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ABSTRACT

Over the course of the 20th century, the electrical power
systems of industrialized economies have become one of the
most complex systems created by mankind. A number of
ongoing trends will drastically change the way this criti-
cal infrastructure is operated. Demand for electricity keeps
growing while the controllability of generation capacity is
decreasing due to introduction of renewable energy sources.
Further, there is an increase of distributed generators (DG),
i.e. the generation capacity embedded in the (medium and
low voltage) distribution networks. Intelligent distributed
coordination will be essential to ensure the electricity infras-
tructure runs efficiently in the future. The PowerMatcher
technology, a multi-agent coordination system, has been de-
veloped to provide this kind of coordination. The heart of
the system is an electronic market on which local control
agents negotiate using strategies based on short-term micro-
economics. A proof-of-principle simulation study involv-
ing renewable power generation, demand response and dis-
tributed generation indicates the impact of the multi-agent
coordination. The study focusses on a micro-grid setting
where balancing is done by a diesel generator. Application
of the PowerMatcher is shown to reduce the peak power de-
livered by the diesel generator by approx. 45% while the
total diesel generated power decreased by approx 40%.
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1. INTRODUCTION

The sustainable power systems of the future are charac-
terized by a high penetration of both distributed generation
(DG) and intermittent generation. DG are generation units
embedded in the (medium and low voltage) distribution net-
works. The availability of intermittent generation units is

dependent on the availability of a primary energy source,
such as wind or solar radiation.

In the status quo, the balance between demand and sup-
ply is maintained by a relatively small number of big central
power plants following load patterns that are, to a great ex-
tent, uncontrollable and partially unpredictable. As the sup-
ply side becomes more inflexible, a need emerges to utilize
the flexibility potential of the demand side. With that, the
nature of coordination within the electricity system is chang-
ing from a few centrally controlled power plants into coor-
dination among a large number of generators and respon-
sive loads. These generators and loads show time-varying
levels of flexibility and a great variety in (production and
consumption) capacity. Therefore, the standard paradigm
of centralized control, which is used in the current electric-
ity infrastructure, will no longer be sufficient. The number
of system components actively involved in the coordination
task will be huge. Centralized control of such a complex sys-
tem will rapidly reach the limits of scalability, computational
complexity, and communication overhead. An excellent do-
main for multi-agent systems coordination.

The PowerMatcher is a multi-agents systems based coordi-
nation mechanism designed for future sustainable power sys-
tems. An overview of the PowerMatcher, including a num-
ber of proof-of-concept field experiments, can be found in [5]
and [3]. Since its incarnation in 2004, the PowerMatcher has
been implemented in three major software versions. In a spi-
ral approach, each software version was implemented from
scratch with the first two versions being tested in simula-
tions and field experiments. The third version is currently
under development and is planned to be deployed in a num-
ber of field experiments and real-life demonstrations with a
positive business case.

In this paper we describe the MAS principles behind the
PowerMatcher, give an overview of the agent structure used
and present the early results of a proof-of-principle simula-
tion study conducted with the third version.

2. MARKET-BASED CONTROL

2.1 Multi-agent Systems

A multi-agent system (MAS) is a software system imple-
mented as a collection of interacting autonomous agents [8].
A software agent is a self-contained software program that
acts as a representative of something or someone (e.g., a de-
vice or a user). A software agent is goal-oriented: it carries



out a task, and embodies knowledge for this purpose. For
this task, it uses information from and performs actions in
its local environment or context. Further, it is able to com-
municate with other entities (agents, systems, humans) for
its tasks.

In multi-agent systems (MAS), a large number of such
agents are able to interact. Local agents focus on the inter-
ests of local sub-systems and influence the whole system via
negotiations with other software agents. MAS theory pro-
vides a paradigm for designing open, flexible, scalable, and
extensible ICT systems aimed to operate in highly-complex
environments [2]. While the complexity of individual agents
remains low, the intelligence level of a well-designed MAS
the global system is high. This phenomena is referred to
as emergence. A MAS can be designed to exhibit spe-
cific emergent behavior. Hence, the design goal is to
reach system-level intelligence through the interactions of
high numbers fairly simple software agents.

