Is Statistical Thermodynamics Helpful in Understanding Smart Grid Behavior?

David P. Chassin LANL CNLS Seminar January 12, 2010

Power Markets and Smart Grids

Smart Grid: Build Data Lines, Not Power Lines

R&D Objectives of Smart Grid Demos

Engaging loads

- Understand how loads behave in Smart Grid world
- Provide new kinds of control strategies
- Enhancing utility business model
 - Study how new virtual assets can be used effectively
 - Producing business cases for Smart Grid programs
- Extending market-like processes into distribution
 - Demonstrate real-time price controls
 - Produce control strategies for "prices to devices"
- Understanding how it all works
 - Examine aggregate system behaviors (stability, etc.)
 - Identify aggregate models of system and control

Thermostatic/periodic loads

Diversity masks cyclic behavior

NATIONAL LABORATORY

Diversity can be defeated but always returns

N=200, q=6±1kW, θ=10±1m, D=52±29%, d=0±0

NATIONAL LABORATORY

Drivers of diversity

- Maximum diversity
- High diversity
- Low diversity
- Minimum diversity

Different periods

- Phases scatter as a result of cyclic with different periods
- Demand events
 - Demand "short circuits" normal cycle
 - Shortens diversification time
 - Increases mean load
- Diversity is entropy-like

Typical aggregate load shape

Simple Numerical Example

- 200 kW white noise over 15 MW mean
- Periodic loads introduced numerical
 - 1 minute 100kW
 - 1 hour 500kW
 - 1 day 2MW
 - 1 year 10MW
- Choose T to observe human/equipment cycles
 - < 1 day cycles ~ human/equipment</p>
 - > 1 day cycles ~ natural

Load periodicity curve

Mean load component

Noise component of load

Cyclic components of load

Same load – maximum diversity

Virtual asset: demand response as storage

Load (MW)

NATIONAL LABORATORY

Power delivery: Vertically integrated utility

Central generation Bulk transmission (>200kV) Sub-transmission (50-200kV) Industrial loads Distribution (<50kV) Commercial & residential loads

Topology	Capacity	Feeders	Gens	Model Nodes	225+kV Nodes	Total Nodes	Boundary Nodes
Eastern Interconnect	450 GW	192,857	5,791	37,259	37,343	235,907	198,564
Western System	150 GW	64,285	2,264	11,667	11,764	78,216	66,452

Source: Chassin DP, and C Posse, "Evaluating North American electric grid reliability using the Barabasi-Albert network model," *Physica A*, 355(2-4):667-677, 2005.

Pacific Northwest NATIONAL LABORATORY

Today: Market-based operation

Fairly limited number of market participants: N < 1000

Pacific North NATIONAL

Tomorrow: Smart Grid power system

Much greater number of market participants: $N > 10^6$

Pacific Northwest

Using price to control resources

Pacific Northwest

Consumer and producer surplus

Real-time price thermostats

Small k: low comfort, high demand response

Large k: high comfort, low demand response

Proudly Operated by Battelle Since 1965

Pacific Northwest

Feeder capacity impact High load with good response

RTP load shifting

GridLAB-D: Simulating the Smart Grid

Market models

✓ Next generation tool ✓ Inte ✓ Smart Gad analysis Projects" Technologies Cost/benefits Business cases Multi-scale models Seconds to decades Links to existing tools Open source Contributions from

AcademicVendors

Industry

Vendors can add/extract modules for their own usesDrives need for high performance computers

Proudly Operated by Battelle Since 1965

Gride And States of the States

GridLAB-D Issues

There are problems

- Models are difficult to create (lack of good data, input detail)
- Simulation can be very slow
- Convergence is not always guaranteed
- No first principles foundation for model order reduction
- Few analytic insights
- Lacks some generality
- Need for alternative modeling approaches
 - Ab initio model necessary
 - More general approach to modeling Smart Grid
 - Elucidate aggregate behavior (emergence)
 - Basis for monitoring and diagnosis
 - Foundation of better control design/theory

Thermodynamic analogy

Some interesting observations

- Many independent devices (> 10⁸)
- States are primarily driven by internal variables
- States influenced by external "forces"
- Few global parameters (price, frequency)
- Few conserved quantities (money, surplus, income)
- Identifiable constraints (supply, demand)
- Questions: Are there...
 - aggregate properties that describe the system?
 - these properties usable to manage the system?

Ensembles

Example: electric water heaters

- 1 heater has 2 states: on or off
- *N* heaters have 2^{*N*} configurations
- Only N+1 distinct states
- Enumeration of states is binomial
- Utilities call this *load diversity*

NATIONAL LABORATORY

Olympic Peninsula Prices

Olympic Peninsula Quantities

Conserved Quantities

Conservation laws exist for some properties

- Funds available for trading (e.g., gold, fiat, credit)
- Number of devices
- Limits and constraints
- Constant are for a given ensemble
 - But certainly can and do vary over time
 - Time-dynamics can be very complex

Entropy in a closed system

- Counts the number of ways of clearing market
- Must meet ensemble specifications (Q_{clear})
- Example: 8 ideal storage devices

- *N* = 8
- 256 possible configurations
- 9 distinct states: $Q = \{-8, -6, -4, -2, 0, +2, +4, +6, +8\}$
- Q = 0 (4S and 4B) is most probable (70/256)
- $Q = \pm 8$ (8S or 8B) is least probable (1/256)
- Entropy $\sigma(Q) = \log (N \text{ choose } \frac{1}{2}Q) \approx (N+\frac{1}{2})\log 2-\frac{1}{2}\log \pi N-\frac{Q^2}{2}N$
- P_{clear} emerges in the absence of external price

Pacific Northwest NATIONAL LABORATORY

Impact of bulk power prices (open system)

Changes in P_{bulk} result in changes to Q_{clear} .

