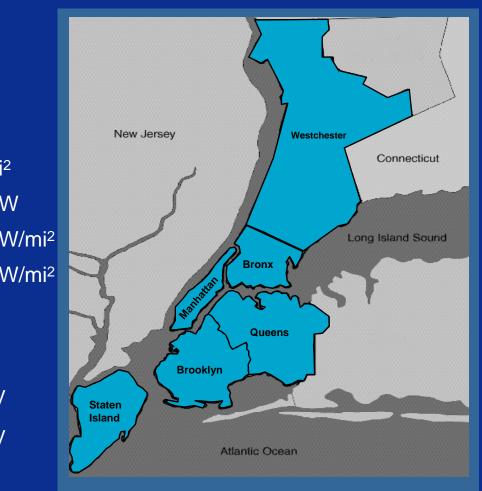
Interoperability <u>of</u> Demand Response <u>Resources</u> <u>in</u> <u>New York</u>

A USDOE Funded Project December 9, 2008

Outline

- Company Overview
- Participants
- Background
- Objectives
- Interoperability
- Schedule
- Feedback



Company Overview

Customers	3,250,000	
Population	9,200,000	
Area	604	mi ²
Peak Demand	13,141	MW
Con Ed Load Density	~22	MW/
NY State Load Density	~0.7	MW

System Voltages

Transmission	345, 138 & 69	kV
Primary Distribution	33, 27, 13 & 4	kV
Secondary Distribution	120 & 265	V

New York City & Westchester County

ON IT

3

In Perspective

- Con Edison service territory represents 1.3% of NY State land area
- Con Edison customer delivery represents 35% of NY State 2007 electricity use
- Con Edison customer load represents 40% of NY State 2007 peak demand

4

Project Participants

Prime Contractor

 Con Edison - Electric Delivery Company and Transmission Operator

Sub Contractors

- Verizon Retail Electric Customer and Demand Response Resource Owner
- Innoventive Power Project Management and Demand Response Service Provider
- Infotility Interoperability Software Developer

Project Background

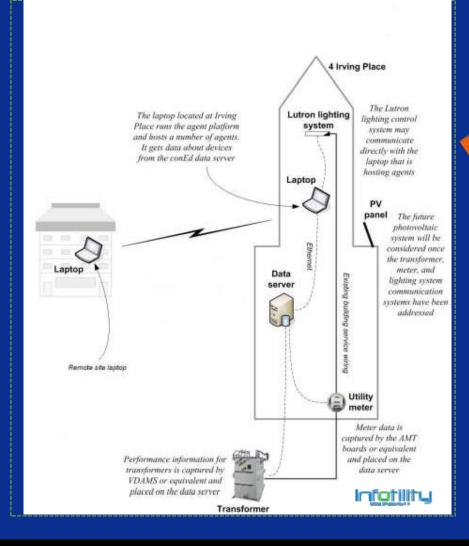
In New York City, backup generators are estimated to comprise ~2GW (almost 20%) of the annual coincident peak demand.

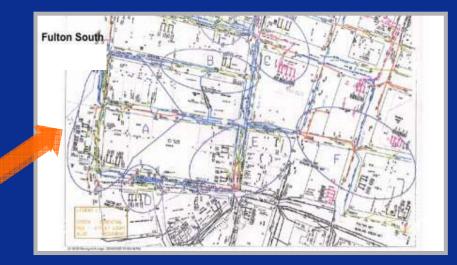
But only about 140 MW currently participate in demand response programs.

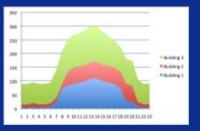
6

Project Background

We seek increased availability and use of distributed energy resources (DSM + DG) in discrete portions of underground urban networks for providing power or reducing demand during peak periods and adverse system conditions.




Project Objectives


- Enhanced reliability of distribution network
- Better integration of distributed resources
- Expanded interoperability
- Increased distributed generation unit interconnection
- Aggregation of added demand response resources

Ultimate Implementation - One Vision

Dynamic Load Shaping within Local Networks (Aggregated demand response at feeder level, DER integration, VAR management, intelligent islanding, dynamic reconfiguration, fault isolation, conditionbased maintenance, availability/performance monitoring & dispatch from utility control, etc.)

Some Challenges

- What information is communicated among participants?
- At what level of operations do the protocols take effect?
- What is "real time" data?
- At what frequency is real time data communicated?
- How best to aggregate and display information so utility operators can make informed decisions about using resources in specific pockets of networks.

Interoperability Demonstration Aspects

- Includes multiple distributed resource types
- Exercises integration technologies and standards
- Integrates with system planning and operations
- Integrates with distribution planning and ops
- Connects retail customers with wholesale conditions (demand response & ancillary services)

Project Schedule

<u>Phase 1</u> – Gather Data & Study Feasibility: October 1, 2008 – September 30, 2009

Phase 2 – Design & Construct: October 1, 2009 – June 30, 2010

<u>Phase 3</u> – Operate and Measure Performance: October 1, 2010 – September 30, 2011