2.2 Electronic Markets

Emergence of system-level intelligence can be achieved us-
ing electronic markets, which provide a framework for dis-
tributed decision making based on microeconomics. Using
electronic markets, the interactions of individual agents can
be made highly efficient. Microeconomics is a branch of
economics that studies how economic agents (i.e., individu-
als, households, and firms) make decisions to allocate lim-
ited resources, typically in markets where goods or services
are being bought and sold. One of the goals of microe-
conomics is to analyze market mechanisms that establish
relative prices amongst goods and services and allocation
of limited resources amongst many alternative uses. A dis-
tinctive feature of microeconomics is that it aims to model
economic activity as an interaction of individual economic
agents pursuing their private interests [7], [11].

Whereas, economists use microeconomic theory to model
phenomena observed in the real world, computer scientists
use the same theory to let distributed software systems be-
have in a desired way. Market-based computing is becoming
a central paradigm in the design of distributed systems that
need to act in complex environments. Market mechanisms
provide a way to incentivize parties (in this case software
agents), that are outside the sphere of direct control, to
behave in a certain way [1, 10]. A microeconomic theory
commonly used in MAS is that of general equilibrium. In
general equilibrium markets, or exchange markets, all agents
respond to the same price, that is determined by search-
ing for the price that balances all demand and supply in
the system. From a computational point of view, electronic
equilibrium markets are distributed search algorithms aimed
at finding the best trade-offs in a multidimensional search
space defined by the preferences of all agents participating
in the market [13, 15]. The market outcome is Pareto opti-
mal, a social optimal outcome for which no other outcome
exists that makes one agent better-off without making other
agents worse-off.

In Market-based Control, agents in a MAS are competing
for (one or more) resources on an equilibrium market whilst
performing a local control task (e.g., classical feedback con-
trol of a physical process) that needs those resources as an
input.

2.3 Market-based Control Example
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Figure 1: Example general equilibrium market out-
come. (A) Demand functions of the four agents par-
ticipating in the market. (B) The aggregate demand
function. At price p*, the market is in equilibrium:
the sum of all supply and demand equals to zero.

Table 1: Agent demand levels for the two situations
described in the text. Situation 1 corresponds to
Figure 1, situation 2 to Figure 2.

di(p*) do(p*) da(p*) da(p®) > da(p”)
S1 999 151 —56 904 0.0
S2 0.0 0.0 —50.6 50.6 0.0

In a typical price-based market-based control problem,
there are several producing and/or consuming agents and
an auctioneer agent. Each market round the producers and
consumers create their market bids and send these to the
market agent. These bids are ordinary, or Walrasian, de-
mand functions d(p), stating the agent’s demand d at a price
of p. The demand function is negative in the case of pro-
duction. After collecting all bids, the market agent searches
for the equilibrium price, i.e. the price at which the mar-
ket clears. This price is broadcast to all agents, who can
determine their allocated production or consumption from
this price and their own bid. Finally, all producing agents
feed their allocated production into the flow network while
all consuming agents extract their consumption from it.

Figure 1 shows an example of price forming in a (single-
commodity) general equilibrium market with four agents.
The demand functions of the individual agents are depicted
in graph (A). There are two consuming agents, whose de-
mand decreases gradually to zero above a certain market
price. Further, there are two producers whose supply, above
a certain price, increases gradually to an individual maxi-
mum. Note that supply is treated as negative demand. In a
control setting, the position of the inflexion point is typically
determined by the current process state. The solid line in
(B) shows the aggregate demand function. The equilibrium
price p* is determined by searching for the root of this func-
tion, i.e. the point where total demand equals total supply.
The value of each agent’s demand function at this prices is
given in Table 1, Situation 1.



