EVSE Standards Status

Gery Kissel SAE J1772[™] Task Force Lead July 26, 2011

0

Contents

- Charging Configurations and Ratings
- Document Status
 - Revision Plan
- DC Fast Charge Standardization
 - DC Fast Charge Coupler Summary
 - Combo Coupler Design Status
- Other Items
 - China State Grid Battery Swap

Charging Configurations and Ratings

0

EVSE STANDARDS STATUS

Proposed SAE Charging Configurations and Ratings Terminology

- AC L1: 120V AC single phase
 Configuration current 12, 16 amp
 Configuration power 1.44, 1.92kw
 AC L2: 240V AC single phase
 - Rated Current ≤ 80 amp Rated Power ≤ 19.2kw

AC L3:TBD

AC single or 3φ?

- **DC L1:** 200 450V DC
 - Rated Current \leq 80 amp
 - Rated Power ≤ 36kw
- **DC L2:** 200 450V DC
 - Rated Current ≤ 200 amp
 - Rated Power ≤ 90kw
- DC L3: TBD
 - 200 600V DC ?
 - Rated Current \leq 400 amp?
 - Rated Power ≤ 240kw?

Voltages are nominal configuration operating voltages, not coupler rating. Rated power is at nominal configuration operating voltage and coupler rated current. **Document Status**

0

EVSE STANDARDS STATUS

J1772[™] Revision Plan (No DC)

- Workgroup has been meeting via WebEx
- Workgroup has completed reviewing proposal list
- Draft document has been surveyed to obtain additional comments.
- Targeted publication, summer

J1772[™] Revision Plan

- Revision to include:
 - Editorial corrections
 - Technical corrections
 - Charging configurations and ratings definitions
 - EVSE compatibility test (new Appendix)

J1772[™] Revision Plan (w/ DC)

- Revision to include:
 - DC Charging configurations and ratings definitions
 - DC coupler dimensional information
 - Editorial corrections
 - Technical corrections
- Targeted publication December 2011

DC Fast Charge Standardization

0

EVSE STANDARDS STATUS

Charge Couplers

AC Connector: Japan SAE J1772™

AC Connector: China

DC Connector: China

AC/DC Connector: IEC 62196-3 EU Combo 2

AC/DC Connector: SAE J1772[™] NA Combo 1

Configuration C

DC Connector: CHADEMO Japan

Configuration A

Configuration B

Configuration A (CHADEMO)

EVSE and vehicle share safety critical functions **EVSE** performs isolation monitoring during charge "Functional" earth concept used to reduce size of ground conductor "Functional" earth requires EVSE listing as a system **Requires unique control and communications** interfaces not compatible with current SAE J1772[™] **CAN** communications for charge control **Requires additional communications for features such** as V2H/G, and other customer value added features Requires dedicated vehicle inlet in addition to AC charge inlet

- Configuration B (China)
 - Still working to understand system interfaces and control
 - Protective Earth grounding concept
 - Requires unique control and communications interfaces not compatible with current SAE J1772[™] or IEC
 - CAN communications for charge control
 - Requires additional communications for features such as V2H/G, and other customer value added features
 - Requires dedicated vehicle inlet in addition to AC charge inlet

- Configuration C (Combo 1 (SAE) Combo 2(IEC))
 - Vehicle controls all safety critical functions during charge
 - Protective Earth grounding concept
 - Compatible with current SAE J1772[™] and IEC
 - Power Line Communications (PLC) for charge control and other features (V2H/G) offers "future proof" high bandwidth communications with vehicle
 - Combo inlets are compatible with SAE J1772[™] and IEC AC charging

Configuration Characteristic	Configuration A CHADEMO	Configuration B China	Configuration C Combo 1 & 2
Safety Critical Functions During Charge	EVSE & Vehicle	TBD	Vehicle
Ground Strategy	"Functional" Earth	Protective Earth	Protective Earth
Vehicle to EVSE Digital Communication	CAN	CAN	PLC
Control Interfaces	Unique	Unique	J1772 [™] Based
V2H/V2G/HAN Communication	Additional Communication Required	Additional Communication Required	Included in PLC
Total Number Of Inlets Required For AC & DC Charge	2	2	1

DC Combo Goes On A Diet

Size Reduction Enablers

- Removed provision for CAN pins
- Reduced DC terminals from 8.5mm to 8.0mm
- Revised DC sealing strategy
- Integrated AC keyway into DC terminal outer ring

Combo Coupler Power Levels

Other Items

0

EVSE STANDARDS STATUS

China Update

State Grid Rationale for swapping

- Charging at home is not possible
- Since home charging is not possible, all charging would be DC fast charging resulting in 50% reduction in battery life
- 20-30 minute charge time is not efficient from asset use or convenient for a customer as a primary means to charge
- Fast charge has negative affects on the grid
- There are currently 87 swap stations
- Battery delivery vehicles can be used in remote or less populated areas and require no land purchase.

China Update

Comparison of charging modes

No.	Items	Battery Swapping	AC Charging	DC Charing
1	Charging time	3~5 minutes	6~12 hours	1~3 hours
2	Battery maintenance	Professional maintenance and management	Lack maintenance and management	Lack maintenance and management
3	Battery life	Relatively long	Relatively short	Shortened dramatically
4	Influence on power grid	Balancing peak and valley	Big influence on gird once in large scale	Big influence
5	Influence on customers	Resolve the concerns for battery life, cost and performance	Concerns for battery life, cost	Concerns for battery life, cost •6

Standardized battery pack

Universality, interchangeability and compatibility

Electric interface for battery pack

电动户

China Update

电动汽车标准电池 80V-60Ab

国家电师

max 300 Ma

Battery pack swapping equipment

Battery delivery vehicle

