
Power grid vulnerability, new models, algorithms
and computing

Daniel Bienstock
Abhinav Verma

Columbia University, New York

July, 2009

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 1 / 43



The N-k problem in power grids

Given a power grid modeled by a network, delete a small set of arcs,
such that in the resulting network all feasible flows have small
throughput

Used to model “natural” blackouts

“Small” throughput: we satisfy less than some amount Dmin of
total demand

“Small” set of arcs = very small

Delete 1 arc = the “N-1” problem

Of interest: delete k = 2, 3, 4, . . . edges

Naive enumeration blows up
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Linear power flow model

We are given a network G with:

A set of S of supply nodes (the “generators”); for each generator
i an “operating range” 0 ≤ SL

i ≤ SU
i ,

A set D of demand nodes (the “loads”); for each load i a
“maximum demand” 0 ≤ Dmax

i .

For each arc (i, j) values xij and uij .
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Feasible power flows

A power flow is a solution f , θ to:∑
ij fij −

∑
ij fji = bi , for all i , where

SL
i ≤ bi ≤ SU

i OR bi = 0, for each i ∈ S,

0 ≤ −bi ≤ Dmax
i for i ∈ D,

and bi = 0, otherwise.

xij fij − θi + θj = 0 for all (i, j). (Ohm’s equation)

Lemma Given a choice for b with
∑

i bi = 0, the system has a
unique solution.

The solution is feasible if |fij | ≤ uij for every (i, j).

Its throughput is
∑

i∈D −bi .
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Three types of successful attacks

Type 1: Network becomes disconnected with a mismatch of supply
and demand.
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Three types of successful attacks

Type 2: Lower bounds on generator ouptuts cause line overload
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Three types of successful attacks

Type 3: Uniqueness of power flows means exceeded capacities or
insufficient supply.

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 7 / 43



A game:

The controller’s problem: Given a set A of arcs that has been
deleted by the attacker, choose a set G of generators to operate, so as
to feasibly meet demand (at least) Dmin.

The attacker’s problem: Choose a set A of arcs to delete, so as to
defeat the controller, no matter how the controller chooses G.
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The controller’s problem for a given choice of generators

Given a set A of arcs that has been deleted by the attacker, AND a
choice G of which generators to operate, set demands and supplies
so as to feasibly meet total demand (at least) Dmin.

This a linear program:
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tA(G)
.
= min t

Subject to:∑
ij fij −

∑
ij fji − bi = 0, for all nodes i ,

Smin
i ≤ bi ≤ Smax

i for i ∈ G, 0 ≤ −bi ≤ Dmax
i for i ∈ D

bi = 0 otherwise.

xij fij − θi + θj = 0 for all (i, j) /∈ A

−
∑

i∈D bi + Dmin t ≥ 2Dmin

uij t ≥ |fij | for all (i, j) /∈ A

fij = 0 for all (i, j) ∈ A

Lemma: tA(G) > 1 iff the attack is successful against the choice G.
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−
∑

i∈D bi + Dmin t ≥ 2Dmin

uij t ≥ |fij | for all (i, j) /∈ A

for all (i, j) ∈ A, t ≥ 1 + |fij |/uij

Lemma: tA(G) > 1 iff the attack is successful against the choice G.
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Attack problem

min
∑

ij zij

Subject to:

zij = 0 or 1, for all arcs (i, j), (choose which arcs to delete)

tsuppt(z)(G) > 1, for every subset G of generators.

[ suppt(v) = support of v]

→ Use LP dual to represent tsuppt(z)(G)
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Building the dual

tA(G)
.
= min t

Subject to:∑
ij fij −

∑
ij fji − bi = 0, for all nodes i , (αi)

Smin
i ≤ bi ≤ Smax

i for i ∈ G,

0 ≤ −bi ≤ Dmax
i for i ∈ D

bi = 0 otherwise.

xij fij − θi + θj = 0 for all (i, j) /∈ A (βij)

