
Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 76 of 109

Use Case No 27: Data Acquisition
1. Summary:

This document uses an analysis of the State Estimation use case to propose a set of IDL
interface classes for a Data Acquisition component that can be used in other, yet to be
defined, use cases.

Since Measurements are a very generic entity, this interface specification may cover a
wide range of use cases that involve the transfer of telemetered data from a Data
Acquisition application. It is likely to be equally applicable to Automatic Generation
Control or updating user interfaces. The main difference between the client applications
is in the way they select which measurements are of interest. The other difference is that
there is likely to be only one State Estimator in the system but there will be many user
interfaces.

Within this document CIM_ is used as a prefix for entities within a component as if they
were directly implemented using the Common Information Model (CIM) as a schema.
CIS_ is used as a prefix for Component Interface Specification structures and classes.

2. Information Exchanges between the State Estimator & Data Acquisition

There are the following exchanges between Data Acquisition and Topology Processor
and between Data Acquisition and State Estimator. The Topology Processor consumes
switch status measurements, whilst the State Estimator consumes and produces
analogue values and quality.

The size of the information exchanges is based on a 1000 bus system but is intended for
comparative purposes only. The time scale of the information exchanges is based on
allowing dynamic transients on a power system to settle after a switching operation.

ID Producer
Actor or
System

Consumer
Actor or
System

Exchange
Type

Information Content

F Data
Acquisition

Topology
Processor

Fast
Data
Event

Individual breaker status change event
(initiated by Data Acquisition)
0-10 per second (max)

G Data
Acquisition

Topology
Processor

Array
Data Set

Full network ConductingEquipment states
(initiated by Topology Processor)
10000 every 3 minutes (max)

I Data
Acquisition

State
Estimator

Array
Data Set

Relevant analogue measurement values
and quality attributes
(initiated by State Estimator)
6000 every 5 minutes (typical)

K State
Estimator

Data
Acquisition

Array
Data Set

Estimated measurement values and
quality
10000 per 5 minutes (typical)

The event trace diagram requires more detail about what information is exchanged and in
which order.

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 77 of 109

It is assumed that each component has an internal representation of the set of
CIM_Measurements (kV, MW, MVAR etc.) for the network. Each component will have its
own internal representation of several CIM_MeasurementValues for each Measurement.
These may be actually implemented as multiple attributes within a measurement record.

For example:

Data Acquisition holds internally <set of telemetered measurement values>, <set of
manually replaced values>, <set of estimator calculated values>. For this use case it
must provide <set of current values> regardless of the source.

State Estimator will have <set of input measurements>, <set of output measurements>.

3. Information exchange packaging.

There are several ways to define which particular instances are involved in each
exchange. Some of these have been used in the event trace diagram.

• One-way send. Producer application has implicit or internal knowledge of what

consuming applications require. E.g. State Estimator produces array of estimated
measurement values for Data Acquisition. This is the same as Subscribe & Notify with
the Subscribe stage implicitly defined in the producer application.

• Request & Reply. Producer application sends data to consumer applications, based
on consumer application requesting data. E.g. State Estimator requests array of
analogue measurements. This is essentially the same as a one-off Subscribe & Notify
with immediate response.

• Subscribe & Notify Changes. Producer application sends data changed since
previous request to consumer application. The producer application must maintain a
list for each consumer application to identify which data items have changed since
the last successful data exchange. When data changes the producer application must
scan its interest lists to establish whether any data needs sending. The initial
subscription would be followed by an immediate reply of all the subscribed data to
synchronise the applications.

• Broadcast & Filter. Middleware supports producer application broadcasting events
and consumer applications set up filter profiles. Unless there are multiple consumers
of many events, this is less efficient of the infrastructure bandwidth than the
Subscribe & Notify.

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 78 of 109

4. Event trace diagram

subscribe list of (status measurement name)

return list of (name, key)

(G) notify list of (key, value, quality)

register list of (analogue measurement name)

return list of (name, key)

(I) notify list of (key, value, quality)

(F) notify (key, value, quality) for state
changes

request registered list of analogue
measurements

(I) return list of (key, value, quality)

(K) send list of (key, value, quality) of
estimates

unregister()

(T) topology data set

Topology Processor State Estimator Data Acquisition

Sto

Start

Telemetry
Event

Start

Sto

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 79 of 109

5. Interface structures - what is exchanged

For each type of application and type of exchange, it is necessary to define what entities
and attributes are exchanged. This means defining interface structures to hold the data.
These structures may be subsets or views of CIM entities. In other words the CIM is used
as a data dictionary. Depending on the technology, the interface structures may be
compiled or interpreted at run time.

