
Prague,  8-11 June 2009

Open Source Software forOpen Source Software for 
Simulating Active Distribution 

Systems
Roger C. Dugan

Sr. Technical Executive
EPRI, USA

Prague,  8-11 June 2009

OpenDSS

EPRI h l d it Di t ib ti S t• EPRI has released its Distribution System 
Simulator (DSS) program as open source

• Called “OpenDSS”
• Can be found at:

WWW SOURCEFORGE NET– WWW.SOURCEFORGE.NET
– (Search for OpenDSS)



Prague,  8-11 June 2009

Why was DSS Developed?

DSS d l d t id• DSS was developed to provide a very 
flexible research platform and a foundation 
for special distribution analysis applications 
such as DG analysis

• Fills gaps left by other distribution system g p y y
analysis tools.

• Study new approaches to distribution 
system analysis.

Prague,  8-11 June 2009

Why OpenDSS?

EPRI h d th DSS t• EPRI has made the DSS open source to:
– Cooperate with other open source efforts in the 

USA in Smart Grid research
– To encourage new advancements in distribution 

system analysis
– To provide Smart Grid researchers a tool for 

testing algorithms



Prague,  8-11 June 2009

Current Related EPRI Activities

• Intelligrid
– Distribution Fast Simulation & Modeling
– DSE – Distribution State Estimator

• CIM/DCIM
• OpenDSS – Distribution System SimulatorOpenDSS Distribution System Simulator

– Multipurpose distribution system analysis tool
– Open source version released – 5 Sept 2008
– Official release – November 2008

Prague,  8-11 June 2009

DSS Background
• Under development for more than 10 Years

St t d t El t t k C t i 1997– Started at Electrotek Concepts in 1997 
– Purchased by EPRI in 2004

• Objectives in 1997
– Tool to support all distribution planning aspects of 

distributed generation
– Implement a flexible research platformImplement a flexible research platform
– Incorporate object-oriented data ideas

• Key Future work
– Platform for DSE for North American Systems
– Research platform for reliability tools



Prague,  8-11 June 2009

Distribution System Simulator 
(DSS) 

The DSS is designed to sim late tilit distrib tionThe DSS is designed to simulate utility distribution 
systems in arbitrary detail for most types of 
analyses related to distribution planning.
– It performs its analysis types in the frequency domain, 

• Power flow, 
• Harmonics, and 
• Dynamics. 

– It does NOT perform electromagnetic transients (time 
domain) studies.

Prague,  8-11 June 2009

Overall Model Concept

Inf. Bus
(Voltage, Angle)

Power Delivery
System

Control
Center

Control

Power Conversion
Element

("Black Box")

Comm
Msg Queue 1

Comm
Msg Queue 2



Prague,  8-11 June 2009

Example DSS Applications
• Neutral-to-earth (stray) voltage • Distribution automation controlNeutral to earth (stray) voltage 

simulations. 
• Loss evaluations due to unbalanced 

loading.
• Development of DG models for the 

IEEE Radial Test Feeders.
• High-frequency harmonic and 

interharmonic interference.

Distribution automation control 
algorithm assessment.

• Impact of tankless water heaters on 
flicker and distribution 
transformers.

• Wind farm collector simulation.
• Wind farm impact on local 

transmission.
• Losses, impedance, and circulating 

currents in unusual transformer 
bank configurations.

• Transformer frequency response 
analysis.

• Wind generation and other DG 
impact on switched capacitors and 
voltage regulators.

• Open-conductor fault conditions 
with a variety of single-phase and 
three-phase transformer 
connections.

