ADDRESS

Active Distribution network with full integration of Demand and distributed energy **RES**ource**S**

Regine BELHOMME, EDF SA regine.belhomme@edf.fr

http://www.addressfp7.org

Prague, June 8, 2009

active demand

Project co-funded by the European Commission within the 7° Framework Programme

interactive energy

The ADDRESS Project in a Few Numbers

Started June 1st 2008
4 years (2008 – 2012)
Enel Distribuzione is Coordinator
EDF SA is Technical Manager
Total budget 16 M€
EC financing 9M€

25 partners, 11 European countries

Research: Uni. Manchester, Uni. Comillas, Uni. Siena, Uni. Cassino, ENEL Prod, VTT, VITO, Labein, KEMA, Consentec;
DSO and TSO: ENEL Distrib., EDF Energy, Iberdrola Distrib., Vattenfall
Energy supply and retail: EDF-SA, ENEL Distributie Dobrogea
Electric equipment : ABB, Landis+Gyr, ZIV
Home appliances & white goods, consultants: Philips, Electrolux, RLtec

Communication and ICT providers: Ericsson España, Alcatel, Current

address interactive energy

ADDRESS Target and Objectives

Target

Active Demand (AD): active participation of domestic and small commercial consumers in the power system markets and service provision to the power system participants

Objectives

	Develop technical solutions at the
	consumers premises
To enable	and at the power system level
active demand	Propose recommendations and
	solutions to
	remove the possible barriers
To exploit	Identify the potential benefits for
the benefits	the stakeholders
of active demand	Develop appropriate markets and
	contractual mechanisms

Study of accompanying measures to deal with societal, cultural, behavioural aspects Validation in 3 complementary test sites with different demographic & generation characteristics

Dedicated dissemination activities for the stakeholders

address interactive energy ADDRESS general presentation

ADDRESS conceptual architecture and concepts

Consumers

- Energy Box: interface with the aggregator
- Optimisation and control of appliances and DER

Aggregators

- Mediator between consumers and markets
- Collects requests &signals from markets and participants
- Gathers flexibilities of consumers

Markets & contracts

- Energy supply
- Relief of overload & network congestion
- Balancing services (incl. compensation of RES variability)
- Ancillary services: steady state V control, tertiary reserve
- Load shaping services (e.g. peak shaving)

DSO

- Key participant in active grids of the future
- Consumers connected to distribution network
- Enable AD and ensure secure and efficient network operation
- Interaction through markets
- Direct interaction with TSO for system security

address

ADDRESS Main Concepts

- □ Interaction based on real-time price and volume (mainly P) signals
- Real-time = 20 to 30 min ahead or longer
- May be modulated by geographical / topological information
- Direct load control by DSO will be not considered
- "Demand" approach (in contrast with "generation" approach)
- consumers not only motivated by purely economic aspects
- not able or not prone to characterize precisely in advance the services and flexibilities that they can provide
 - Services "requested" through appropriate price and/or volume signal mechanisms and provided on a voluntary and contractual basis
 - Development of appropriate technologies at consumers' premises
 - Accompanying measures for societal and behavioural aspects
 - Distributed intelligence and local optimisation
 - Topologically-dependant services
 - Participants optimise real-time response according to the real-time signals Put the "right amount" of intelligence at the "right place"

ADDRESS general presentation

ADDRESS Methodology (1/3)

address interactive energy ADDRESS general presentation

ADDRESS Methodology (2/3)

- 1. Develop
 - the concepts, in particular the mechanisms for the design of price and volume signals
 - ADDRESS technical and commercial architectures along with functional requirements based on the concepts
 - 4 or 5 scenarios representative of European power systems
 - > WP1 (EDF SA)
- 2. Develop
 - enabling technologies, algorithms and prototypes,
 - test them individually in laboratories.
 - WP2 (IBERDROLA): for consumers, aggregators and other deregulated market participants
 - > WP3 (ENEL Distr.) for DSOs and TSOs and grid operation
 - > WP4 (ABB) for communication architecture

ADDRESS Methodology (3/3)

