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« Examples of CHIL and PHIL Experiments



» Established at Florida State University in 2000 under a grant from
the US Office of Naval Research (ONR)

* Focus on research and education related to application of new
technologies to electric power systems
« Member of ONR Electric Ship R&D Consortium  Fr9rs 1~ £

FSU, MSU, USC, UT-Austin, MIT, Purdue,
Naval Academy/ Navy Post Graduate School AND DEVELOPMENT CONSORTIIM

: U.S. Department of Energy
‘ Grant No DE FG02 05CH11292

Staffing:

— 36 scientific, engineering and supporting
staff, including

— 9 faculty (9 mo teach and 12 mo none teach)

— 5 post docs

— 4 visiting scientists
— 34,000 square feet offices and laboratories — >20 graduate students from FAMU-FSU CoE

— Facility based on grants from the US Office of Naval Research (ONR) and the US Department of
Energy (DOE): $20 million capital investment

— Annual Operating budget: $4 million
— Preparing for the the ability to perform classified research
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CAPS Large-Scale High-Fidelity Transient
Power System Simulation

» Largest real-time digital simulator (RTDS) installation in any university, worldwide
« Systems studies sized up to 250 three-phase buses at 50/2us time steps

» High-speed analog I/O to enable realistic control and power HIL experiments

« Additional off-line simulation tools, i.e.. EMTDC, Matlab, PSS/E

« Established expertise in understanding the details of novel and legacy power
system apparatus and their interaction with the system

« Knowledge in system simulation methods, analysis, and interpretation of results
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CAPS High Power Laboratories
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» Power apparatus and systems laboratory upto 5 MW @ 12.47 & 4.16 kV

* Integrated with the RTDS for unique power and control HIL experiments

» Established expertise in advanced testing of apparatus under simulated system
conditions
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Controller Hardware in Loop (CHIL) and
Power hardware in loop (PHIL)

Simulator e Controller HIL Simulation

— Controller under test

‘ l — Low level transmitting signals (+/-15V, mA)

— A/D and D/A converters are adequate for

Controller the interface
under Test

Simulator

e Power HIL Simulation “

— Power device (load, sink) under test Power Interface
— High level transmitting signals (kV, kA, MW) l

— Power amplifiers required for interface “

Power Device
under Test
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Why CHIL Simulations?

« Mitigate risks for all stakeholders

« Will allow optimal tuning of control
parameters for fastest possible
commissioning NGSU Controller -
» Wil potentially reveal —
— Hidden issues in control algorithm and real-

time controller run-time environment RT Simulator . NCSLl,:
— Unpredicted interactions between and Hardware H(;?ctivv)areer
surrounding utility system (i.e. protection GTDI

equipment, capacitor-bank switching, etc.) =
— Unpredicted interactions between the
equipment and other controlled devices (i.e.
near by FACTS)
 The key for success of HIL testing is a
system model that contains sufficient detalil
such as
— Realistic model capturing system behavior

— Sufficient detail of surrounding control and
protection systems

— Sensor characteristics (e.g. saturation)

ODAC
GTAO
' DDAC
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RT-HIL Simulation Based Optimization with RTDS
Small At-Loop Capability
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Why PHIL Simulations?

» Will allow highly dynamic testing of
R&D prototype power apparatus

— Complex operating scenarios (i.e.
faults, pulse loads, etc.) become
possible in a controlled lab
environment

* Will potentially reveal
— Thermal management performance

— Power control performance under
realistic system conditions

— Problems with any details not
considered in software model of the
hardware under test (HUT)

* The key for realistic PHIL testing of 3 =
electrical equipment !S the unique 5 MW HTS Propulsion Motor at CAPS
4.16kV/6.25MVA variable AC/DC bus  during electromechanical PHIL testing
facility in 2004

— Complete commissioning expected
3Q of 2007
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5 MW RTDS-PHIL Facility at CAPS

- ' PHIL...Power-Hardware-in-Loop '

: S0MVA 115 kV system
; City of Tallahassee !
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i 2 5 WM PEBB-based “signal amplifier”

e Continuous power rating 5 MW / 6.25 MVA
e Full 4-quadrant operation 4Q1ti€|5itkv
« Qutput voltage range AC Voltage busy

— 0...120% (4.16 kV nominal setting), reference

— 0...100% (8.2 kV setting, 50% power) from RTDS | |
e Y output w/ accessible neutral
e Current overload capabilit AC burrent

pa y feedback to

— 130% 10s every 10 min RTDS

— 165% 1s every min t > —

— 193% 87ms every min _%
» Base frequency range 40 — 65 Hz

— 400 Hz possible for short time VAN
* No-load and full load voltage THD < 1% PY
» Experimental side switching frequency