Suppose the commodity traded in this example is electri-
cal power. Suppose further, the first agent is associated with
a unit for combined heat and power generation (CHP), e.g.
used to heat a swimming pool. While serving the local heat
demand, the unit produces electricity at the same time. Its
local control goal is to keep a large water-filled heat buffer
between two temperature limits. This buffer serves heat
demand coming from subsystems such as space heating and
heating of pool water. In the situation depicted by Figure 1,
the CHP unit runs at full capacity. Its produced electricity
is consumed by the two consuming agents and its produced
heat is heating up the buffer.

Suppose that some time later, the heat buffer tempera-
ture is approaching the upper temperature limit. Then, the
agent’s need to produce heat — and, thus, its willingness to
deliver electricity to the other agents — will be much lower.
Now, the agent wants to produce electricity only if it gets
a really good price for it and updates its bid accordingly.
Figure 2 and Table 1, Situation 2, show the new situation.
Due to the change in demand function of the first agent, the
equilibrium price rises to 109.8. This causes the consuming
agents to lower their intake, for agent 2 virtually to zero.
The resulting demand is met entirely by the production of
agent 4.
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Figure 2: New market equilibrium after a change in
the demand function of agent 1.

3. THE POWERMATCHER

This section describes The PowerMatcher, a general pur-
pose coordination mechanism for near-real-time balancing of
demand and supply in large clusters of Distributed Energy
Resources (DER, distributed generation, demand response,
and electricity storage connected to the distribution grid).
These ‘clusters’ can be for example electricity networks with
a high share of distributed generation or commercial trading
portfolios with high levels of renewable electricity sources.

Since its incarnation in 2004, the PowerMatcher has been
implemented in three major software versions. In a spiral ap-
proach, each software version was implemented from scratch

Auctioneer
Agent

Figure 3: Example PowerMatcher agent cluster. See
the text for a detailed description.

with the first two versions being tested in simulations and
field experiments [6, 4, 12]. The third version is planned to
be deployed in a number of field experiments [9] and real-life
demonstrations with a positive business case.

3.1 Logical Structure and Agent Roles

Within a PowerMatcher cluster, the agents are organized
into a logical tree. The leaves of this tree are a number of
local device agents and, optionally, a unique objective agent.
The root of the tree is formed by the auctioneer agent, a
unique agent that handles the price forming by searching
for the equilibrium price. In order to obtain scalability, con-
centrator agents can be added to the structure as tree nodes.
More detailed descriptions of the agent roles are as follows:

e Local device agent: Representative of a DER de-
vice. A control agent which tries to operate the process
associated with the device in an economical optimal
way. This agent coordinates its actions with all other
agents in the cluster by buying or selling the electricity
consumed or produced by the device on an electronic
market. In order to do so, the agent communicates its
latest bid (i.e., a demand function, see below) to the
auctioneer and receives price updates from the auc-
tioneer. It uses this received price, together with its
latest bid, to determine the amount of power the agent
is obliged to produce or consume.

e Auctioneer agent: Agent that performs the price-
forming process. The auctioneer concentrates the bids
of all agents directly connected to it into one single bid,
searches for the equilibrium price and communicates a
price update back whenever there is a significant price
change.

e Concentrator agent: Representative of a sub-cluster
of local device agents. It concentrates the market bids
of the agents it represents into one bid and communi-
cates this to the auctioneer. In the opposite direction,
it passes price updates to the agents in its sub-cluster.
This agent uses ‘role playing’. On the auctioneer’s side
it mimics a device agent: sending bid updates to the
auctioneer whenever necessary and receiving price up-
dates from the auctioneer. Towards the sub-cluster
agents directly connected to it, it mimics the auction-
eer: receiving bid updates and providing price updates.
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Figure 4: Freezer block model

e Objective agent: The objective agent gives a clus-
ter its purpose. In absence of an objective agent, the
goal of the cluster is to balance itself, i.e., it strives for
an equal supply and demand within the cluster itself.
Depending on the specific application, the goal of the
cluster may be different. If the cluster has to oper-
ate as a wvirtual power plant, for example, it needs to
follow a certain externally provided setpoint schedule.
Such an externally imposed objective can be realized
by implementing an objective agent. The objective
agent interfaces the agent cluster to the business logic
behind the specific application.

