Controller and Power Hardware-In-Loop Methods for Accelerating Renewable Energy Integration

Michael "Mischa" Steurer, F. Bogdan, W. Ren, M. Sloderbeck, and S. Woodruff

Center for Advanced Power Systems, Florida State University, Tallahassee, FL

- FSU/CAPS System Simulation and Power Testing Competence
- Controller Hardware-In-Loop (CHIL) and Power Hardware-In-Loop (PHIL) Simulations
- Examples of CHIL and PHIL Experiments

FSU - Center for Advanced Power Systems

- Established at Florida State University in 2000 under a grant from the US Office of Naval Research (ONR)
- Focus on research and education related to application of new technologies to electric power systems
- Member of ONR Electric Ship R&D Consortium FSU, MSU, USC, UT-Austin, MIT, Purdue, Naval Academy/Navy Post Graduate School

34,000 square feet offices and laboratories

U.S. Department of Energy Grant No DE FG02 05CH11292

Staffing:

- 36 scientific, engineering and supporting staff, including
- 9 faculty (9 mo teach and 12 mo none teach)
- 5 post docs
- 4 visiting scientists
- >20 graduate students from FAMU-FSU CoE
- Facility based on grants from the US Office of Naval Research (ONR) and the US Department of Energy (DOE): \$20 million capital investment
- Annual Operating budget: \$4 million
- Preparing for the the ability to perform classified research

CAPS Large-Scale High-Fidelity Transient Power System Simulation

- Largest real-time digital simulator (RTDS) installation in any university, worldwide
- Systems studies sized up to 250 three-phase buses at 50/2µs time steps
- High-speed analog I/O to enable realistic control and power HIL experiments
- Additional off-line simulation tools, i.e.: EMTDC, Matlab, PSS/E
- Established expertise in **understanding the details** of novel and legacy power system apparatus and their **interaction with the system**
- Knowledge in system simulation methods, analysis, and interpretation of results

CAPS High Power Laboratories

- Power apparatus and systems laboratory up to 5 MW @ 12.47 & 4.16 kV
- Integrated with the RTDS for unique power and control HIL experiments
- Established expertise in advanced testing of apparatus under simulated system conditions

- Controller HIL Simulation
 - Controller under test
 - Low level transmitting signals (+/-15V, mA)
 - A/D and D/A converters are adequate for the interface

- Power HIL Simulation
 - Power device (load, sink) under test
 - High level transmitting signals (kV, kA, MW)
 - Power amplifiers required for interface

- Mitigate risks for all stakeholders
- Will allow optimal tuning of control parameters for fastest possible commissioning
- Will potentially reveal
 - Hidden issues in control algorithm and realtime controller run-time environment
 - Unpredicted interactions between and surrounding utility system (i.e. protection equipment, capacitor-bank switching, etc.)
 - Unpredicted interactions between the equipment and other controlled devices (i.e. near by FACTS)
- The key for success of HIL testing is a system model that contains sufficient detail such as
 - Realistic model capturing system behavior
 - Sufficient detail of surrounding control and protection systems
 - Sensor characteristics (e.g. saturation)

NCSU Controller Terminal

- ...

RT-HIL Simulation Based Optimization with RTDS Small ∆t-Loop Capability

Why PHIL Simulations?

- Will allow highly dynamic testing of R&D prototype power apparatus
 - Complex operating scenarios (i.e. faults, pulse loads, etc.) become possible in a controlled lab environment
- Will potentially reveal
 - Thermal management performance
 - Power control performance under realistic system conditions
 - Problems with any details not considered in software model of the hardware under test (HUT)
- The key for realistic PHIL testing of electrical equipment is the unique 4.16kV/6.25MVA variable AC/DC bus facility
 - Complete commissioning expected
 3Q of 2007

5 MW HTS Propulsion Motor at CAPS during electromechanical PHIL testing in 2004

PHIL...Power-Hardware-in-Loop

5 WM PEBB-based "signal amplifier" Key Specifications – AC source

- Continuous power rating 5 MW / 6.25 MVA
- Full 4-quadrant operation
- Output voltage range
 - 0...120% (4.16 kV nominal setting),
 - 0...100% (8.2 kV setting, 50% power)
- Y output w/ accessible neutral
- Current overload capability
 - 130% 10s every 10 min
 - 165% 1s every min
 - 193% 87ms every min
- Base frequency range 40 65 Hz
 - 400 Hz possible for short time
- No-load and full load voltage THD $\leq 1\%$
- Experimental side switching frequency
 - IGBT devices 5 8 kHz
 - Twin configuration effective 10 16 kHz
- Filter cut-off frequency 1800 Hz

5 WM PEBB-based "signal amplifier" Key Specifications – **DC source**

2

2

1.5

1.5

Experimental results from 50 kW PEBB system

5 MW HTS Propulsion Motor Power Hardware-in-Loop Setup at CAPS

M. Steurer, S. Woodruff, T. Baldwin, H. Boenig, F. Bogdan, T. Fikse, M. Sloderbeck, and G. Snitchler, "Hardware-in-the-Loop Investigation of Rotor Heating in a 5 MW HTS Propulsion Motor", presented at the Applied Superconductivity Conference 2006, Seattle, WA, USA, and accepted for publication in the IEEE Trans. Applied Superconductivity

Field Current Waveforms

Testing 10 MVA STATCOM for Wind Farm

- Investigate feasibility and performance of NCSU's ETO STATCOM on an existing wind farm with voltage fluctuation problems
 - Provide guidance to BPA & NCSU on STACOM sizing and wind farm behavior
 - Test new controller in CHIL setup
 - Test power converter ion PHIL setup
- Investigate high-fidelity wind farm aggregation

5 min Condon Wind SCADA Data for 365 days starting 01-Jan-2004

40-turbine RTDS model with generic STATCOM

06/26/2007 Innovative Simulation and Prototyping Labs for Renewable Energy Integration Panel @ IEEE PES GM Tampa 20

When cap switching control at Condon Wind works properly, the voltage stays within BPA criteria as FSU studies predicted - As confirmed by BPA (11/22/2006)

Impact of STATCOM with DeMoss Connection Open

Possible Testing of a 13.75 MVA STACOM in RTDS-PHIL Facility at CAPS

- Full power capability for 10 MVA rating
- Current
 regulation
- Limited system and wind farm dynamics

Imperfect Interface Causes Simulation Errors

W. Ren, M. Steurer, T. L. Baldwin, "Improve the Stability of Power Hardware-in-the-Loop Simulation by Selecting Appropriate Interface Algorithm", in Proc. of the ICPS 2007 to be held in Edmonton, ALB, Canada, May 6-10 2007

Concluding Remarks

- Increasing integration of power electronics and other advanced technologies into utility power systems and renewable energy systems requires improved modeling and simulation methods, tools, and expertise
- CHIL, and especially PHIL, can reveal hidden issues not well modeled in off-line simulations
- PHIL requires further research to improve overall simulation accuracy compromised by the inherent PHIL interface characteristics
- Large computational power of CAPS RTDS setup can help with model development and validation otherwise impossible with PC based simulations

