp}\left(z^{*}\right) \cup\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$
\rightarrow other definitions of "padding"

Plus, combinatorial relaxations

Strengthen controller or weaken attacker \rightarrow obtain valid attacks (e.g. upper bounds)

Example: fractional controller

Strengthen attacker or weaken controller \rightarrow obtain valid lower
bounds.
Example: when an arc is attacked, flow goes to zero, but Ohm's law

Plus, combinatorial relaxations

Strengthen controller or weaken attacker \rightarrow obtain valid attacks (e.g. upper bounds)

Example: fractional controller
Strengthen attacker or weaken controller \rightarrow obtain valid lower bounds.

Example: when an arc is attacked, flow goes to zero, but Ohm's law still applies

IEEE 57 nodes, 78 arcs, 4 generators

Entries show: (iteration count), CPU seconds, Attack status ($\mathbf{F}=$ cardinality too small, $\mathbf{S}=$ attack success)

Min. thrpt	Attack cardinality				
	2	3	4	5	6
0.75	(1), 2, F	(2), 3, S			
0.70	(1), 1, F	(3), 7, F	(48), 246, F	(51), 251, S	
0.60	(2), 2, F	(3), 6, F	(6), 21, F	(6), 21, S	
0.50	(2), 2, F	(3), 7, F	(6), 13, F	(6), 13, F	(6), 13, S
0.30	(1), 1, F	(2), 3, F	(2), 3, F	(2), 3, F	(2), 3, F

Table: IEEE 57-bus test case

118 nodes, 186 arcs, 17 generators

Entries show: (iteration count), CPU seconds,
Attack status ($\mathbf{F}=$ cardinality too small, $\mathbf{S}=$ attack success)

	Attack cardinality		
Min.	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
thrpt			
$\mathbf{0 . 9 2}$	$(4), \mathbf{1 8 , \mathbf { S }}$		
$\mathbf{0 . 9 0}$	$(5), 180, \mathbf{F}$	$(6), 193, \mathbf{S}$	
$\mathbf{0 . 8 8}$	$(4), 318, \mathbf{F}$	$(6), 595, \mathbf{S}$	
$\mathbf{0 . 8 4}$	$(2), 23, \mathbf{F}$	$(6), 528, \mathbf{F}$	$(148), 6562, \mathbf{S}$
$\mathbf{0 . 8 0}$	$(2), 18, \mathbf{F}$	$(5), 394, \mathbf{F}$	$(7), 7755, \mathbf{F}$
$\mathbf{0 . 7 5}$	$(2), 14, \mathbf{F}$	(4), 267, F	(7), 6516, F

Table: IEEE 118-bus test case

98 nodes, 204 arcs

Entries show: (iteration count), time,
Attack status ($\mathbf{F}=$ cardinality too small, $\mathbf{S}=$ attack success)

12 generators			
	Attack cardinality		
Min. throughput	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0 . 9 2}$	$(2), 318, \mathbf{F}$	$(11), 7470$, F	$(14), 11819, \mathbf{S}$
$\mathbf{0 . 9 0}$	$(2), 161$, F	$(11), 14220$, F	$(18), 16926, \mathbf{S}$
$\mathbf{0 . 8 8}$	$(2), 165, \mathbf{F}$	$(10), 11178, \mathbf{F}$	$(15), 284318, \mathbf{S}$
$\mathbf{0 . 8 4}$	$(2), 150, \mathbf{F}$	$(9), 4564, \mathbf{F}$	$(16), 162645, \mathbf{F}$
$\mathbf{0 . 7 5}$	$(2), 130, \mathrm{~F}$	(9), 7095, F	$(15), 93049, \mathbf{F}$

98 nodes, 204 arcs

Entries show: (iteration count), time, Attack status ($\mathbf{F}=$ cardinality too small, $\mathbf{S}=$ attack success)