The logical agent structure follows the COTREE algori-
thm [14]. By aggregating the demand functions of the indi-
vidual agents in a binary tree, the computational complex-
ity of the market algorithm becomes O(lga), where a is the
number of device agents. In other words, when the number
of device agents doubles it takes only one extra concentrator
processing step to find the equilibrium price. Furthermore,
this structure opens the possibility for running the optimiza-
tion algorithm distributed over a series of computers in a
network in a complimentary fashion to power systems ar-
chitectures. We discuss the issue of scalability further in
section .

3.2 Basic Device Agent Functionality

For a DER unit to be able to participate in a Power-
Matcher cluster, its associated agent must communicate its
momentary bid curve or demand function to the Auction-
eer. As described before, this function defines the DER’s
electricity demand d(p) for a given price p. An offer to pro-
duce a certain amount of electricity against a certain price is
expressed by negative d(p) values. As a convention, through-
out this text we refer to these functions as a bid, even when
(part of) the function expresses a production offer.

Lets’s focus on an agent for an electricity-consuming de-
vice, say a freezer. A simple block model of the thermal pro-
cess of a freezer cell and it’s external influences is depicted in
Figure 4. Input to the process model is the boolean control
variable aon/ofp, switching the freezing element on or off.
Further, the temperature in the freezing cell is influenced by
two environment variables: the ambient temperature (Toms)
and a usage pattern (pusege). The latter represents usage
events like door opening & closing and goods being placed
in or removed from the cell.

The control goal is to keep the inner cell temperature
within the temperature band given by: Ty and Tyin, the
maximum inner cell temperature and the minimum inner
cell temperature, respectively. In a conventional freezer, this
is achieved by a standard on/off-controller with hysteresis.
When participating in a PowerMatcher cluster, this conven-
tional controller is replaced by a device agent. The goal of
the agent is, again, to keep the cell temperature between
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Figure 5: Three basic demand functions of a freezer.

the given limits, with an additional goal to consume in low-
priced periods as much as possible.

Figure 5 gives the three basic bid shapes for the freezer.
When the cell temperature is below its minimum (left), the
freezing element must be switched off. Accordingly, the de-
vice agent sends a Must Off bid. Similarly, when the cell
temperature is above its maximum (right), the agent sends a
Must On bid. The agent is forced to accept any price in or-
der to get the cell temperature back within its limits. When
the cell temperature is within limits (middle), the agent has
the flexibility to switch on or off the element dependent on
the electronic market price. Since the freezer element can
either be switched on or off the agent’s bid is a step func-
tion: bidding either for the freezer’s nominal power or for
a power of zero. The position of the step flank reflects the
agent’s willingness to pay. When the cell temperature is still
in the lower part of the temperature band, the agent is only
willing to consume when the price is really low. However,
when the temperature rises, the agent’s willingness to pay
increases with it. So, available flexibility is directly depen-
dent on the device state (here the cell temperature), and
the position of the step flank in the agent’s bid directly re-
flects that. In order to optimize its strategy, the agent needs
to have market-knowledge, as the notion of what defines a
“high price” or a “low price” is crucial in the agent’s bidding
strategy. For an analysis of this aspect, we refer to [3].

3.3 Auctioneer and Concentrator Functional-
ity
The core functionality of the auctioneer and the concen-
trators is to run the electronic market allocating the electri-
cal power resource to the local device agents. The electronic
market solves this allocation problem by finding the general
equilibrium price p* such that:

S da(p) =0 1)

where N, is the number of local device agents and d(p) the
demand function of agent a, stating the agent’s demand or
supply at a given price p.

