

Department of Electrical Engineering and Information Technology Institute of Power Systems and Power Economics

Influences of Wind Energy on the Operation of Transmission Systems

Daniel Waniek, Ulf Häger, Christian Rehtanz, Edmund Handschin IEEE PES General Meeting Pittsburgh, 22 July 2008

Outline

- Introduction
- Sample network
 - Required network data
 - Generator cost functions
- Estimation of the redispatch costs
 - Weighting of the calculated situations
 - Congestion frequency and redispatch costs
- Coordination of power flow controlling devices
 - Allocation of the devices in the network
 - Dynamic simulations
- Conclusions

German transmission system

- Regional mismatch of generation and load
- Time mismatch due to fluctuations of the wind feed-in
- System is not designed for high transits
 - \rightarrow increasing risk of congestions
- Possible solutions
 - Generation redispatch
 - Installation of power flow controlling devices
 - Development of new lines

Source: UCTE (2006)

28-node sample network

technische universität dortmund

- Detailed network data is not publicly available
- Regional aggregation of the real network nodes
- Estimation of the line lengths from network maps
- Modeling of the wind feed-in in the northern nodes
- Load distribution according to population density
- Imports and exports modeled as positive or negative network supplies

- Detailed dataset of power plants for the present situation (installed capacity, fuel type and age) → assigned to the network nodes
- No overall and exact prognoses for future development of every single station are known
- Allocation of power plants according to global data and planned investments

		2005	2010	2015	2020
Nuclear	Inst. capacity	21.5	17.4	14.1	7.1
	Removal		-4.1	-3.3	-7.0
	Change		-19.1%	-34.4%	-67.0%
Lignite	Inst. capacity	22.0	21.2	16.1	15.3
	Installation		2.7	1.1	0.0
	Removal		-3.5	-6.2	-0.8
	Change		-3.6%	-26.8%	-30.5%
Hard coal	Inst. capacity	29.4	30.8	33.9	30.1
	Installation		10.4	4.6	0
	Removal		-9.0	-1.5	-3.8
	Change		4.8%	15.3%	2.4%
Natural gas	Inst. capacity	23.3	29.7	36.3	47.6
	Installation		13.4	9.3	12.1
	Removal		-7.0	-2.7	-0.8
	Change		27.5%	55.8%	104.3%
Wind energy	Inst. capacity	18.4	24.4	28.4	32.7
	Installation		6.0	4.0	4.3
	Change		32.6%	54.3%	77.7%
Total	Inst. capacity	114.6	123.5	128.8	132.8 V
	Change		7.8%	12.4%	15.9% ad

Values in GW, according to EWI, Prognos (2007)

- Feed-in of every generator calculated with a merit order based on marginal costs (CO₂-emissions rated with 20 €/t)
- Costs for redispatch: ±10 % of marginal costs

	Fuel price	η	Fuel costs	CO ₂ -em.	CO ₂ -costs	Marg. costs
	€/MWh	%	€/MWh	t/MWh	€/MWh	€/MWh
Nuclear	3.00	33	9.09	0.00	0.00	9.09
Lignite (new)	3.00	44	6.82	0.92	18.48	25.30
Lignite (old)	3.00	37	8.11	1.10	21.97	30.08
Hard coal (new)	9.50	46	20.65	0.73	14.54	35.20
Hard coal (old)	9.50	37	25.68	0.90	18.08	43.76
Gas-steam (new)	23.10	58	39.83	0.35	6.94	46.77
Gas-steam (old)	23.10	45	51.33	0.45	8.95	60.28
Gas turbine (new)	24.30	35	69.43	0.58	11.51	80.94
Gas turbine (old)	24.30	28	86.79	0.72	14.39	101.17

technische universität

dortmund

- Free capacity in every node \rightarrow offer to increase output
- Actual capacity in use \rightarrow offer to decrease output
- Minimal redispatch costs to comply with the (n-1)-criterion

technische universität

dortmund

- Wind feed-in is the main influencing factor on the congestion frequency
- Identification of the maximum feed-in to barely guarantee (n-1)-security in different load situations
- Calculation of redispatch costs for higher wind feed-in

technische universität

dortmund

- Frequency of congestions on the north-south-connections
- Annual costs for the required redispatch
- No network upgrades until 2020 regarded to quantify their effect

U technische universität dortmund

- Calculation of redispatch costs with two different network upgrades
 - Upgrade 1: Replacement of 220 kV with 380 kV on a length of 120 km between nodes 3 and 20 investment costs: 36 mio€, annual operating costs: 0.36 mio€/a
 - Upgrade 2: Development of a new 380-kV-doublesystem on a length of 60 km between nodes 4 and 20 investment costs: 42 mio€, annual operating costs: 0.42 mio€/a

- Installation of fast power flow controlling devices (PFCs) to reduce the frequency of congestion
- Coordination among the PFCs by rule based autonomous wide area control system

- 1. IF a device on the control path or on a parallel path of a PFC is overloaded, THEN modify the setpoint-values of the PFC
- 2. IF there is a failure of a device on a parallel path AND no further path exists for a PFC, THEN deactivate the PFC
- 3. IF a short circuit happens on a control path or on a parallel path of a PFC, THEN slow down the operating point control of the PFC

Future scenario 2015

technische universität dortmund

technische universität dortmund

- Several bottlenecks expected in the German transmission system
- Raising installed wind capacity in northern Germany is the main influencing factor
- Bottlenecks lead to high redispatch costs and require network upgrades
- Evaluation of cost effectiveness of new lines → cash flow for the system operator depends on regulatory conditions
- Time consuming approval procedure for development of new lines
- Installation of PFCs can increase the transmission capacity before new lines are developed → exact cost calculations required