15 generators

Attack cardinality

Min. throughput	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0 . 9 4}$	$(2), 223, \mathbf{F}$	$(11), 654, \mathbf{S}$	
$\mathbf{0 . 9 2}$	$(2), 201, \mathbf{F}$	$(11), 10895, \mathbf{F}$	$(18), 11223, \mathbf{S}$
$\mathbf{0 . 9 0}$	$(2), 193, \mathbf{F}$	$(11), 6598, \mathbf{F}$	$(16), 206350, \mathbf{S}$
$\mathbf{0 . 8 8}$	$(2), 256, \mathbf{F}$	$(9), 15445, \mathbf{F}$	$(18), 984743, \mathbf{F}$
$\mathbf{0 . 8 4}$	$(2), 133, \mathbf{F}$	$(9), 5565, \mathbf{F}$	$(15), 232525, \mathbf{F}$
$\mathbf{0 . 7 5}$	$(2), 213, \mathbf{F}$	$(9), 7550, \mathbf{F}$	$(11), 100583, \mathbf{F}$

Min. Throughput	Min. Attack Size	Time (sec.)
0.95	2	2
0.90	3	20
0.85	4	246
0.80	5	463
0.75	6	2158
0.70	6	1757
0.65	7	3736
0.60	7	1345
0.55	8	2343
0.50	8	1328

Table: 49 nodes, 84 arcs, one configuration

A different model

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.

The expectation is that such weaknesses exist, and we need a

 mothod to ravaal them to cause failure
A different model

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.
\rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them
to cause failure
limited way, so as to cause failure

A different model

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.
\rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them
\rightarrow Allow the adversary to selectively place stress on the grid in order to cause failure
limited way, so as to cause failure

A different model

What are we looking for? "Hidden", "small", "counterintuitive" weaknesses of a grid.
\rightarrow The expectation is that such weaknesses exist, and we need a method to reveal them
\rightarrow Allow the adversary to selectively place stress on the grid in order to cause failure
\rightarrow Allow the adversary the ability to exceed the laws of physics, in a limited way, so as to cause failure

Power flows (again)

A power flow is a solution f, θ to:

- $\sum_{i j} \boldsymbol{f}_{\boldsymbol{i j}}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} \boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$\boldsymbol{b}_{\boldsymbol{i}}>\mathbf{0}$ when \boldsymbol{i} is a generator,
$\boldsymbol{b}_{\boldsymbol{i}}<0 \quad$ when \boldsymbol{i} is a demand,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.

Power flows (again)

A power flow is a solution \boldsymbol{f}, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j i}}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$\boldsymbol{b}_{\boldsymbol{i}}>\mathbf{0}$ when \boldsymbol{i} is a generator,
$\boldsymbol{b}_{\boldsymbol{i}}<\mathbf{0} \quad$ when \boldsymbol{i} is a demand,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all (i, j).

Power flows (again)

A power flow is a solution \boldsymbol{f}, θ to:

- $\sum_{i j} \boldsymbol{f}_{\boldsymbol{i j}}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} i}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$b_{i}>0$ when \boldsymbol{i} is a generator,
$b_{i}<0 \quad$ when \boldsymbol{i} is a demand,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all (i, j).

Lemma Given a choice for \boldsymbol{b} with $\sum_{i} \boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, the system has a unique solution.

Power flows (again)

A power flow is a solution f, θ to:

- $\sum_{i j} \boldsymbol{f}_{i j}-\sum_{i j} \boldsymbol{f}_{\boldsymbol{j} \boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}$, for all \boldsymbol{i}, where
$\boldsymbol{b}_{\boldsymbol{i}}>\mathbf{0} \quad$ when \boldsymbol{i} is a generator,
$b_{i}<0 \quad$ when \boldsymbol{i} is a demand,
and $\boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, otherwise.
- $x_{i j} f_{i j}-\theta_{i}+\theta_{j}=0$ for all (i, j).

Lemma Given a choice for \boldsymbol{b} with $\sum_{i} \boldsymbol{b}_{\boldsymbol{i}}=\mathbf{0}$, the system has a unique solution.
\rightarrow For fixed $b, f=\boldsymbol{f}(\boldsymbol{x})$

Model

(I) The attacker sets the resistance $x_{i j}$ of any arc (i, j).
(II) The attacker is constrained: we must have $x \in F$ for a certain known set F.
(III) The output of each generator i is fixed at a given value P_{i}, and similarly each demand value D_{i} is also fixed at a given value.
(IV) The objective of the attacker is to maximize the overload of any arc, that is to say, the attacker wants to solve

$$
\max _{x \in F} \max _{i j}\left\{\frac{\left|f_{i j}(x)\right|}{u_{i j}}\right\}
$$