−
(∑

i∈D bi
)
/Dmin + t ≥ 2

uij t ≥ |fij | for all (i, j) /∈ A (pij , qij)

uij t ≥ uij + |fij | for all (i, j) ∈ A (r+
ij , r−

ij )
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Building the dual

∑
ij fij −

∑
ij fji − bi = 0, for all nodes i , (αi)

xij fij − θi + θj = 0 for all (i, j) /∈ A (βij)

uij t ≥ |fij | for all (i, j) /∈ A (pij , qij)

uij t ≥ uij + |fij | for all (i, j) ∈ A (r+
ij , r−

ij )∑
ij βij −

∑
ji βji = 0 ∀i

αi − αj + xijβij = pij − qij + r+
ij − r−

ij ∀(i, j)
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Again:

∑
ij βij −

∑
ji βji = 0 ∀i

αi − αj + xijβij = pij − qij + r+
ij − r−

ij ∀(i, j)

0-1 -ify: form mip-dual

pij + qij ≤ Mij(1 − zij)

r+
ij + r−

ij ≤ M ′
ijzij

→ “big M” formulation: what’s the problem
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I hate math

Mij =
√xij max(k ,l) (

√
xkl ukl)

−1
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A formulation for the attack problem

min
∑

ij zij

Subject to:

zij = 0 or 1, for all arcs (i, j), (choose which arcs to delete)

tsuppt(z)(G) > 1, for every subset G of generators.
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A formulation for the attack problem

min
∑

ij zij

Subject to:

zij = 0 or 1, for all arcs (i, j), (choose which arcs to delete)

value of dual mip (G) > 1, for every subset G of generators.

→ very large

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 19 / 43



A formulation for the attack problem

min
∑

ij zij

Subject to:

zij = 0 or 1, for all arcs (i, j), (choose which arcs to delete)

value of dual mip (G) > 1, for every subset G of generators.

→ very large

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 19 / 43



D
nom

= 5

D
nom

= 5

P
max

P
max

P
min

= 8

P
min

= 8

min
= 0.3T

P
max

1

2

3

4

5

6

u = 10

u = 10

u = 10

u = 10
x = 1

x = 1

x = 1

x = 1

x = 0.1

x = 0.1

u = 3

u = 3

=10

=10

=10

Pmin
= 0

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 20 / 43



Algorithm outline

→ Maintain a “master (attacker) MIP”:

Made up of valid inequalities (for the attacker)
Initially empty

Iterate:

1. Solve master MIP, obtain 0 − 1 vector z∗.

2. Solve controller problem to test whether supp(z∗) is a successful
attack:

If successful, then z∗ is an optimal solution

If not, then for some set of generators G, tsupp(z∗)(G) ≤ 1.

3. Add to master MIP a system that cuts off z∗ and go to 1.
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Cutting planes = Benders’ cuts

For a given 0 − 1 vector ẑ, and a set of generators G,

tsuppt(ẑ)(G) = max µT y

s.t.

Ay ≤ bẑ

y ∈ P

for some vectors µ, b, matrix A and polyhedron P,
(all dependent on G, but not ẑ).

→ If tsuppt(ẑ)(G) ≤ 1, use LP duality to separate ẑ,

getting a cut αtz ≥ β violated by ẑ.
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Plus:

Given an unsuccessful attack z∗,

“Pad” it: choose arcs a1, a2, . . . , ak such that

supp(z∗) ∪ {a1, a2, . . . , ak−1, ak} is successful, but

supp(z∗) ∪ {a1, a2, . . . , ak−1} is not

Then separate supp(z∗) ∪ {a1, a2, . . . , ak−1}

→ other definitions of “padding”
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Plus, combinatorial relaxations

Strengthen controller or weaken attacker → obtain valid attacks
(e.g. upper bounds)

Example: fractional controller

Strengthen attacker or weaken controller → obtain valid lower
bounds.

Example: when an arc is attacked, flow goes to zero, but Ohm’s law
still applies
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IEEE 57 nodes, 78 arcs, 4 generators
Entries show: (iteration count), CPU seconds,

Attack status (F = cardinality too small, S = attack success)
Attack cardinality

Min. 2 3 4 5 6
thrpt
0.75 (1), 2, F (2), 3, S
0.70 (1), 1, F (3), 7, F (48), 246, F (51), 251, S
0.60 (2), 2, F (3), 6, F (6), 21, F (6), 21, S
0.50 (2), 2, F (3), 7, F (6), 13, F (6), 13, F (6), 13, S
0.30 (1), 1, F (2), 3, F (2), 3, F (2), 3, F (2), 3, F

