

LONG-TERM PERFORMANCE AND RELIABILITY ASSESSMENT OF 8 PV ARRAYS AT SANDIA NATIONAL LABORATORIES

Jennifer E Granata, William E Boyson, Jay A Kratochvil, and Michael A Quintana Sandia National Laboratories

Presented at the 34th IEEE PVSC June 11, 2009 Philadelphia, PA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ACKNOWLEDGEMENTS

 Sandia acknowledges the support of the DOE Solar Energy Technologies Program in particular for the work presented here.

OUTLINE

- Motivation
- Background
- Array field overview
- Test method
- Initial data
- Trouble-shooting the arrays
- Summary

MOTIVATION

- Use Sandia's 95 kW array field to understand:
 - System-level performance degradation
 - System-level reliability issues seen in the field
 - Operations and Maintenance
- Apply a process to assess each of these in this "microcosm" of a larger, multi-array, multi-inverter system
- Transfer knowledge to PV community

BACKGROUND

- Sandia's Solar Energy Systems team brings a systems approach to PV performance, degradation and reliability
 - The PV Systems Evaluation Lab (PSEL) focuses on module issues and how they fit into a system
 - The Distributed Energy Technologies Lab (DETL) focuses on inverters and the balance-of-systems aspects
 - Working together provides AC and DC expertise for most aspects of PV systems

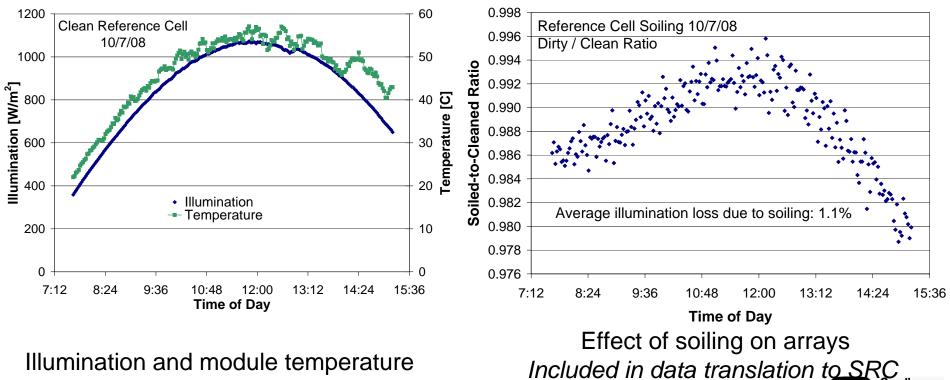
Array Field Overview

- DETL array field used primarily to assess *fielded* performance and reliability of inverters
 - DETL array field currently uses ~95 kW (STC) from 9 different systems
 - Strings are reconfigurable to test various inverter sizes and configurations
 - All but one system at fixed latitude tilt
- PSEL performs initial DC "acceptance test" and periodic DC performance assessments on arrays

Array Field Overview

Array #	Tech	Strings	Modules /String	Instl. Date	Name Plate Rating (kW)
1	a-Si	70	1	2002	3.06
2	c-Si	4	20	2004	6.00
3	mc-Si	4	22	2005	7.04
4	mc-Si	4	22	2005	7.04
5	c-Si	6	7	2005	9.31
6	c-Si	3	28	2005	7.04
7	a-Si	3	2	2006	3.26
8	c-Si	3	21	2006	7.92
9	c-Si	24	12	2008	50.50

Primary focus of this presentation: Six silicon-based PV arrays at Sandia's DETL


Array DC Test Method

- 2-3 modules baselined prior to installation
 - Full outdoor electrical performance testing and thermal response on a tracker and indoor dark IV
 - Analyzed according to Sandia PV Performance Model
- DC string-level testing
 - Thermocouples on backside of two modules per array
 - Measured during spring or autumn: solar incident angles < 50 degrees during AMa 1.5
 - Two c-Si reference cells at POA to measure irradiance and soiling effects
 - Daystar data acquisition system and thermocouple data logger to gather data
 - Collect IV curves and temp data every 2 minutes over a mostly clear sky day
 - Estimated measurement error is +/- 2.5%