Model

(I) The attacker sets the resistance $x_{i j}$ of any arc (i, j).
(II) The attacker is constrained: we must have $x \in F$ for a certain known set F.
(III) The output of each generator i is fixed at a given value P_{i}, and similarly each demand value D_{i} is also fixed at a given value.
(IV) The objective of the attacker is to maximize the overload of any arc, that is to say, the attacker wants to solve

$$
\max _{x \in F} \max _{i j}\left\{\frac{\left|f_{i j}(x)\right|}{u_{i j}}\right\}
$$

Example for F :

$$
\sum_{i j} x_{i j} \leq B, \quad x_{i j}^{L} \leq x_{i j} \leq x_{i j}^{U} \quad \forall(i, j)
$$

Lemma (excerpt)

Let S be a set of arcs whose removal does not disconnect G.
Suppose we set $\boldsymbol{x}_{\boldsymbol{s t}}=L$ for each $\operatorname{arc}(s, t) \in S$.
Let $f(x)$ denote the resulting power flow, and let \bar{f} the solution to the power flow problem on $\boldsymbol{G}-\boldsymbol{S}$.

Then
(a) $\lim _{L \rightarrow+\infty} f_{s t}(x)=0$, for all $(s, t) \in S$,
(b) For any $(u, v) \notin S, \lim _{L \rightarrow+\infty} f_{u v}(x)=\bar{f}_{u v}$.

How to solve the problem

$\max _{x \in F} \max _{i j}\left\{\frac{\left|f_{i j}(x)\right|}{u_{i j}}\right\}$

Smooth version:

(but not concave)

How to solve the problem

$$
\max _{x \in F} \max _{i j}\left\{\frac{\left|f_{i j}(x)\right|}{u_{i j}}\right\}
$$

Smooth version:

$$
\begin{array}{ll}
\max _{x, p} & \sum_{i j} \frac{f_{i j}(x)}{u_{i j}}\left(p_{i j}-q_{i j}\right) \\
\text { s.t. } & \sum_{i j}\left(p_{i j}+q_{i j}\right)=1, \\
& x \in F, \quad p, q \geq 0 .
\end{array}
$$

How to solve the problem

$$
\max _{x \in F} \max _{i j}\left\{\frac{\left|f_{i j}(x)\right|}{u_{i j}}\right\}
$$

Smooth version:

$$
\begin{array}{ll}
\max _{x, p} & \sum_{i j} \frac{f_{i j}(x)}{u_{i j}}\left(p_{i j}-q_{i j}\right) \\
\text { s.t. } & \sum_{i j}\left(p_{i j}+q_{i j}\right)=1, \\
& x \in F, \quad p, q \geq 0 .
\end{array}
$$

(but not concave)

Methodology

\rightarrow A recent research trend: adapt methodologies from smooth, convex optimization to smooth, non-convex optimization.
\rightarrow Several industrial-strength codes.

Lemma: There exist efficient, sparse linear algebra algorithms for computing the gradient $\nabla_{x .0} F(x, p)$ and Hessian

Methodology

\rightarrow A recent research trend: adapt methodologies from smooth, convex optimization to smooth, non-convex optimization.
\rightarrow Several industrial-strength codes.

Our objective:

$$
F(x, p)=\sum_{i j} \frac{f_{i j}(x)}{u_{i j}}\left(p_{i j}-q_{i j}\right)
$$

Methodology

\rightarrow A recent research trend: adapt methodologies from smooth, convex optimization to smooth, non-convex optimization.
\rightarrow Several industrial-strength codes.

Our objective:

$$
F(x, p)=\sum_{i j} \frac{f_{i j}(x)}{u_{i j}}\left(p_{i j}-q_{i j}\right)
$$

Lemma: There exist efficient, sparse linear algebra algorithms for computing the gradient $\nabla_{x, p} F(x, p)$ and Hessian $\frac{\partial^{2} F(x, p)}{\partial^{2} x, p}$