The task of summoning all device agent’s demand func-
tions is divided over all concentrator agents and the auction-
eer agent, here jointly referred to as market agents. Each
market agent k summons the demand functions received
from their attached agents. These functions originate from
two different sources: (1) the device agents directly attached
to k, and (2) the concentrator agents directly attached to k.
The concentrated bid of k is calculated as:

ak(p) = , > dilp) + Z ai(p) (2)

where X}, is the set of local device agents directly connected
to k and Y} is the set of concentrator agents directly con-



nected to k.

If k is a concentrator agent, it passes ax(p) on to the
higher-level market agent it is attached to. If k is the auc-
tioneer, it uses ax(p) to find the equilibrium price p* such
that the market is in equilibrium:

ak(p”) =0 ()

Note that, in the latter case, ax is the concentrated demand
functions over all device agents:

@) =S dap) (4)

and that substitution of (4) in (3) yields the general market
equation (1).

3.4 Communication Timing

The agents communicate in an event-based manner. De-
vice agents update their bids whenever there is a change in
the system state significant enough to justify a bid update.
Typically, device agents update their bid once every few min-
utes or longer. Concentrators, in turn will not update their
bid unless subsequent updated bids from lower agents result
in a significant change in their concentrated bid. Likewise,
the auctioneer will only communicate a new price after a
considerable price change. In this way, coordination on a
timescale of minutes is realized with low volumes of com-
municated data. For the two main application cases of the
PowerMatcher, commercial portfolio balancing and conges-
tion management , this type of near real-time coordination
suffices, as these processes take place on a similar timescale.
/todoPM chap: Add refs to applications.

4. CLUSTER-LEVEL BEHAVIOR

The self-interested behavior of local agents causes electric-
ity consumption to shift towards moments of low electricity
prices and production towards moments of high prices. As a
result of this, the emergence of supply and demand matching
can be seen on the global system level.

The aggregated, or concentrated, bid of all local control
agents in the cluster — as is held by the auctioneer agent
— can be regarded as a dynamic merit-order list of all DER
participating in the cluster. On the basis of this list, the
cluster as a whole is able to operate the (near-)real-time
coordination activity optimally. In this section, we examine
the behavior of a particular DER cluster in a number of
simulated circumstances.

4.1 Micro-grid Operation

Imagine a small island with a local electricity network
with no connection to a greater network. The village of
this island has 10 houses. Half of the houses are heated
by heatpumps, the other half by micro-CHPs. Apart from
the heatpumps, the energy consumption within the houses
is inflexible and following standard household load profiles.
Further, on the island there is a wind-diesel combination
delivering that part of the momentary electricity demand
not supplied by the CHPs. This combined unit is operated to
balance the island system. When the local demand is higher
than the CHPs and wind turbine are producing, the diesel
generator is regulated to maintain the momentary system
balance. On the other hand, when local demand is lower

than the CHP and wind generated power, the wind turbine
is curtailed and regulated to balance the network.

In a small-scale simulation, the impact of the PowerMatcher
was analyzed for the hypothetical island system described
above. The simulation has been carried out for two distinct
cases:

1. Reference Case. This is the business as usual sce-
nario. The heating systems are controlled by a stan-
dard thermostat on/off controller. The system is bal-
anced entirely by the wind-diesel system.

2. Coordinated Case. In this case the micro-CHPs and
the heat pumps (HPs) are coordinated by the Power-
Matcher. The multi-agent system tries to match CHP
production and HP consumption with the inflexible
demand and supply of the households and wind tur-
bine respectively. Any net surplus or shortage is still
balanced by the wind-diesel combination.

Table 2 gives the characteristics of the units used. The wind
turbine output followed the measured production profile of
a real-world turbine (Figure 6). The heating systems, i.e.
the micro-CHPs and the heat pumps, were used for space
heating alone. At this stage, hot tap water demand was left
out of the scope of the simulation. The heat demand was
generated using a basic thermal model of a house. The main
external variable of this model is the outside temperature,
which was set to follow a standard reference pattern. The
household electricity consumption followed a standard resi-
dential load profile. Goal of the simulation is to give a proof
of principle of the coordination mechanism, illustrating the
cluster-level behavior.