Table: IEEE 57-bus test case

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 25 / 43



118 nodes, 186 arcs, 17 generators
Entries show: (iteration count), CPU seconds,

Attack status (F = cardinality too small, S = attack success)
Attack cardinality

Min. 2 3 4
thrpt
0.92 (4), 18, S
0.90 (5), 180, F (6), 193, S
0.88 (4), 318, F (6), 595, S
0.84 (2), 23, F (6), 528, F (148), 6562, S
0.80 (2), 18, F (5), 394, F (7), 7755, F
0.75 (2), 14, F (4), 267, F (7), 6516, F

Table: IEEE 118-bus test case
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98 nodes, 204 arcs
Entries show: (iteration count), time,

Attack status (F = cardinality too small, S = attack success)
12 generators

Attack cardinality
Min. throughput 2 3 4

0.92 (2), 318, F (11), 7470, F (14), 11819, S
0.90 (2), 161, F (11), 14220, F (18), 16926, S
0.88 (2), 165, F (10), 11178, F (15), 284318, S
0.84 (2), 150, F (9), 4564, F (16), 162645, F
0.75 (2), 130, F (9), 7095, F (15), 93049, F
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98 nodes, 204 arcs
Entries show: (iteration count), time,

Attack status (F = cardinality too small, S = attack success)
15 generators

Attack cardinality
Min. throughput 2 3 4

0.94 (2), 223, F (11), 654, S
0.92 (2), 201, F (11), 10895, F (18), 11223, S
0.90 (2), 193, F (11), 6598, F (16), 206350, S
0.88 (2), 256, F (9), 15445, F (18), 984743, F
0.84 (2), 133, F (9), 5565, F (15), 232525, F
0.75 (2), 213, F (9), 7550, F (11), 100583, F
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Min. Throughput Min. Attack Size Time (sec.)
0.95 2 2
0.90 3 20
0.85 4 246
0.80 5 463
0.75 6 2158
0.70 6 1757
0.65 7 3736
0.60 7 1345
0.55 8 2343
0.50 8 1328

Table: 49 nodes, 84 arcs, one configuration
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A different model

What are we looking for? “Hidden”, “small”, “counterintuitive”
weaknesses of a grid.

→ The expectation is that such weaknesses exist, and we need a
method to reveal them

→ Allow the adversary to selectively place stress on the grid in order
to cause failure

→ Allow the adversary the ability to exceed the laws of physics, in a
limited way, so as to cause failure
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Power flows (again)

A power flow is a solution f , θ to:∑
ij fij −

∑
ij fji = bi , for all i , where

bi > 0 when i is a generator,

bi < 0 when i is a demand,

and bi = 0, otherwise.

xij fij − θi + θj = 0 for all (i, j).

Lemma Given a choice for b with
∑

i bi = 0, the system has a
unique solution.

→ For fixed b, f = f (x)
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Model

(I) The attacker sets the resistance xij of any arc (i , j).
(II) The attacker is constrained: we must have x ∈ F for a certain

known set F .
(III) The output of each generator i is fixed at a given value Pi , and

similarly each demand value Di is also fixed at a given value.
(IV) The objective of the attacker is to maximize the overload of any

arc, that is to say, the attacker wants to solve

max
x∈F

max
ij

{
|fij(x)|

uij

}
,

Example for F : ∑
ij

xij ≤ B, xL
ij ≤ xij ≤ xU

ij ∀ (i , j),
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Lemma (excerpt)

Let S be a set of arcs whose removal does not disconnect G.

Suppose we set xst = L for each arc (s, t) ∈ S.

Let f (x) denote the resulting power flow, and let f̄ the solution to the
power flow problem on G − S.

Then
(a) limL→+∞ fst(x) = 0, for all (s, t) ∈ S,

(b) For any (u, v) /∈ S, limL→+∞ fuv (x) = f̄uv .
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How to solve the problem

max
x∈F

max
ij

{
|fij(x)|

uij

}
Smooth version:

max
x ,p

∑
ij

fij(x)

uij
(pij − qij)

s.t.
∑

ij

(pij + qij) = 1,

x ∈ F , p, q ≥ 0.

(but not concave)
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Methodology

→ A recent research trend: adapt methodologies from smooth,
convex optimization to smooth, non-convex optimization.

