

Smart Grid Demonstrations Integrating Large Scale Distributed Energy Resources

> Matt Wakefield, EPRI <u>mwakefield@epri.com</u> 3/11/2009

Smart Grid Sensors....Two Way Communications....Intelligence

Smart Grid Demonstrations will Manage Expectations to enable Realistic Business Evaluation and take us Quickly to the Plateau of Productivity

Smart Grid – CO₂ Impact from Integrating DER

Technology Challenges

- 1. Smart Grids and Communication Infrastructure
- 2. Transmission Grids and Associated Energy Storage Infrastructures
- 3. Advanced Light Water Reactors
- 4. Coal-Based Generation Units with CO₂ Capture and Storage

Avoided CO ₂ Emissions from Smart Grid, 2030 (Tg CO ₂)*				
	Low	High		
Direct Feedback				
PHEV Integration				
Renewable Integration				
EE & Demand Response	60	211		
Peak Load Mgmt				
Reduced Line Losses				
Cont. Comm. Large				
Commercial Buildings				
% of Total U.S. CO ₂ Emissions	~3%	~10%		

~80% of Avoided CO2 Emissions from Smart Grid are from

Integration of DER

* Source: EPRI Publication 1016905, The Green Grid Savings and GHG reduction Enabled by a Smart Grid

EPRI Smart Grid Demonstrations

- Integration of Distributed Energy Resources (DER)
- Deploying the Virtual Power Plant
- Several regional demonstrations
 - Multiple Levels of Integration
 - Multiple Types of Distributed Energy Resources & Storage
- Leverages Information & Communication Technologies

© 2009 Electric Power Research Institute, Inc., M (1915)

EPRI Smart Grid Demonstration Goals

• 5 Year Initiative

- Leverage Utility Investments
 - Application of Technologies & Standards Available Today
 - Research Beyond Scope of Typical Utility Deployment
 - Advance/Further Technology, Standards, Interoperability
- Leverage the Collaboration Benefits
 - The Whole is Greater than the Sum of its Parts
- Understand the "State of the Smart Grid"
 - Cost Benefit Analysis (CBA)
 - Gaps in Technology, Standards, CBA

Smart Grid Demonstration Approach

Integration of DER with Utility Operations

- Ensure Interoperability of DER
 - Demonstrating use of common language to exchange information with distributed resources from various manufacturers
 - Multiple use of communication and metering infrastructure for control, measurement & verification of the dispatchable resource

Shared Learning from Multiple Demonstrations and Use of EPRI's IntelliGrid Architecture will Lend to Expandability, Scalability, and Repeatability

Diverse Characteristics Lead to Multiple Demonstration Sites

- Regional characteristics
 - Weather
 - Regulatory / Market
 - Availability of Renewable Generation & Storage
- Customer / Load characteristics
 - Residential, Commercial, Industrial
- Distribution system characteristics
 - Rural, suburban, urban overhead and underground systems
- Communication Infrastructure available
 - Public (internet, cellular)
 - Private (AMI, licensed)

© 2009 Electric Power Research Institute, Inc. All rights reserved.

Objectives of the Demonstration Initiative

Define information models and communications interfaces

All Levels of distributed resource integration (home, enterprise, market)

Develop application guidelines, integration requirements and standards for distributed resource integration.

- Field Assessments to:
 - Understand required systems and technologies for distributed resource integration

- Verify Smart Grid business case assumptions
 - Describe costs and benefits associated DER Integration

Using IntelliGrid Methodology to Develop the Smart Grid Architecture

- Business Case/Cost Benefit Analysis
- Define Requirements of Each Smart Grid Application using the Use Case Process
- Design an Architecture for Security, Data Management and Network Management
- Select Technologies, Finalize Cost Benefit Assessment

EPRI's IntelliGrid Methodology is Accepted as an International Recommended Specification and an Industry Best Practice to Architect a Smart Grid

© 2009 Electric Power Research Institute, Inc. All rights reserved.

Collaboration with DOE Distribution Integration Awards

- Allegheny Power, WVU, NC State, Research & Development Solutions, Augusta Systems, Tollgrade – West Virginia Super Circuit
- ATK Launch Systems, Rocky Mountain Power, P&E Automation – integration of renewables, DG, and storage (compressed air).
- Chevron Energy Solutions, Alameda County, PG&E, VRN Power Systems, SatCon, Univ of Wisc., NREL, LBNL, E3 – Solar, fuel cell and storage microgrid.
- City of Fort Collins, Colorado State Univ, InteGrid Lab, Comm Found of Northern Col, Governor's Energy Office, Advanced Energy, Woodward Spirae, Eaton – 3.5 MW mixed distributed resources for peak load reduction.
- IIT, Exelon/ComEd, Galvin Electricity, S&C "perfect Power" demonstration

- Con Edison, Verizon, Innovative power, Infotility, Enernex – Interoperability between utility and end use customers for DG aggregation.
- SDG&E, Horizon Energy Group, Advanced Control Systems, PNNL, Univ of San Diego, Motorola, Lockheed Martin – Integrating multiple distributed resources with advanced controls.
- Univ of Hawaii, GE, HECO, MECO, Columbus Electric Coop, NM Inst of Mining and Tech, Sentech, UPC Wind – Mgt of distributed resources for improved quality and reliability, grid support, and transmission relief.
- Univ of Nevada, Pulte Homes, Nevada Power, GE Ecomagination – Integrated PV, battery storage, and consumer products with advanced metering.