Prague,  8-11 June 2009

Annual Losses
Peak load losses are not necessarily indicative of annual y

losses

40

50

60

70

W

15000

20000

25000

kWh

0

10

20

30

40

Lo
ad

, M

1
5

9

13

17

21

Ja
n A
pr Ju

l O
ct

0

5000

10000
kWh

Hour

Month



Prague,  8-11 June 2009

Solar PV Simulation
5 5

Without PV With PV

2

3

4
M

W 2

3

4

D
iff

er
en

ce
, M

W

Difference

-1

0

1

2 Weeks
-1

0

1

Prague,  8-11 June 2009

Power Distribution Efficiency

0

50

100

150

200

250

300

350

0 50 100 150

Hour (1 Week)

Lo
ss

es
, k

W

Total Losses

Load Losses

No-Load Losses

250

300

350

kW

Total Losses

Peak Load Week

Hour (1 Week)

0

50

100

150

200

5200 5250 5300 5350

Hour (1 Week)

Lo
ss

es
, k

Load Losses

No-Load Losses

Light Load Week



Prague,  8-11 June 2009

Wind Plant 1-s Simulation
4000

Active and Reactive Power

0.99

1.00

1.01

1.02

1.03
Feeder Voltage and Regulator Tap Changes

0

1000

2000

3000

91

-491

-391

-291

-191

-91

P
3-

(k
W

)  
(W

)
Q

3-
(k

va
r)

  (
V

A
r)

0.97

0.98

0.96

0.98

1.00

1.02

0 20000 40000 60000 80000

Electrotek Concepts® TOP, The Output Processor®

T
a

p
-(

p
u

) 
 (

V
)

Time (s)

-591
0 20000 40000 60000 80000

Electrotek Concepts® TOP, The Output Processor®
Time (s)

Prague,  8-11 June 2009

Architecture



Prague,  8-11 June 2009

DSS Structure
Scripts

Main Simulation EngineCOM 
Interface

Scripts, 

User-
Written 
DLLsp

Results

Prague,  8-11 June 2009

DSS Object Structure
DSS Executive

Commands Options

Circuit

PDElement PCElement Controls Meters General

Solution

V [Y] I

Line
Transformer
Capacitor
Reactor

Load
Generator
Vsource
Isource

RegControl
CapControl
Relay
Reclose
Fuse

Monitor
EnergyMeter
Sensor

LineCode
LineGeometry
WireData
LoadShape
GrowthShape
Spectrum
TCCcurve



Prague,  8-11 June 2009

Power Delivery Elements
 Power Delivery

 Element

Iterm = [Yprim] Vterm

Terminal 2Terminal 1

Prague,  8-11 June 2009

Power Conversion Elements
ITerm(t)  = F(VTerm, [State], t)

V
F
∂
∂

Power Conversion
Element

V∂



Prague,  8-11 June 2009

Load (a PC Element)

 

Yprim
Compensation 
CurrentYprim
Compensation 
Current

(One-Line Diagram)

Prague,  8-11 June 2009

Putting it All Together
Yprim 1 Yprim 2 Yprim 3 Yprim n

ALL Elements

Yprim 1 Yprim 2 Yprim 3 Yprim n

Y=Iinj
I2

I1

PC Elements

V Node

Im

Voltages

Iteration Loop



Prague,  8-11 June 2009

Scripting Basics

Prague,  8-11 June 2009

A Basic Script
LINE1

TR1

Sourcebus Sub_bus
Loadbus

LOAD1

Source

115 kV
12.47 kV

1000 kW
0.95 PF

1 Mile, 336 
ACSR

New Circuit.Simple     ! Creates voltage source  (Vsource.Source)

Edit Vsource.Source BasekV=115 pu=1.05  ISC3=3000  ISC1=2500  !Define source V and Z

New Transformer.TR1 Buses=[SourceBus, Sub_Bus] Conns=[Delta Wye] kVs= [115 12.47]