Array DC Test Method

- Periodic DC performance assessments on arrays
 - Date of re-measure for this assessment: October 2008
 - Same method used as outlined for DC performance after disconnecting from inverter

during October 2008 testing

Array Performance Change

Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #1, a-Si, 3.06 kW	% diff*	-45.3	-45.9	-4.4	-3.6	-47.9	-0.4
Installed 2002	%/year	-7.0	-7.1	-0.7	-0.6	-7.4	-0.1
System #2, mc-Si, 5.42 kW	% diff	+2.1	+1.5	-0.9	-2.1	-0.7	-1.8
Installed 2004	%/year	+0.5	+0.4	-0.2	-0.5	-0.2	-0.4
System #3, mc-Si, 6.87 kW	% diff	-24.6	-24.9	-2.2	-1.0	-25.6	+1.0
Installed 2005	%/year	-8.0	-8.1	-0.7	-0.3	-8.3	+0.3
System #4, mc-Si, 7.00 kW	% diff	-1.9	-1.8	+0.9	+0.6	-1.2	-0.1
Installed 2005	%/year	-0.6	-0.6	+0.3	+0.2	-0.4	-0.0
System #5, mc-Si, 7.99 kW	% diff	-17.2	-16.7	-0.2	-0.3	-17.0	+0.6
Installed 2005	%/year	-5.6	-5.4	-0.1	-0.1	-5.5	+0.2
System #6, mc-Si, 6.93 kW	% diff	-0.3	-2.0	-0.1	-2.3	-4.3	-3.8
Installed 2005	%/year	-0.1	-0.7	-0.0	-0.8	-1.4	-1.3
System #7, a-Si, 3.26 kW	% diff*	-2.6	+0.4	-1.0	+0.3	+0.9	+4.3
Installed 2006 (Roof mount)	%/year	-1.2	+0.2	-0.5	+0.1	+0.4	+2.0
System #8, c-Si, 5.69 kW	% diff	-1.1	-9.8	+0.4	+3.3	-6.9	-6.2
Installed 2006	%/year	-0.5	-4.9	+0.2	+1.6	-3.5	-3.1 Sandia

% difference calculated from initial measured data or from Name Plate*

A-Si Systems: #1, #7

Laboratories

- A-Si System #1: Nothing of interest to be learned
 - Older technology, known to degrade quickly
 - No longer being manufactured
- A-Si system #7: Behaving as expected
 - Not tested upon installation
 - First DC test October 2008
 - Has reached the name plate values to within measurement error after 2.5 years in the field
 - A-Si stabilization expected within the first year
 - No additional degradation is being observed in the early years for this system

Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #1, a-Si, 3.06 kW	% diff	-45.3	-45.9	-4.4	-3.6	-47.9	-0.4
Installed 2002	%/year	-7.0	-7.1	-0.7	-0.6	-7.4	-0.1
System #7, a-Si, 3.26 kW Installed 2006 (Roof mount)	% diff	-2.6	+0.4	-1.0	+0.3	+0.9	+4.3
	%/year	-1.2	+0.2	-0.5	+0.1	+0.4	+2.0
							National

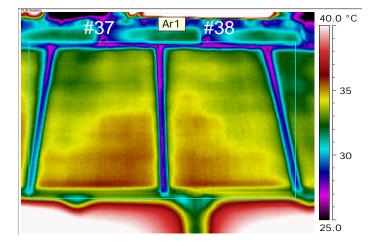
Note data is not corrected for a-Si seasonal effects

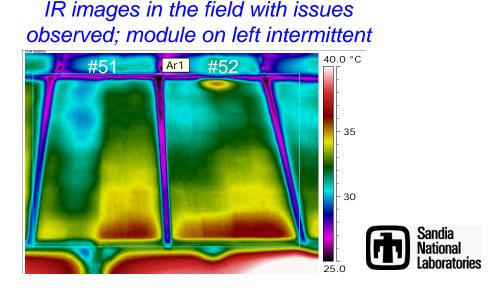
Systems #2, #4 and #6

- System #2, c-Si: Behaving as expected
 - Oldest of the crystalline silicon systems, installed mid 2004
 - Demonstrated consistent performance over nearly five years in the field, with no measurable change in parameters
- Systems #4 (mc-Si) and #6 (c-Si): Behaving as expected
 - Both installed in October 2005
 - Showing little to no degradation within measurement error

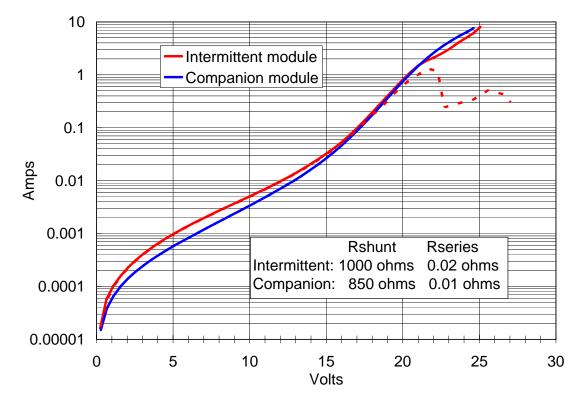
Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #2, mc-Si, 5.42 kW	% diff	+2.1	+1.5	-0.9	-2.1	-0.7	-1.8
Installed 2004	%/year	+0.5	+0.4	-0.2	-0.5	-0.2	-0.4
System #4, mc-Si, 7.00 kW	% diff	-1.9	-1.8	+0.9	+0.6	-1.2	-0.1
Installed 2005	%/year	-0.6	-0.6	+0.3	+0.2	-0.4	-0.0
System #6, mc-Si, 6.93 kW	% diff	-0.3	-2.0	-0.1	-2.3	-4.3	-3.8
Installed 2005	%/year	-0.1	-0.7	-0.0	-0.8	-1.4	-1.3