- 3. Develop
 - contractual, market & regulatory mechanisms for exploitation of the benefits
 - recommendations for accompanying measures for social acceptance
 - ➢ WP5 (Uni. Manchester)
- 4. Validate and assess
 - Validate the concepts and the solutions developed at 3 different field test sites in Spain, Italy and on a French island
 - Assess the solutions performance and project outcomes (concepts, architectures, ...)
 - ➢ WP6 (KEMA)
- 5. Recommendations and dissemination
 - Define recommendations for the different stakeholders: regulators, communities, power system participants, R&D "world", standardization bodies, ...
 - Deploy and communicate the results
 - ➢ WP7 (Uni. Cassino)

address interactive energy

Work schedule

address interactive energy

ADDRESS general presentation

Main Expected Results

Date	Description	WP	Diss
Aug. 2009	Conceptual architecture including description of: participants, signals exchanged, markets and market interactions, overall expected system functional behaviour	1	PU
Oct. 2009	Application of the conceptual architecture in 4 or 5 specific scenarios	1	PU
Feb. 2011	Algorithms for aggregators and consumers (and for their equipment)	2	PU
June 2011	Prototype of Local Energy Management equipment and integration of algorithms for control of load, generation and storage	2	CO
June 2011	Prototypes and Algorithms for network management, providing the signals sent by the DSOs to the aggregators and the markets, enabling and exploiting active demand	3	PU
Dec. 2010	Documentation of Software Architecture and encoding in UML, including compiled software with API description	4	PU
June 2011	Technical guide for building up a Smart Grid telecommunication infrastructure	4	CO

PU: public

CO: confidential, restricted to ADDRESS consortium

address	ADDRESS general presentation	10
interactive energy	Prague, June 8, 2009	

Main Expected Results

Date	Description	WP	Diss
June 2011	Description of market mechanisms (regulations, economic incentives, contract structures) that enable active demand participation	5	PU
June 2012	Key economic and societal factors influencing the adoption of ADDRESS architecture for power system participants. Report on the results verified by the experience in the field tests (WP6).	5	PU
	Business cases for Customers, Aggregators and DSOs in the scenarios detailed in WP1		СО
June 2011	Description of test location and detailed test program for prototype field tests, complementary simulations and hybrid tests	6	PU
April – May 2012	Prototype field tests, assessment of the results and of the performance of the developed prototypes	6	PU/ CO
June 2012	Evaluation of ADDRESS concepts with regard to development of active demand and large scale integration of DER	6	CO
June 2010	Project mid term international workshop	7	PU
June 2012	Project final international workshop and brochure	7	PU
	Recommendations for standards committees, regulators, stakeholders groups, future R&D		PU
	Final plan for the use and dissemination of results		CO

address interactive energy

ADDRESS general presentation

June 8, 2009

Overview of the work done

Overview of the work done (and results)

- Discussion of ADDRESS first draft architecture and proposed concepts
- Flexibility of loads, generation and storage at consumers' premises
- Requirements for AD service provision to power system players
- Aggregator of consumers flexibilities
- Toy example on ADDRESS market simulation
- The ADDRESS scenarios approach and first methodology
- Potential benefits of Active Demand (AD)
- Next steps

Discussion of ADDRESS first draft architecture and proposed concepts

Identification of the main issues to be solved, for instance:

- Relationships between aggregator and
 - DSO/TSO (impact on grids, ...)
 - Retailers/BRPs (imbalances, ...)
 - Consumers (acceptance, ...)
- Energy box:
 - Ownership, functions, etc.
 - Interaction with the meter
- Service provision:
 - Characterisation of services
 - Price and volume signals
 - Risk management
 - Markets and contracts
- Monitoring/assessment of
 - Consumers response
 - Service delivery
- Importance of the regulatory framework

ADDRESS general presentation

address interactive energy

Flexibility of loads, generation and storage at consumers premises

Detailed analysis of

- Embedded generation and storage at consumers premises
- Loads and appliances at consumers premises
- Technical (electrical) characteristics, load usage constraints, control capabilities, energy impact of flexibility, services that can be provided, costs, spreading, ...