Some details

Implementation using LOQO (currently testing SNOPT)
Adversarial model:

$$
\sum_{i j} x_{i j} \leq B, \quad x_{i j}^{L} \leq x_{i j} \leq x_{i j}^{U} \quad \forall(i, j)
$$

where (this talk):

$$
x_{i j}^{L}=1, \quad x_{i j}^{U}=10, \quad \forall(i, j)
$$

and

$$
\sum_{(i, j)} x_{i j}=\sum_{(i, j)} x_{i j}^{L}+\Delta \mathrm{B}
$$

where

$$
\Delta \mathrm{B} \leq 40
$$

Sample computational experience

Table: 57 nodes, 78 arcs
Iteration Limit: $700, \epsilon=0.01$

	\mathbf{y}	$\mathbf{y y y}$	$\mathbf{1 8}$	$\mathbf{2 7}$
Max Cong	1.070	1.190	1.220	1.209
Time (sec)	8	19	19	19
Iterations	339	Limit	Limit	Limit
Exit Status	ϵ-L-opt.	PDfeas. Iter: 700	PDfeas. Iter: 700	PDfeas. Iter: 700

Sample computational experience

Table: 118 nodes, 186 arcs
Iteration Limit: 700, $\epsilon=\mathbf{0 . 0 1}$

	$\mathbf{y y y y}$	$\mathbf{y y}$	$\mathbf{1 8}$	$\mathbf{2 7}$
Max Cong	1.807	2.129	2.274	2.494
Time (sec)	88	200	195	207
Iterations	Limit	578	Limit	Limit
Exit Status	PDfeas. Iter: 302	ϵ-L-opt.	PDfeas. Iter: 700	PDfeas. Iter: 700

Sample computational experience

Table: 600 nodes, 990 arcs
Iteration Limit: $300, \epsilon=0.01$

	$\mathbf{y y y y y}$	$\mathbf{2 0}$	$\mathbf{2 7}$	$\mathbf{3 6}$	$\mathbf{4 0}$
obj	0.571562	1.076251	1.156187	1.088491	1.161887
sec	11848	7500	4502	11251	7800
Its	Limit	210	114	Limit	208
stat	PDfeas Iter: 300	ϵ-L-opt.	ϵ-L-opt.	PDfeas Iter: 300	ϵ-L-opt.

Sample computational experience

Table: 649 nodes, 1368 arcs, Г(2)
Iteration Limit: 500, $\epsilon=0.01$

	20	ΔB	
Max Cong	$(0.06732) 1.294629$	1.942652	$(0.049348) 1.395284$
Time (sec)	66420	36274	54070
Iterations	Limit	374	Limit
Exit Status	DF	ϵ-L-opt.	DF

Table: Attack pattern

$x^{u}=20$	$\boldsymbol{\Delta B}=\mathbf{5 7}$	$x^{u}=10$	$\boldsymbol{\Delta B}=\mathbf{2 7}$	$x^{u}=10$	$\boldsymbol{\Delta B}=\mathbf{3 6}$
Range	Count	Range	Count	Range	Count
$[1,1]$	8	$[1,1]$	1	$[1,1]$	14
$(1,2]$	72	$(1,2]$	405	$(1,2]$	970
$(2,3]$	4	$(2,9]$	0	$(2,5]$	3
$(5,6]$	1	$(9,10]$	3	$(5,6]$	0
$(6,7]$	1			$(6,7]$	1
$(7,8]$	4			$(7,9]$	0
$(8,20]$	0			$(9,10]$	2

Impact

Ovl	Top 6 Arcs	R-3	R-3-10\%	C-all-10\%
2.15	$\begin{aligned} & \text { 29(7.79), 27(7.20), 41(7.03), } \\ & \text { 67(7.02), 54(6.72), 79(5.71) } \end{aligned}$	1.718	1.335	1.671
1.79	$\begin{gathered} \text { 29(8.28), 27(7.72), 41(7.32), } \\ 67(7.19), 54(6.92), 79(5.78) \end{gathered}$	1.431	1.112	1.386
1.56	$\begin{gathered} \text { 29(8.31), 27(7.74), 41(7.53), } \\ 67(7.48), 54(7.18), 79(6.15) \end{gathered}$	1.227	0.953	1.213
1.36	$\begin{gathered} \text { 29(8.18), 27(7.58), 41(7.53), } \\ 67(7.58), 54(7.22), 79(6.25) \end{gathered}$	1.073	0.834	1.055
1.20	$\begin{gathered} \text { 29(8.43), 27(7.90), 41(7.53), } \\ 67(7.48), 54(7.18), 79(6.12) \end{gathered}$	0.954	0.741	0.936
1.08	$\begin{gathered} \text { 29(7.87), 27(7.29), 41(7.04), } \\ 67(7.01), 54(6.70), 79(5.63) \end{gathered}$	0.859	0.668	0.839