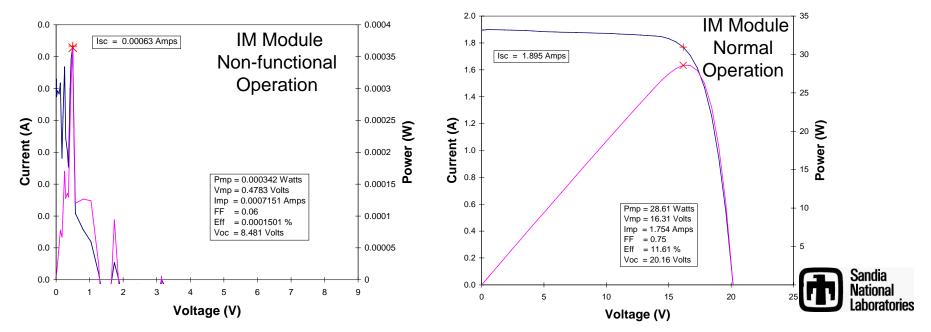
- System #3, mc-Si: One failed module = 25% power loss
 - System #3 demonstrated much greater losses than expected
 - A 4-string module, 25% power and current loss was likely due to one lost string
 - Trouble-shooting included:
 - Visual Inspection
 - Fuse and Interconnect check
 - IR Imaging in the field
 - Module-by-module Voc and IV check


Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #3, mc-Si, 6.87 kW	% diff	-24.6	-24.9	-2.2	-1.0	-25.6	+1.0
Installed 2005	%/year	-8.0	-8.1	-0.7	-0.3	-8.3	+0.3



- Trouble-shooting results:
 - Visual Inspection showed no cracked or discolored modules
 - All fuses and interconnects operating
 - All strings hooked up correctly
 - No obvious lost modules under IR Imaging in the field
 - All modules operative based on module-by-module Voc check
 - Found one intermittent module under module-by-module IV sweep in the field


Sample IR images in the field


- Assess intermittent ("IM") module:
 - Dark IV performed on "IM" module and on a companion module from the array
 - No major differences in performance, other than intermittency and difficulty reaching high voltage

- Assess intermittent ("IM") module:
 - Outdoor performance on "IM" module and on a companion module from the array
 - Companion module performed as expected
 - "IM" module had complete drop-outs unrelated to time, temperature, or illumination level
 - No major differences in performance, other than intermittency

- Assess intermittent ("IM") module:
 - It was possible to induce the intermittency by manipulating the pigtails, suggesting the failure mechanism is in the attachment of the pigtail to the circuit.
 - Remaining steps to prove this hypothesis include:
 - Non-destructive imaging techniques of the module to look for damage
 - Take the junction box apart
- DC test repeated in February 2009 after replacing intermittent module
 - Recovered to within measurement error of initial test

Array	Test Date	Isc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #3, mc-Si, 6.87 kW	% diff	-24.6	-24.9	-2.2	-1.0	-25.6	+1.0
3 year Assessment	%/year	-8.0	-8.1	-0.7	-0.3	-8.3	+0.3
Retest after	% diff	+0.6	+0.3	+1.4	+1.8	+2.0	+0.0
module replacement	%/year	+0.2	+0.1	+0.5	+0.6	+0.7	+0.0

- System #5, c-Si: Loss due to Balance-of-Systems Error
 - System #5 demonstrated much greater losses than expected
 - A 6-string module, 17% power and current loss was likely due to one lost string
 - Trouble-shooting included:
 - Visual Inspection
 - Fuse and Interconnect check
 - IR Imaging in the field
 - Module-by-module Voc and IV check

Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #5, mc-Si, 7.99 kW	% diff	-17.2	-16.7	-0.2	-0.3	-17.0	+0.6
Installed 2005	%/year	-5.6	-5.4	-0.1	-0.1	-5.5	+0.2