*P*_{bulk} > *P*_{clear} → fewer local buyers and more local sellers
*P*_{bulk} < *P*_{clear} → fewer local sellers and more local buyers
*P*_{bulk} = *P*_{clear} → decoupling of bulk and local system

Total surplus

Markets convert potential value of trading into surplus

Total surplus change is $\Delta S = (34-30) = +4$

Markets minimize potential value and maximize total surplus.

Pacific Northwest

Trading activity

• Activity τ is defined as the change in total surplus with respect to the change in entropy

$$\frac{1}{\tau} = \left(\frac{\partial\sigma}{\partial U}\right)_N$$

Observations about entropy and activity:

- Total surplus is maximized when entropy is maximum
- Entropy tends to increase -- Second Law applies
- Entropy is additive
- Surplus increases as activity increases
- Prices can be used to regulate activity (reduce entropy)
- Fractional fluctuations from entropy max usually small

Migration potential

Migration potential is the change in number of agents with respect to a change in entropy (as a function of activity)

$$\mu = -\tau \left(\frac{\partial \sigma}{\partial N}\right)_U$$

Observations about migration potential

- Transfer of control/ownership is a form of "migration"
- More agents raises potential
- Agents migrate from higher potential markets to lower potential markets
- Price can regulate effect of potential: higher price differentials tend to increase potential

* Victor Sergeev coined the term "migration potential"

Partition function

Need factor to find average properties over ensemble

$$\mathcal{Z}(\mu, au) = \sum_{N=0}^{\infty} \sum_{l} e^{rac{N\mu - s_l(N)}{ au}}$$

The probability of finding the system in the state 1 is $P(N_1, s_1) = \frac{e^{[N_1 \mu s_1(N_1)]/\tau}}{\mathcal{Z}}$

When number of agents is invariant we define

$$Z(N, au) = \sum_{l} e^{-s_l/ au}$$

The ensemble average total surplus S is

$$S = \langle s \rangle = \frac{\sum_{l} s_{l} e^{-s_{l}/\tau}}{Z}$$

Negative trading activity

- It is possible to have ∂σ/∂U, so that trading activity can be negative:
 - There must be a finite upper limit to the value of states
 - The market must be at internal equilibrium (relaxed)
 - The negative states must be isolated from the positive ones
- ▶ The trading activity scale is $+0...+X...+\infty, -\infty...-X...-0$
 - This can happen in markets with rules the prevent otherwise natural trades
 - When isolated states become accessible (e.g., cheating, changing the rules), the result can be abrupt/dislocating "relaxation" of the system.
- Reverses effect of migration potential (flow reverses)

Free surplus

- Agent constraints mean not all potential surplus can be obtained by agents
- Most system have surplus obtained by suitable controls
- This is called free surplus

 $F=S-\tau\sigma=-\tau log Z$

Suggests that a Carnot-like cycle is possible for markets

- Buy in system 1 at constant low activity (raise σ)
- Move to system 2 at constant high entropy (raise τ)
- Sell in system 2 at constant high activity (lower σ)
- Move to system 1 at constant low entropy (lower τ)
- Net revenue W is at most free surplus and limited by efficiencies

$$\frac{|W|}{Q_F P} = 1 - \frac{\tau_{low}}{\tau_{hi}} \qquad \qquad \frac{Q_R P}{W} = \frac{\tau_{low}}{\tau_{hi} - \tau_{low}}$$

Proudly Operated by Battelle Since 1965

Net revenue

- Net revenue should never exceed free surplus
- Change in net revenue can be broken in two components

$$\frac{dW}{dt} = \frac{d}{dt}QP = \frac{dQ}{dt}P + Q\frac{dP}{dt}$$

- > Unitary elasticity is same as dW = 0
- Differences in components can be indicators of changes in markets
 - dW_P/dt : change in net revenue from a change in price
 - dW_Q/dt : change in net revenue from a change in quantity

PACIFIC NORTINWEST NATIONAL LABORATORY

Open issues and questions

- Even the simplest agents aren't strictly ±q equaprobable states, so things are usually more complicated
- Most proposed Smart Grid projects don't have clear enough rules to make predictions easy
- Data collection is a serious unresolved issue
 - Most AMI networks don't have enough bandwidth
 - Projects are not viewed as a hypothesis/model test
 - Need first principles predictions to know what data to collect
- Most Smart Grid project aren't really considering many of the observations made
 - Differences between those that do and those that do may be discernable given a thorough analysis of the data
 - Need for a single comprehensive data clearinghouse

Conclusions

- Within limits of assumptions thermal physics methods can be used
 - What do we do about unmet assumptions?
- Short term: Should we build Smart Grid systems we can't model/don't understand generally?
- Long term: Models of most programs should be possible using such an approach
 - May end up being very arcane and difficult to use
 - Probably beyond the reach of most utility planners

Questions and comments

Contact david.chassin@pnl.gov