~ kVAs=[20000 20000] XHL=10

New Linecode.336ACSR R1=0.058 X1=.1206 R0=.1784 X0=.4047 C1=3.4 C0=1.6 Units=kft

New Line.LINE1 Bus1=Sub_Bus Bus2=LoadBus Linecode=336ACSR Length=1 Units=Mi 

New Load.LOAD1 Bus1=LoadBus kV=12.47 kW=1000 PF=.95

Solve

Show Voltages

Show Currents

Show Powers kVA elements



Prague,  8-11 June 2009

Solution Modes

Prague,  8-11 June 2009

Distribution System Analysis 
Tools 

• DSS has the basic tools for Planning built in:• DSS has the basic tools for Planning built in:
– Power Flow
– Short Circuit Calculations

• In Addition, it has Several Advanced Capabilities
– “Dynamic” Power Flow
– Other power flow modes

Dynamics– Dynamics
– Harmonics

• If it is not built in, you can drive it from another program 
such as Matlab
– For example: Reliability Analysis



Prague,  8-11 June 2009

Classes of Solution Modes
• Power Flow • Other Power Flow• Power Flow

– Snapshot
– Direct

• Dynamic Power Flow
– Daily
– Yearly

DutyCycle

• Other Power Flow
– LD1
– LD2
– Monte Carlo

• M1
• M2
• M3

– DutyCycle
– Peakday

• Dynamics
• Harmonics

• Short Circuit
– Faultstudy
– MF - Monte Carlo Fault

Prague,  8-11 June 2009

Introduction to Driving the COM 
Server from another Application



Prague,  8-11 June 2009

Active objects concept
• There is one registered In Process COM interface:• There is one registered In-Process COM interface:

– OpenDSSEngine.DSS
• That is, the DSS interface is the one you instantiate
• The DSS interface creates all the others.

• The interfaces generally employ the idea of an 
ACTIVE object
– Active circuitActive circuit, 
– Active circuit element, 
– Active bus, etc.
– The interfaces generally point to the active object

• To work with another object, change the active object.

Prague,  8-11 June 2009

DSS Interface
This interface is instantiated 
upon loading 
O DSSE i DSS d thOpenDSSEngine.DSS and then 
instantiates all other interfaces

Call the Start(0) method to 
initialize the DSS

DSS Class Functions (methods) 
and Properties



Prague,  8-11 June 2009

Instantiate the DSS  Interface and 
Attempt Start

Public Sub StartDSS()

' Create a new instance of the DSS

Set DSSobj = New OpenDSSengine.DSS

' Start the DSS

If Not DSSobj.Start(0) Then

MsgBox "DSS Failed to Start"

Else

MsgBox "DSS Started successfully“

' Assign a variable to the Text interface for easier access

Set DSSText = DSSobj.Text

End If

End Sub

Prague,  8-11 June 2009

Accessing the COM Server

In MATLAB:• In MATLAB:
– DSSobj = actxserver(‘OpenDSSEngine.DSS’);

• In VBA:
– Public DSSobj As OpenDSSEngine.DSS

Set DSSobj = New OpenDSSEngine.DSS

• In PYTHON:
– self.engine = 

win32com.client.Dispatch("OpenDSSEngine.DSS")



Prague,  8-11 June 2009

TEXT Interface

Text interface is simplest

Interfaces as Exposed by VBA 
Object Browser in MS Excel

Text has two Properties

Prague,  8-11 June 2009

Assign a Variable to the Text Interface

Public Sub StartDSS()

' Create a new instance of the DSS

Set DSSobj = New OpenDSSengine.DSS

' Start the DSS

If Not DSSobj.Start(0) Then

MsgBox "DSS Failed to Start"

Else

MsgBox "DSS Started successfully“

' Assign a variable to the Text interface for easier access

Set DSSText = DSSobj.Text

End If

End Sub



Prague,  8-11 June 2009

Now Use the Text Interface …
• You can issue any of the DSS script commands from the 

Text interface

‘ Always a good idea to clear the DSS when loading a new circuit

DSSText.Command = "clear"

' Compile the script in the file listed under "fname" cell on the main form

DSSText.Command = "compile " + fname

‘ Set regulator tap change limits for IEEE 123 bus test case

With DSSText

.Command = "RegControl.creg1a.maxtapchange=1  Delay=15  !Allow only one tap change per solution. 
This one moves first"This one moves first