- Trouble-shooting results:
 - Visual Inspection showed no cracked or discolored modules
 - All fuses and interconnects operating
 - No stand-outs under IR Imaging in the field
 - All modules operative based on module-by-module Voc check
 - String-level hookup check revealed 6th string connected incorrectly
 - Corrected string hookup
 - DC test repeated in February 2009
 - Recovered to within measurement error of initial test

Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #5, mc-Si, 7.99 kW	% diff	-17.2	-16.7	-0.2	-0.3	-17.0	+0.6
3 year Assessment	%/year	-5.6	-5.4	-0.1	-0.1	-5.5	+0.2
Retest after	% diff	-0.6	+0.0	+0.3	-0.3	-0.3	+0.1
string polarity change	%/year	-0.2	+0.0	+0.1	-0.1	-0.1	+0.0

- System #8, c-Si: Loss due to Balance-of-Systems Error
 - System #8 technology requires positively-grounded inverter for optimal performance
 - Quick check found it was hooked to a negatively-grounded inverter
 - DC test repeated after one week on correct inverter
 - Recovered from 34% power loss to 7% power loss
 - DC test repeated in February 2009 after 4 months on correct inverter

Array	Test Date	lsc [A]	Imp [A]	Voc [V]	Vmp [V]	Pmp [W]	FF
System #8, c-Si, 5.69 kW	% diff	-1.1	-9.8	+0.4	+3.3	-6.9	-6.2
2 year Assessment	%/year	-0.5	-4.9	+0.2	+1.6	-3.5	-3.1
Retest after 4 months on	% diff	-3.7	-3.7	+1.6	+1.2	-2.5	-0.3
+grounded inverter	%/year	-1.8	-1.8	+0.8	+0.6	-1.2	-0.1

• Recovered to within measurement error of initial test

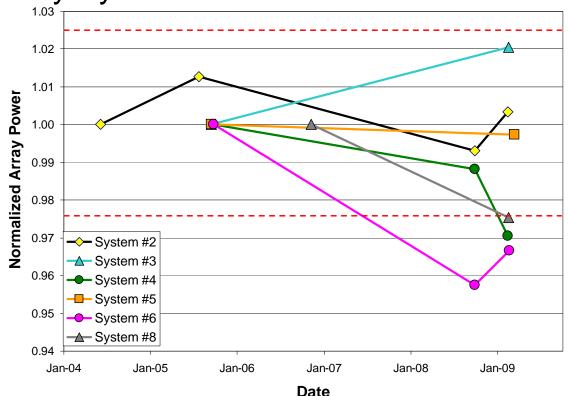
RELIABILITY

- The fielded arrays were examined for reliability issues and/or potential for failure. The following are issues observed in modules that contribute to reduced reliability:
 - Performance loss >1% per year
 - Encapsulant/backsheet discoloration (2 c-Si technologies)
 - Burn marks/arcing (2 c-Si technologies)
 - Backsheet delamination visible under visual inspection
 - Hot spots seen in IR images
 - Broken glass
 - Breakdown in polymer outer sheet
 - Corrosion of interconnect regions

RELIABILITY

- Of the reliability issues discovered, some are easily classified as failures, others may be considered failures based on aesthetics, and some are indicators of likely premature failure
- There is still too little data for statistical reliability assessments on these arrays
- The issues observed will be followed in coming years, particularly to look for early indicators of module failure

Next Steps


- 1. Additional failure analysis of IM module from System #3
- 2. Investigate the AC data to look for patterns and early indicators of degradation
- 3. Remeasure modules from each system on the 2-axis tracker to document any module-level degradation
- 4. Further investigation of data trends for degradation beyond measurement error
- Annual or bi-annual DC testing on each system to continue monitoring any long term degradation and follow progression of noted reliability concerns

Next Steps

- Further investigation of data trends for degradation beyond measurement error
- Normalized power versus time after restoring arrays shows likely true power degradation in System #6 and possibly System #4

Conclusions and Lessons Learned

- Only System #6 showed true power degradation beyond experimental error at 4.3%±2.5%, (ave. 1.4%±0.8%/year)
- In all other cases, the degradation rate was less than the experimental error
- Lessons learned:
 - Proper commissioning is essential to detect installation errors
 - Acceptance testing should also be performed following any maintenance work
 - Testing and checking against expected array output would have quickly caught loss mechanisms for Systems #5 and #8
 - Sufficiently sensitive string-level monitoring might have detected the string degradation due to failed module in System #3
 - Peer to peer (string to string) monitoring at the string level would have certainly detected string degradation due to the failed module

Contact Information

Thank You!

Contact Information: Jennifer Granata jegrana@sandia.gov 505 844 8813