Project Participants and Collaboration

EPRI BoD Initiative & IntelliGrid Program

Department of Energy (Office of Energy Efficiency & Renewable Energy & Office of Electricity Delivery and Energy Reliability)

California Energy Commission

NYSERDA

Others

EPRI/Utility Team UCA International User's Group OPEN HAN OPEN SEC OPEN AMI OPEN Enterprise Utility AMI

GridWise Alliance

European Smart Grid Initiatives

Manufacturers

Standard Development
Organizations (SDO)
IEC
IEEE
AHAM
NIST
NEMA
SAE
J2836 (Communication between utility and Plug-in-vehicles)
ANSI

Smart Grid Demonstration Critical Elements

- 1. Integration of Multiple Distributed Resource Types
 - Demand Response, Distributed Generation, Storage, Renewable Generation

- 2. Connect retail customers to wholesale conditions
 - Dynamic Rates, Ancillary Services
- 3. Integration with System Planning & Operations
 - Level of integration, Tools & Techniques, Visibility

Smart Grid Demonstration Critical Elements

- 4. Critical Integration Technologies and Standards
 - Use of standards, common object models, Comm interfaces
- 5. Compatibility with EPRI's Initiative and Approach
 - Use cases, business case development, enables wide spread integration
- 6. Funding requirements and leverage of other funding resources
 - Government, Research Orgs, Vendors, Universities
 - Capitol costs born by utility

Host Sites Overview (3 sites selected, expecting 8-10 total over 5 years)

	Consolidated Edison	FirstEnergy	PNM Resources
Resources	Distributed Generation Demand Response Wind Plant	HVAC (Res., C&I) DR Electric Storage Thermal Storage	Solar PV (residential & System) Storage & DR
Integration	End-to-end (Customer owned DG, DR provider, Con Edison, NYISO)	Real Time T&D Ops & Planning PJM	HAN, SCADA, System Ops & Planning
Diversity	Dense Urban Environment	Smart Grid w/Out use of AMI system	Large deployment of Residential PV.
	Customer Owned Resources	Master Controller Concept	Optimization Incl. Volt & Freq control
Business Case	Increase Reliability Reduce Peak Demand	Grid efficiency and reliability at local level	15% peak load reduction at feeder
Furthers Industry	Interoperability of Distributed Energy Resources (DER)	Local delivery system Integration of DER	Technologies & Standards for Renewable Integration

Sample of Deliverables

- Smart Grid Resource Center & Use Case Repository
 - www.smartgrid.epri.com
- Smart Grid Economic Assessment / Cost Benefit Analysis
 - Co-Developing with DOE & Oak Ridge National Labs
- Smart Grid Architecture Framework
 - How to Minimize Risk of Technology Obsolescence
- Analytical Tools
 - Modeling, CO2 Impact, Regulatory Impact
- Lab & Field Trials of Technology

Smart Grid Network

Utility Communication

Smart Grid Resource Center

This site serves as a home for information about EPRI Smart Grid research, demonstration projects, and the Smart Grid Use Case Repository.

Smart Grid

A Smart Grid is one that incorporates information and communications technology into every aspect of electricity generation, delivery and consumption in order to:

- minimize environmental impact;
- enhance markets,
- improve reliability and service,
- reduce costs and improve efficiency.

Smart Grid Use Case Repository

The Use Case Repository is a public resource for the electric power industry to house Smart Grid related use cases as well as provide a forum for the industry to contribute to this effort by submitting their own use cases.

Use Case Repository

Smart Grid Advisory Update Newsletter

Decemeber

Novembe September EPRI Smart Grid Resource Center launched: www.smartgrid.epri.com

Contract Contract on

Efficient Building Systems

M2M Radio discusses Smart Grid with EPRI's Don Von Dollen - Month, Day, 200X

Summary

- Maximize the benefits of existing and planned investments
 - Communications and advanced metering infrastructures
 - Identify and further the foundation for demand side resource integration.
- Integration of distributed resources with utility system operations and planning
- Integration of distributed power generation, storage, demand response technology, and renewables into a demand-side virtual power plant.
- Demonstrations should further the industry in regards to integration of distributed resources
- Expect 8-10 EPRI Demonstrations

Questions?

