
Controller and Power Hardware-In-Loop 
Methods for Accelerating Renewable 

Energy Integration
Michael „Mischa“ Steurer, F. Bogdan, 
W. Ren, M. Sloderbeck, and S. Woodruff

Center for Advanced Power Systems, 
Florida State University, Tallahassee, FL

• FSU/CAPS System Simulation and 
Power Testing Competence

• Controller Hardware-In-Loop (CHIL) and 
Power Hardware-In-Loop (PHIL) Simulations

• Examples of CHIL and PHIL Experiments



06/26/2007 Innovative Simulation and Prototyping Labs for Renewable Energy Integration Panel @ IEEE PES GM Tampa 2

FSU - Center for Advanced Power Systems

• Established at Florida State University in 2000 under a grant from 
the US Office of Naval Research (ONR)

• Focus on research and education related to application of new 
technologies to electric power systems

• Member of ONR Electric Ship R&D Consortium
FSU, MSU, USC, UT-Austin, MIT, Purdue, 
Naval Academy/Navy Post Graduate School

Staffing:

– 36 scientific, engineering and supporting 
staff, including 

– 9 faculty (9 mo teach and 12 mo none teach)

– 5 post docs

– 4 visiting scientists

– >20 graduate students from FAMU-FSU CoE– 34,000 square feet offices and laboratories
– Facility based on grants from the US Office of Naval Research (ONR) and the US Department of 

Energy (DOE): $20 million capital investment

– Annual Operating budget: $4 million

– Preparing for the the ability to perform classified research

Grant No. N0014-02-1-0623

U.S. Department of Energy
Grant No DE FG02 05CH11292
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CAPS Large-Scale High-Fidelity Transient
Power System Simulation

• Largest real-time digital simulator (RTDS) installation in any university, worldwide
• Systems studies sized up to 250 three-phase buses at 50/2μs time steps
• High-speed analog I/O to enable realistic control and power HIL experiments
• Additional off-line simulation tools, i.e.: EMTDC, Matlab, PSS/E
• Established expertise in understanding the details of novel and legacy power 

system apparatus and their interaction with the system
• Knowledge in system simulation methods, analysis, and interpretation of results
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CAPS High Power Laboratories

• Power apparatus and systems laboratory up to 5 MW @ 12.47 & 4.16 kV
• Integrated with the RTDS for unique power and control HIL experiments
• Established expertise in advanced testing of apparatus under simulated system 

conditions 
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Controller Hardware in Loop (CHIL) and 
Power hardware in loop (PHIL)

• Controller HIL Simulation
– Controller under test
– Low level transmitting signals (+/-15V, mA)
– A/D and D/A converters are adequate for 

the interface

Simulator
D/A A/D

A/D D/A
Controller 
under Test

Simulator
D/A A/D

A/D D/A
Power Device 

under Test

Power Interface

• Power HIL Simulation
– Power device (load, sink) under test
– High level transmitting signals (kV, kA, MW)
– Power amplifiers required for interface
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Why CHIL Simulations?

• Mitigate risks for all stakeholders
• Will allow optimal tuning of control 

parameters for fastest possible 
commissioning

• Will potentially reveal
– Hidden issues in control algorithm and real-

time controller run-time environment
– Unpredicted interactions between and 

surrounding utility system (i.e. protection 
equipment, capacitor-bank switching, etc.)

– Unpredicted interactions between the 
equipment  and other controlled devices (i.e. 
near by FACTS)

• The key for success of HIL testing is a 
system model that contains sufficient detail 
such as
– Realistic model capturing system behavior
– Sufficient detail of surrounding control and 

protection systems
– Sensor characteristics (e.g. saturation)
– …

RT Simulator 
Hardware

NCSU 
Controller 
Hardware

GTDI

NCSU Controller 
Terminal

DDAC

GTAO

ODAC

GTAI

SIF
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RT-HIL Simulation Based Optimization with RTDS 
Small Δt-Loop Capability
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Why PHIL Simulations?

• Will allow highly dynamic testing of 
R&D prototype power apparatus
– Complex operating scenarios (i.e. 

faults, pulse loads, etc.) become 
possible in a controlled lab 
environment

• Will potentially reveal
– Thermal management performance
– Power control performance under 

realistic system conditions
– Problems with any details not 

considered in software model of the 
hardware under test (HUT)

• The key for realistic PHIL testing of 
electrical equipment is the unique 
4.16kV/6.25MVA variable AC/DC bus 
facility
– Complete commissioning expected 

3Q of 2007

5 MW HTS Propulsion Motor at CAPS 
during electromechanical PHIL testing 

in 2004
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Simulate Electric 
System Response

