Modeling, Simulating and Validating Wind Turbine Behavior During Grid Disturbances

IEEE PES General Meeting, Tampa, Florida

Prof. Wil L. Kling (<u>w.l.kling@tue.nl</u>)

June 27, 2007

Contents:

- 1. Power Quality Phenomena
- 2. Effect of Wind Turbines on Power Quality
- 3. Wind Turbine Modeling
- 4. Measurements
- 5. Conclusions
- 6. Questions

Power Quality Phenomena

- Grid frequency
- Voltage magnitude
- Supply voltage variations
- Flicker
- Harmonics and inter-harmonics
- Unbalance

Power Quality and the Effect of Small Scale Wind Power

Voltage Dips

TU

- Voltage Fluctuations and Flicker
 - Flicker emission during start-up
 - Flicker emission during continuous operation
- Harmonics

TU/e

In the Dutch system (15 000 MW load):

1500 MW wind power connected to the grid (mainly MV).

Average size 750 kW.

This can grow to 3000 MW or 4000 MW.

Voltage Dips and protection – Requirements of National Dutch Grid Code:

- Production means connected to low voltage should be disconnected within 0.1 or 0.2 second when the voltage goes under 80% of the nominal voltage (units smaller then 5 kVA) or under 70% (units bigger then 5 kVA)
- Production means connected to the medium voltage have no specific rules
- Production means connected to high voltage should stay at the grid as long as the critical clearing time permits

Voltage level during a three-phase fault in **Diemen** (Amsterdam)

TU/e technische universiteit eindhoven E.On Requirements for Generating Units in Case of Faults:

- Near-to-generator three-phase short-circuits must not generally result in generating unit instability or in disconnection from the network. Active power output must resume immediately following fault clearing and be increased with a gradient of at least 20% of rated power per second.
- With **far-from-generator** three-phase short-circuits, disconnection of the generating unit from the network is not permitted even with fault clearing in back-up time of the network protection.

E.On Curve

Voltage Fluctuations and Flicker – Requirements of National Dutch Grid Code:

Voltage variations ≤10% U_{nom}

- Voltage variations ≤3% U_{nom} in situations without loss of production, disconnection of heavy loads or faulted connections
- Long term flicker $P_{lt} \le 1$ during 99.5% of the time
- Long term flicker $P_{lt} \leq 5$ during 100% of the time

Harmonic Current Emission Limits (IEC 61000-3-12):

Minimum <i>R_{sce}</i>	Admissible individual harmonic current I_h/I_1 (%)				Admissible harmonic current distortion factors (%)	
	I ₅	I ₇	I ₁₁	I ₁₃	THD _i	PWHD _i
33	10.7	7.2	3.1	2	13	22
66	14	9	5	3	16	25
120	19	12	7	4	22	28
250	31	20	12	7	37	38
≥350	40	25	15	10	48	46
The relative values of even harmonics up to order 12 shall not exceed 16/ <i>h</i> %. Even harmonics above order 12 are taken into account in <i>THD</i> , and <i>PWHD</i> , in the same way as odd order harmonics.						

Generic Model of Wind Turbines

FU/e

Model of the Direct Drive Wind Turbine

Aim of the Measurements

- Check wind turbine performance during grid disturbance
- Check compatibility with E.on curve

- If necessary adjust parameters of controllers
- Challenge: perform measurement with minimal distortion of other connected customers

Explanation of Measurements

Grid current: measured vs analytical fitting

Estimated short-circuit contribution from turbine side

Time, s

Conclusions

- During the test the wind turbine did not meet the E.on curve
- Readjustments of control parameters were necessary to meet the requirements of E.on Curve
- Measurement scheme is suitable to do live tests with minimum disturbance to customer

Questions?