.Command = "RegControl.creg2a.maxtapchange=1  Delay=30  !Allow only one tap change per solution"

.Command = "RegControl.creg3a.maxtapchange=1  Delay=30  !Allow only one tap change per solution"

.Command = "RegControl.creg4a.maxtapchange=1  Delay=30  !Allow only one tap change per solution"

.Command = "RegControl.creg3c.maxtapchange=1  Delay=30  !Allow only one tap change per solution"

.Command = "RegControl.creg4b.maxtapchange=1  Delay=30  !Allow only one tap change per solution"

.Command = "RegControl.creg4c.maxtapchange=1  Delay=30  !Allow only one tap change per solution"

.Command = "Set MaxControlIter=30"

End With

Prague,  8-11 June 2009

Result Property

• The Result property is a Read Only property• The Result property is a Read Only property 
that contains any result messages the most 
recent command may have issued.
– Error messages
– Requested values

‘ Example: Query line length

DSSText.Command = “? Line.L1.Length”

S = DSSText.Result      ‘ Get the answer

MsgBox S          ‘ Display the answer



Prague,  8-11 June 2009

User-Written Controls

From the COM Interface

Prague,  8-11 June 2009

Basic Control Loop Flow Chart
If you set Number=1, 

o can break in

You can single-step 
through this 

Initialize Loop

Solve Circuit

Check Controls
Next Time Step

you can break in 
here 

Control Actions Done?
NO YES



Prague,  8-11 June 2009

Control Loop  (Actual Pascal Code)
FUNCTION TSolutionObj.SolveSnap:Integer;  // solve for now once
VAR

TotalIterations :Integer;TotalIterations  :Integer;
Begin

SnapShotInit;
TotalIterations    := 0;
REPEAT

Inc(ControlIteration);
Result := SolveCircuit;  // Do circuit solution w/o checking controls
{Now Check controls}
CheckControls;
{For reporting max iterations per control iteration}
If Iteration > MostIterationsDone  THEN MostIterationsDone := Iteration;
TotalIterations := TotalIterations + Iteration;

UNTIL ControlActionsDone or (ControlIteration >= MaxControlIterations);
If Not ControlActionsDone and (ControlIteration >= MaxControlIterations) then  Begin

DoSimpleMsg('Warning Max Control Iterations Exceeded. ' + CRLF + 'Tip: Show 
Eventlog to debug control settings.', 485);

SolutionAbort := TRUE;   // this will stop this message in dynamic power flow modes
End;
If ActiveCircuit.LogEvents Then LogThisEvent('Solution Done');
Iteration := TotalIterations;  { so that it reports a more interesting number }

End;

Prague,  8-11 June 2009

External Script and COM 
Interface Options

• Take Immediate action or keep track of time• Take Immediate action or keep track of time 
yourself
– Set Number=1 
– Sample after solution step
– Execute command to change element state

• Use the DSS Control Queue through COM Proxy
– Set Number=1Set Number 1
– Step through solution
– Push control commands onto DSS control queue

• (Allows DSS to keep track of when control actions happen)
– Write routines to handle pending actions



Prague,  8-11 June 2009

Control Proxy in COM Interface
COM Interface Control Proxy Operation

COM Interface

CONTROL OBJECT

ACTION 1

ACTION 2

CONTROL

DISPATCHER

DoPendingAction

POP

COM CONTROL 
Proxy

DoPendingAction

Action ListUSER CODE POP

PUSH

ALL PUSHES 
ARE SORTED 

DSS Control Queue

ACTION 3

...

ACTION N

CONTROL OBJECT

DoPendingAction

Time
Action Code
Proxy Handle
Control Addr

BY TIME

Prague,  8-11 June 2009

For More Information

See Wiki

Download “Training” 
from 
SOURCEFORGE site