Simulate Dynamic
Torque Loads

Feedback
Measured Data

Real Time
Simulator

Simulates electric 
power systems & 
controls in real time
14 racks → 756 
electrical nodes 
> 6000 control 
components
Timer step (typical):
Δt = 1.5…50μs
400 digital and 200 
analog I/O
enable “real-world”
feedback
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5 WM PEBB-based “signal amplifier”
Key Specifications – AC source  

• Continuous power rating 5 MW / 6.25 MVA
• Full 4-quadrant operation 
• Output voltage range

– 0…120% (4.16 kV nominal setting), 
– 0…100% (8.2 kV setting, 50% power)

• Y output w/ accessible neutral
• Current overload capability

– 130% 10s every 10 min
– 165%   1s every min
– 193%  87ms every min

• Base frequency range 40 – 65 Hz
– 400 Hz possible for short time 

• No-load and full load voltage THD ≤ 1%
• Experimental side switching frequency

– IGBT devices 5 – 8 kHz
– Twin configuration effective 10 – 16 kHz

• Filter cut-off frequency 1800 Hz

4.16 kV 
utility 
bus

4.16 / 8.2 kV 
experimental bus

AC Voltage 
reference 

from RTDS

AC Current 
feedback to 

RTDS
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5 WM PEBB-based “signal amplifier”
Key Specifications – DC source

4.16 kV 
utility 
bus

4.16 / 8.2 kV 
experimental bus

1.2 kV experimental 
DC bus

DC Voltage 
reference 

from RTDS

DC Current 
feedback to 

RTDS

• Continuous current rating 2.5 kA
• Full 4-quadrant operation
• Output voltage range

– 0.6…1.15 kV (1.5 – 2.8 MW)
– 0…0.6 (reduced linearity)

• Bi-polar DC ungrounded
• Full-load voltage regulation ≤ 1%
• Closed loop voltage control bandwidth 

limit ≥ 1 kHz (for 200 V step request)
• Facilitates combined AC/DC operation

– 2.5 MW/4.16 kVAC and 2.5 MW/1 kVDC
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16 kW PHIL of a Gas Turbine with Motor Drive 
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16 kW PHIL of a Motor Drive Trip after Pulse Load 

Experimental results from 50 kW PEBB system
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5 MW HTS Propulsion Motor 
Power Hardware-in-Loop Setup at CAPS
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M. Steurer, S. Woodruff, T. Baldwin, H. Boenig, F. Bogdan, T. Fikse, M. Sloderbeck, and G. Snitchler, ”Hardware-in-the-
Loop Investigation of Rotor Heating in a 5 MW HTS Propulsion Motor”, presented at the Applied Superconductivity 
Conference 2006, Seattle, WA, USA, and accepted for publication in the IEEE Trans. Applied Superconductivity
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Sea-State Hydrodynamic Model 
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Testing 10 MVA STATCOM for Wind Farm
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• Investigate feasibility and performance of 
NCSU’s ETO STATCOM on an existing wind 
farm with voltage fluctuation problems
– Provide guidance to BPA & NCSU on 

STACOM sizing and wind farm behavior
– Test new controller in CHIL setup
– Test power converter ion PHIL setup

• Investigate high-fidelity wind farm aggregation
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40 turbines fully modeled, 
scaled by 2.075 to account for 
the 83 units actually in the field

40-turbine RTDS model with generic STATCOM
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BPA model validation with SCADA data
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BPA model validation with SCADA data
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BPA model validation with SCADA data
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Model validation against 2 kHz data records

Sea West control panel
(photo Steurer, Aug 2006)
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When cap switching control at Condon Wind works properly, 
the voltage stays within BPA criteria as FSU studies predicted
- As confirmed by BPA (11/22/2006)
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Possible Testing of a 13.75 MVA STACOM 
in RTDS-PHIL Facility at CAPS

• Full power 
capability for 10 
MVA rating

• Current 
regulation

• Limited system 
and wind farm 
dynamics
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Imperfect Interface Causes Simulation Errors
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W. Ren, M. Steurer, T. L. Baldwin, “Improve the Stability of Power Hardware-in-the-Loop Simulation by Selecting 
Appropriate Interface Algorithm”, in Proc. of the ICPS 2007 to be held in Edmonton, ALB, Canada, May 6-10 2007
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• Increasing integration of power 
electronics and other advanced 
technologies into utility power systems 
and renewable energy systems requires 
improved modeling and simulation 
methods, tools, and expertise

• CHIL, and especially PHIL, can reveal 
hidden issues not well modeled in off-line 
simulations

• PHIL requires further research to 
improve overall simulation accuracy 
compromised by the inherent PHIL 
interface characteristics

• Large computational power of CAPS 
RTDS setup can help with model 
development and validation otherwise 
impossible with PC based simulations

Concluding Remarks
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