In this particular use case the specific attributes to be exchanged are defined at compile
time within the interface specification.

5.1 Single status data event (exchange F):

For performance reasons, these fast events would use specific interface structures that
are specialised views of CIM entities. The following structure is appropriate.

CIS_MeasurementValue
{
 key = CIM Measurement.key
 value = CIM Measurement->MeasurementValue.value

quality = CIM Measurement->MeasurementValue.quality
}

The quality status word must include as a minimum:

Invalid yes/no

In this example it is assumed that the key will be numeric for efficiency reasons. This is
discussed in a later section.

5.2 Array of status data (exchange G):

This is essentially a generalisation of single status event described above and hence
should use an array of the structures described above.

5.3 Array of telemetered analogue data (exchange I):

This is essentially the same as exchange type G above but using a different set of
measurements. It can therefore use the same array of the structures described above
with the addition of the quality bit:

EstimatorReplaced yes/no

This information allows a State Estimator to use a different weight for telemetered
measurements and estimated measurements. It does however imply that the Data
Acquisition component has built-in knowledge that the State Estimator is a potential
source of data.

5.4 Array of estimated analogue data (exchange K):

This is identical to exchange type I but with different producer and consumer
applications. However there may be different quality flags. Possible flags include:

Invalid yes/no, state estimator has valid solution
OverRange yes/no, value exceeds limits

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 80 of 109

Suspect yes/no, state estimator declared bad telemetered MeasurementValue for
this Measurement.

The Suspect flag indicates that the estimated MeasurementValue has been significantly
different from the telemetered MeasurementValue for a number of State Estimator
solutions. It does not mean that the estimated values sent to the Data Acquisition
component are suspect. In other words, this quality bit applies to the Measurement entity
as a whole not an individual MeasurementValue.

6. IEC 61850-7-4 Quality bits.

For reference, the following quality flags are defined for substation automation.

Quality bit Description
BadReference Measurement value may be incorrect due to a reference being

out of calibration.
CommFailure Measurement value is not valid due to a communication failure.
Blocked Measurement value is blocked (unavailable) for transmission.
Substituted Measurement value has been substituted, e.g. by input of an

operator, or software.
NotTopical Measurement value is old and possibly invalid, as it has not been

successfully updated during a specified time interval.
Invalid Measurement value may be incorrect and should not be used.

It is not clear whether this is an OR of other quality bits)
OverFlow Measurement value is beyond the capability of being

represented properly. For example, a counter value overflows
from maximum count back to a value of zero.

OverRange Measurement value is beyond a predefined range of value.
TransientState Measurement value is due to a transient condition.
Test Measurement value is transmitted for test purposes.
DefaultValue Measurement value is a default value.

For this use case, EstimatorReplaced and Suspect are also required.

EstimatorReplaced Measurement is an estimated value. A State Estimator may
use a different weight for telemetered measurements and
estimated measurements.

Suspect The estimated measurement value has been significantly
different from the telemetered value for a number of State
Estimator solutions.

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 81 of 109

7. Identification - which instances are exchanged

The structure defined above used a key for measurements that is unique within the
system. The event trace diagram shows an information exchange that allows the State
Estimator to obtain these keys from the Data Acquisition component. An alternative is for
both components to get these keys from the data definition system or a shared naming
service.

A suitable structure is:
CIS_MeasurementIdentity
{

substationName, //unique within control centre
conductingEquipmentName, //unique within Substation
terminalNumber, //unique within ConductingEquipment
measurementName, //unique for each Terminal
key //unique within control centre

}

The State Estimator could then send an array of these structures with identifier =0 to
either a database application or Data Acquisition itself. This application would reply with
the same structure with non-zero identifiers for valid measurements.

The set of measurements to be exchanged can be defined in several different ways. A
standard interface should allow any of the following.

a. Common Database. E.g. Data Acquisition & State Estimator are initialised from the

same database. Measurements are marked in the database as used by the State
Estimator. The Data Acquisition can set up registration structures on start up without
requiring a information exchange of CIS_MeasurementIdentity.

b. Coded in Data Acquisition. Data Acquisition implicitly knows that State Estimator is
interested in particular MeasurementUnits for all ConductingEquipment. In this case
the ‘register’ information exchange would have an alternative form.

c. Coded in State Estimator. State Estimator subscribes for measurements that match
its data. The simplest subscription is a list of specific measurements. However State
Estimator could automatically generate this measurement list based on a list of valid
measurement units and a list of Substations and ConductingEquipment loaded in the
State Estimator internal model.