— IGBT devices 5 — 8 kHz

— Twin configuration effective 10 — 16 kHz 4.16 / 8.2 kV
« Filter cut-off frequency 1800 Hz experimental bus
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5 WM PEBB-based “signal amplifier”
Key Specifications — DC source

« Continuous current rating 2.5 kA 4;115“5\/
* Full 4-quadrant operation DC Voltage bus
- Output voltage range feterenee
— 0.6...1.15kV (1.5 - 2.8 MW) | |
— 0...0.6 (reduced linearity) DC Current
« Bi-polar DC ungrounded feeg_?%cg to [%
» Full-load voltage regulation < 1% T .
» Closed loop voltage control bandwidth
limit > 1 kHz (for 200 V step request) |
» Facilitates combined AC/DC operation 1.2 kV experimental —9
— 2.5 MW/4.16 kV,c and 2.5 MW/1 kVp DC bus
4.16 /8.2 kV

experimental bus
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16 kW PHIL of a Gas Turbine with Motor Drive
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16 kW PHIL of a Motor Drive Trip after Pulse Load

Generator frequency response during source side pulse load
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5 MW HTS Propulsion Motor
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Loop Investigation of Rotor Heating in a 5 MW HTS Propulsion Motor”, presented at the Applied Superconductivity
Conference 2006, Seattle, WA, USA, and accepted for publication in the IEEE Trans. Applied Superconductivity
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Sea-State Hydrodynamic Model

Empirical torque *
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Field Current Waveforms
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Heating from Sea-State Multi Frequency
Torgue Oscillations
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B S ~
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* Investigate feasibility and performance of
NCSU’s ETO STATCOM on an existing wind
farm with voltage fluctuation problems

— Provide guidance to BPA & NCSU on
STACOM sizing and wind farm behavior

— Test new controller in CHIL setup
— Test power converter ion PHIL setup

* Investigate high-fidelity wind farm aggregation
5 min Condon Wind SCADA Data for 365 days starting 01-Jan-2004
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40-turbine RTDS model with generic STATCOM
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BPA model validation with SCADA data

2s Condon Wind SCADA Data on 3-5-2006
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BPA model validation with SCADA data

Voltage profiles from 2s SCADA PQ injections at Condon
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BPA model validation with SCADA data

Voltage profiles from 2s SCADA PQ injections at Condon
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Model validation against 2 kHz data records

~Voltage at wind farm [pu] ; 160 ; ; ;

1.050 —— o M R ERRRREE .

1.045 - f -\ - From transient recorder || |- __ 7777777777777 o 7777777
| (time resolution 0.5ms) || ‘ | |
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1.035] e o T Cgturnson,C,C,, - e
‘ | f C,, C, already on f

1030 C, turns on ; time [ms] o | time [ms]

0 1000 2000 3000 0 1000 2000 3000

When cap switching control at Condon Wind works properly,
the voltage stays within BPA criteria as FSU studies predicted
- As confirmed by BPA (11/22/2006)

Sea West control panel
(photo Steurer, Aug 2006)
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Impact of STATCOM with
DeMoss Connection Open
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50 MVA 115 kV system
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Imperfect Interface Causes Simulation Errors

Original Circuit Highly ocl erace owput varm)
R1 (200hm) R2 (0.1ohm) precise - odl
amplification £ ..
0,

1 1 1 3
0.07 0.075 0.08 0.085

time (s)

1 1 1
0.055 0.06 0.065

6/ Vs (1V, 60Hz) Vg R3 (200hm)

Large error

in the PHIL
simulation — 9
reSU|t _10 0.65 0‘1 Vo of PHIL circuit J

0.15

voltage (V)

R1 R2 R2 Interface uses

;wA/\/_.,_M/V\/_ %A/\hi relaxation method

: ! where a common
! v component is implanted
| both in hardware and in
@ Vs | Vo T% = T | Vo § R3  software
. i Veg=V, |
Simulated | Hardware !

W. Ren, M. Steurer, T. L. Baldwin, “Improve the Stability of Power Hardware-in-the-Loop Simulation by Selecting
Appropriate Interface Algorithm”, in Proc. of the ICPS 2007 to be held in Edmonton, ALB, Canada, May 6-10 2007
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Concluding Remarks

* Increasing integration of power
electronics and other advanced
technologies into utility power systems
and renewable energy systems requires
improved modeling and simulation
methods, tools, and expertise

e CHIL, and especially PHIL, can reveal
hidden issues not well modeled in off-line
simulations

* PHIL requires further research to
improve overall simulation accuracy
compromised by the inherent PHIL
Interface characteristics

e Large computational power of CAPS
RTDS setup can help with model
development and validation otherwise
Impossible with PC based simulations
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R=2.00 Lk =0.1mH Simulation time step: 100us
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Magnitude (dB)

Phase (deg)
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