Aggregated flexibility at the consumer level

- Consumers load curves for Spain, Italy, Finland ...
- Consumers classification and analysis of flexibility
- Analysis according to periods of the year, week, day, ...
- Flexibility indicator

Scenarios for the evolution of consumers' flexibility at the horizon 2020 and a "more aggregated" level:

- From the perspective of the portfolio of an aggregator
- In accordance with the general scenarios approach based on "success factors"

Survey of Energy boxes and local energy management systems – on-going

Technical Challenges to solve to make demand more "active" – starting

address interactive energy

Requirements for AD service provision to power system participants (1/5)

Survey and assessment of past and on-going DSI programmes

- Participants involved and their needs addressed in the programme,
- The services provided
- Barriers encountered and the possible solutions implemented,
- Signals exchanged and the way they were designed,
- Outcome and lessons learned

Definition and classification of Electricity system players (~functions or archetypes) to which active demand services could be provided

- Regulated players: DSOs and TSOs
- Deregulated players: ~15 players, 9 players to study (apart from ADDRESS "consumers" and "aggregator")
 - **Producers:** central producers, decentralised electricity producer, producer with regulated tariff and obligations (reserve, volume, curtailment, etc.)
 - Intermediaries: production aggregators, energy traders, electricity brokers, Balancing Responsible Parties (BRPs), retailers
 - **Consumers:** large consumers

address interactive energy

Requirements for AD service provision to power system participants (2/5)

Expectations of deregulated players with respect to AD and possible services

For each of the player:

- Role of the player and main functions in the system,
- Main stakes and contextual constraints,
- Short-term needs and long-term needs generated by the stakes
- How can AD meet these needs
- Identification of possible services provided by AD and basic requirements (=> many possible services)

Expectations of DSO/TSO with respect to AD and possible services Similar approach as for deregulated players => mainly three types of services

- Voltage regulation and power flow control (VPRF)
- Tertiary active power reserve
- Smart load reduction to avoid "blind" load-shedding

address interactive energy

Requirements for AD service provision to power system participants (3/5)

Impacts of AD development on the processes of players and possible issues/barriers against AD development

- AD acceptance by the players (not only consumers)
- Regulatory issues (lack of incentives, volume threshold, obligations, etc.)
- Contractual issues and pricing model
- Conflicting interests of players with respect to AD services
- Verification of service provision
- Management of information (ownership, confidentiality, etc.)
- Risks: uncertainty on AD availability, energy "payback" effect, network topology, etc.

Requirements for AD service provision to power system participants (4/5)

Standardized AD services & products:

AD Products	Conditionality	Typical example
Scheduled re-profiling (SRP)	Unconditional (obligation)	The aggregator has the obligation to provide <i>a specified</i> demand modification (reduction or increase) at a given time to the product buyer.
Conditional re- profiling (CRP)	Conditional (option)	The aggregator must have the capacity to provide <i>a specified</i> demand modification during a given period. The delivery is called upon by the buyer (similar to a reserve service)

Bi-directional Conditional Re-Profiling or 2-way CRP (2-CRP): modification in a range, including both demand increase and decrease

address interactive energy

Requirements for AD service provision to power system participants (5/5)

Description of "use cases" for the previously identified services

Methodology for the design of price and volume signals - on-going

- Based on the optimization process of the players

ADDRESS general presentation

address interactive energy

Aggregators of consumers flexibility and toy example on market simulation

Overview of "aggregators" in different countries in the world

- Not exhaustive
- To have some hints of the present situation
- USA, Australia, Italy, Germany, France, ...