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 82 of 109

8. Interface class diagram

CIS_MeasurementValu
e

key
value
quality

CIS_MeasurementIdenti
ty

substationName
equipmentName
terminalName
measurementName
k

CIS_DA_Client

ClientID

notify (list of MeasurementValue)
notify (MeasurementValue)

CIS_DA_Subscription

clientID
ListID

notify (list of MeasurementValue)
notify (MeasurementValue)

CIS_DA_Server

StatusListId
AnalogListId
ResultsListId

subscribe(list of MeasurementIdentity)
register (list of MeasurementIdentity)
register (list of MeasurementUnit)
request (list of MeasurementValue)
send (list of MeasurementValue)

CIS_DA_Implementation

Listid = subscribe(list of
MeasurementIdentity)
Listid = register (list of
MeasurementIdentity)
Listid = register (list of MeasurementUnit)
request (ListId)

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 83 of 109

CIS_MeasurementValue interface structure described above
CIS_MeasurementIdentity interface structure described above
CIS_MeasurementUnit interface structure (not shown)

CIS_DA_Server public interface class as used by State Estimator or other

client of Data Acquisition.
CIS_DA_Implementation private interface class implemented within Data Acquisition.
CIS_DA_Subscription private interface class implemented within Data Acquisition

and instantiated for each client.
CIS_DA_Client public interface class provided by State Estimator and other

clients to receive notifications from Data Acquisition.

9. Interface Definition Language example.

The following assumes that long sequences are sent as a set of variable length ‘packets’.
The concept is that each packet transfers part of an array. The packet therefore contains
information on the number of items in the packet and the offset from the start. By passing
the offset with each information exchange, there is some protection for packets arriving
in the wrong order.

for (offset = 0; offset < bigArrayLength;)

{

 n = Send (bigArray[offset], offset, STDSEQSIZE);

 offset += n;

}

File: CIS_MeasStruct.idl

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 84 of 109

#ifndef CIS_MeasStruct_idl
#define CIS_MeasStruct_idl

#define STDSEQSIZE 1024

struct CIS_MeasurementValue
{
 long key;
 float value;
 unsigned long quality;
};

struct CIS_MeasurementIdentity
{
 string substationName;

string equipmentName;
string terminalName;
string measurementName;

 long
};

typedef sequence<CIS_MeasurementValue, STDSEQSIZE >

CIS_MeasValueSeq;
typedef sequence<CIS_MeasurementValue, STDSEQSIZE >

CIS_MeasValueSeq;

#endif

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 85 of 109

File: CIS_DA_Server.idl

#ifndef CIS_DA_Server_idl
#define CIS_DA_Server_idl

#include "CIS_MeasStruct.idl"

interface CIS_DA_Client;

interface CIS_DA_Server
{
/* subscribe to notifications on selected measurements.
 ClientID is the CORBA identifier of this process

NumberOfItems is number of items in sequence
 Offset is number of items already received (zero to start)
 Result is number of items returned. Zero means end of list.
*/
 short subscribe (in CIS_DA_Client clientID,
 in short offset,
 in short numberOfItems,

inout CIS_MeasIdSeq);

/* register a list of names and obtain matching keys
 RegisteredListID is reference to list
*/
 short register (out long RegisteredListID,

in short offset,
 in short numberOfItems,

inout CIS_MeasIdSeq seq,);

/* send a list of measurement values
*/
 void send (in long RegisteredListID,

in short offset,
 in short numberOfItems,

in CIS_MeasValueSeq seq);

/* request a list of previously registered measurement values
*/
 short request (in long RegisteredListID,

in short offset,
 in short numberOfItems,

out CIS_MeasValueSeq seq);
};
#endif

Use Case Description DMS (T. Berry, Data Acquisition)-03

Use Case Annex rev2.doc 86 of 109

File: CIS_DA_Client.idl

References:

This analysis is based on the State Estimation and Network Modification use cases using
the methodology described in Information Exchange Design.

Revision History:

No Date Author Description
1. 28-Apr-99 T. Berry Original
2. 5-May-99 T. Berry Add IDL
3. 7-May-99 T. Berry Clarify use of CIM and CIS prefixes.

#ifndef CIS_DA_Client_idl
#define CIS_DA_Client_idl

#include "CIS_MeasStruct.idl"

interface CIS_DA_Client
{
/* receive notification for a single measurement
*/
 oneway void notifyItem (in CIS_MeasurementValue item);

/* receive a list of previously registered measurement values
*/
 short notifySeq (in long RegisteredListID,

in short offset,
 in short numberOfItems,

in CIS_MeasValueSeq seq);
};
#endif