→ Several industrial-strength codes.

Our objective:

F (x , p) =
∑

ij

fij(x)

uij
(pij − qij)

Lemma: There exist efficient, sparse linear algebra algorithms for
computing the gradient ∇x,pF (x, p) and Hessian ∂2F (x,p)

∂2x,p
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Some details

Implementation using LOQO (currently testing SNOPT)

Adversarial model:∑
ij

xij ≤ B, xL
ij ≤ xij ≤ xU

ij ∀ (i , j),

where (this talk):

xL
ij = 1, xU

ij = 10, ∀ (i , j),

and ∑
(i,j)

xij =
∑
(i,j)

xL
ij + ∆B,

where
∆B ≤ 40
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Sample computational experience

Table: 57 nodes, 78 arcs

Iteration Limit: 700, ε = 0.01
∆B

9 18 27 36

Max Cong 1.070 1.190 1.220 1.209

Time (sec) 8 19 19 19

Iterations 339 Limit Limit Limit

Exit Status ε-L-opt. PDfeas. PDfeas. PDfeas.
Iter: 700 Iter: 700 Iter: 700

Daniel Bienstock Abhinav Verma ( Columbia University, New York)Power grid vulnerability, new models, algorithms and computingJuly, 2009 37 / 43



Sample computational experience

Table: 118 nodes, 186 arcs

Iteration Limit: 700, ε = 0.01
∆B

9 18 27 36

Max Cong 1.807 2.129 2.274 2.494

Time (sec) 88 200 195 207

Iterations Limit 578 Limit Limit

Exit Status PDfeas. ε-L-opt. PDfeas. PDfeas.
Iter: 302 Iter: 700 Iter: 700
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Sample computational experience

Table: 600 nodes, 990 arcs

Iteration Limit: 300, ε = 0.01
∆B

10 20 27 36 40

obj 0.571562 1.076251 1.156187 1.088491 1.161887

sec 11848 7500 4502 11251 7800

Its Limit 210 114 Limit 208

stat PDfeas ε-L-opt. ε-L-opt. PDfeas ε-L-opt.
Iter: 300 Iter: 300
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Sample computational experience

Table: 649 nodes, 1368 arcs, Γ(2)

Iteration Limit: 500, ε = 0.01
∆B

20 30 40 60

Max Cong (0.06732) 1.294629 1.942652 (0.049348) 1.395284 2.045111

Time (sec) 66420 36274 54070 40262

Iterations Limit 374 Limit Limit

Exit Status DF ε-L-opt. DF PDfeas
Iter: 491
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Table: Attack pattern

xu = 20 ∆B = 57 xu = 10 ∆B = 27 xu = 10 ∆B = 36
Range Count Range Count Range Count
[ 1, 1 ] 8 [ 1, 1 ] 1 [ 1, 1 ] 14
( 1, 2 ] 72 ( 1, 2 ] 405 ( 1, 2 ] 970
( 2, 3 ] 4 ( 2, 9 ] 0 ( 2, 5 ] 3
( 5, 6 ] 1 ( 9, 10 ] 3 ( 5, 6 ] 0
( 6, 7 ] 1 ( 6, 7 ] 1
( 7, 8 ] 4 ( 7, 9 ] 0
( 8, 20 ] 0 ( 9, 10 ] 2
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Impact

Ovl Top 6 Arcs R-3 R-3- 10% C-all- 10%
29(7.79), 27(7.20), 41(7.03),

2.15 67(7.02), 54(6.72), 79(5.71) 1.718 1.335 1.671
29(8.28), 27(7.72), 41(7.32),

1.79 67(7.19), 54(6.92), 79(5.78) 1.431 1.112 1.386
29(8.31), 27(7.74), 41(7.53),

1.56 67(7.48), 54(7.18), 79(6.15) 1.227 0.953 1.213
29(8.18), 27(7.58), 41(7.53),

1.36 67(7.58), 54(7.22), 79(6.25) 1.073 0.834 1.055
29(8.43), 27(7.90), 41(7.53),

1.20 67(7.48), 54(7.18), 79(6.12) 0.954 0.741 0.936
29(7.87), 27(7.29), 41(7.04),

1.08 67(7.01), 54(6.70), 79(5.63) 0.859 0.668 0.839
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