The simulation spans a period of two days. Figure 7 gives
output power of the diesel generator in the two cases. Two
important effects can be seen from the figure:

1. The total production of the diesel generator is lower in
the coordinated case (approx. 40%).

2. The peak load served by the diesel generator is lower
in the coordinated case (approx. 45%).

The first effect is an important result as the environmental
footprint of the island’s electricity system is improved. Ap-
parently, the wind generated power is utilized better in the
coordinated case. More wind power is consumed and the
turbine has been curtailed less. The second effect is impor-
tant from an investment point of view. If the peak load on
the diesel system is lower, the unit’s design capacity can be
lower which leads to a lower investment.

Figures 8 and 9, show the temperatures in the rooms
heated by the heat pumps. The local PowerMatcher device
agents make use of the inherent energy buffer in the inner

Table 2: Electricity producing (P) and consuming
(C) units in the island simulation. The flexible units
can be coordinated by the PowerMatcher.

Type Prias Number P/C Flex?

Diesel generator 15 kW 1 P yes
Wind Turbine 30 kW 1 P no
Micro CHP 1 kW 5 P yes
Heat pump 0.7 kW 5 C yes
Household Load 1.1 kW 10 C no




Wind production
20000 T T T T T T

/\ Wind

18000

16000

12000

Watt

|
|
|
wol ||
ol |||
O
wol | L
woll N /

0
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
Time

Figure 6: Power Output of the 30 kW wind turbine.
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Figure 7: Diesel generator output power for the
reference case (solid line) and the coordinated case
(dashed line) over a period of two days.

space of the houses to shift the heating operation. Note
that at all times the comfort level is maintained. Figure 10
gives the price on the electronic market for the same time
period. Note that the device agents in figure 9 try to heat
the homes in the low-priced periods. The resulting price is
influenced by a number of factors: (1) the momentary wind
power availability, (2) the momentary household electricity
demand, (3) the available operational flexibility of the micro-
CHPs and the HPs. Note further that the diesel generator is
only operated in the high-priced periods. Then, the cluster
cannot provide the needed generation capacity, resulting in
high prices and, in turn, utilization of the generator.

4.2 Weak Shore Connection: Congestion Man-
agement

Imagine, the island, as described in the previous subsec-
tion, does not have the diesel generator but a weak connec-
tion to a bigger network on-shore. In that case, the objective
of the energy management system is not to balance the is-
land system as much as possible and at all times. The objec-
tive is now to reduce the load on the connector at peak-load
times.

HP temperatues no PowerMatcher control

T(O

8.5 | | | | | | |
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
Time

1
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in the reference case. The basic On/Off controller
behavior can clearly be seen.
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Objective agent: measure connection load. When exceed-
ing the maximum value: do a bid for the excess load.

4.3 Virtual Power Plant Operation

Strong shore connection. Use PM to let the island follow
a traded profile.

S. CONCLUSIONS

Currently, two major trends are changing the character-
istics of electricity generation in the power infrastructure:
the increase in both distributed generation (DG) and in-
termittent power sources. Multi-agent technology and elec-
tronic markets form an appropriate technology to solve the
resulting coordination problem. The PowerMatcher tech-
nology as described in this article is a market-based control
concept for supply and demand matching (SDM) in elec-
tricity networks with a high share of distributed genera-
tion. The presented preliminary simulation results give a
proof-of-principle of this approach. The concept is capable
of utilizing flexibility in device operation via agent bids on
an electronic power market. Via agent reactions on price
fluctuations, the simultaneousness between production and
consumption of electricity by intelligent devices is increased.
The study focusses on a micro-grid setting where balancing
is done by a wind-diesel combination. Application of the
PowerMatcher is shown to reduce the peak power delivered
by the diesel generator by approx. 45% while the total diesel
generated power decreased by approx 40%.
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