The ADDRESS aggregator (work on-going) - first thoughts on

- Role and main functions,
- Relationships and services provided to power system players
- Activities and internal organization

Integrated toy example on ADDRESS market simulation

- Better understanding, pedagogical purposes, play with "numbers", ...
- Provision of services by AD aggregators to retailers and DSO
- One type of products ("Scheduled re-profiling"= scheduled load modification)

address interactive energy

ADDRESS scenarios approach & first methodology

Collection and analysis of country specific aspects (contextual elements) based on answers to a questionnaire – factors important for AD implementation

- Players, market organisation, regulation, metering activity, network aspects, ...
- Large development of RES expected to increase needs for AD services
- Retailers will probably be key agents for AD deployment and, vice versa, AD business can be a key factor for retailer development
- Smart meters will probably be one of the key enablers for AD development

Guidelines to build ADDRESS scenarios

Horizon: 2020 ... and steps to go there

ADDRESS approach: success targets

- Scenarios: 4 European contexts with different probability and level of success with respect to an ADDRESS future
- Focus on success factors and drivers:
 - Climatic factor (heating or cooling dominance)
 - Consumer density (urban vs rural, network aspects, housing style & age, ...)
 - Enabling technology (new usages, intelligent appliances, ICT, meters, ...)
 - Industry infrastructure (market context, generation mix, environmental issue,...)
- Methodology to assess success based on impacts on all the players' stakes.

Potential benefits of Active Demand (AD)

- Constitution of the Group of Users and Stakeholders (GUS)
- Questionnaire on the potential benefits and perceptions of active demand sent
 - To the GUS members
 - To the ADDRESS consortium members
- On-going: analysis of the results.

Next steps

ADDRESS Vision (WP1):

- Technical and commercial architectures
- Definition of ADDRESS Scenarios
- Application of the architecture to the scenarios

Specifications

- Detailed specifications for exploitation of DDER flexibility and service provision at consumers and aggregator levels (WP2)
- Detailed specifications for control and automation of distribution networks with AD (WP3)

Communication (WP4)

- Survey on communication requirements
- Continue information model: players and interaction modeling

Acceptance and market (WP5): start work on

- Models of benefits
- Consumers engagement
- Market mechanism and contractual structure

Test sites (WP6)

- Start selection and definition of test objectives

address interactive energy

ADDRESS general presentation

Main Expected Results

Date	Description	WP	Diss
Aug. 2009	Conceptual architecture including description of: participants, signals exchanged, markets and market interactions, overall expected system functional behaviour	1	PU
Oct. 2009	Application of the conceptual architecture in 4 or 5 specific scenarios	1	PU
Feb. 2011	Algorithms for aggregators and consumers (and for their equipment)	2	PU
June 2011	Prototype of Local Energy Management equipment and integration of algorithms for control of load, generation and storage	2	CO
June 2011	Prototypes and Algorithms for network management, providing the signals sent by the DSOs to the aggregators and the markets, enabling and exploiting active demand	3	PU
Dec. 2010	Documentation of Software Architecture and encoding in UML, including compiled software with API description	4	PU
June 2011	Technical guide for building up a Smart Grid telecommunication infrastructure	4	CO
June 2011	Description of market mechanisms (regulations, economic incentives, contract structures) that enable active demand participation	5	PU

PU: public CO: confidential, restricted to ADDRESS consortium

address

ADDRESS general presentation

Main Expected Results

Date	Description	WP	Diss
June 2012	Key economic and societal factors influencing the adoption of ADDRESS architecture for power system participants. Report on the results verified by the experience in the field tests (WP6).	5	PU
	Business cases for Customers, Aggregators and DSOs in the scenarios detailed in WP1		СО
June 2011	Description of test location and detailed test program for prototype field tests, complementary simulations and hybrid tests	6	PU
April – May 2012	Prototype field tests, assessment of the results and of the performance of the developed prototypes	6	PU/ CO
June 2012	Evaluation of ADDRESS concepts with regard to development of active demand and large scale integration of DER	6	CO
June 2010	Project mid term international workshop	7	PU
June 2012	Project final international workshop and brochure	7	PU
	Recommendations for standards committees, regulators, stakeholders groups, future R&D		PU
	Final plan for the use and dissemination of results		CO

+ Internal Reports and different kinds of documents

address interactive energy

Thank you for your attention !

http://www.addressfp7.org

active demand

Project co-funded by the European Commission within the 7° Framework Programme

interactive energy