MODERN GRID STRATEGY

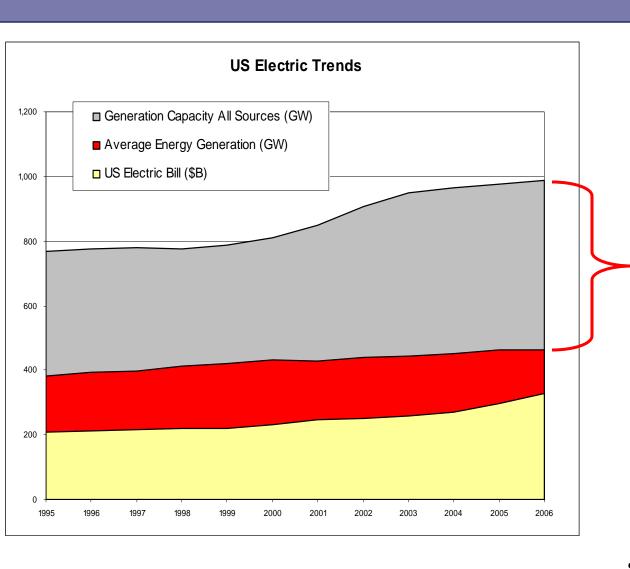
Barriers to Smart Grid Implementation – Is There Light at the End of the Tunnel?

Utility Field Service Conference

Steve Pullins – Modern Grid Team May 29, 2008

Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability

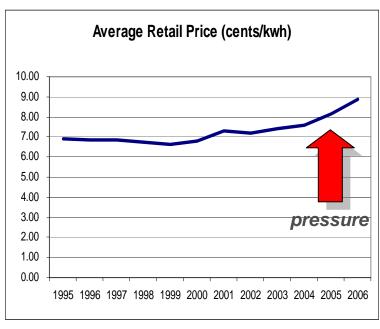
Conducted by the National Energy Technology Laboratory

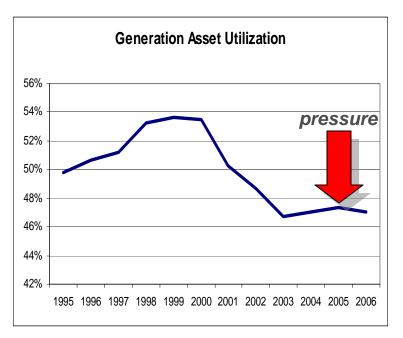

- The national average in reliability metrics over the last 5 years shows a 3% per year increase in outage duration and 4% per year increase in outage frequency.
- The businesses in the average state lose more than \$1B annually in revenue from outages and power quality events.
- Modern infrastructure and technology-rich regions draw business to themselves, an important driver for municipal economic development.
- The business as usual approach to electricity supply in the average State will lead to a 50% increase in electric bills over the next 7 to 10 years.
- The States have little chance of developing a renewables portfolio without the foundation provided by a Smart Grid.

Capacity and Energy Production

Ever-widening gap drives asset utilization down and cost up.

Average energy increased 16% over last decade; peak capacity increased 27%.





Cost and Asset Utilization

30% increase over last decade

- Natural gas prices
- Capital build and O&M costs
- Equipment scarcity (China, India, ME)

8% drop over last decade

- Large peaking units builds
- Cancelled baseload coal plants

Source data: DOE EIA

Natural Gas Price Trend

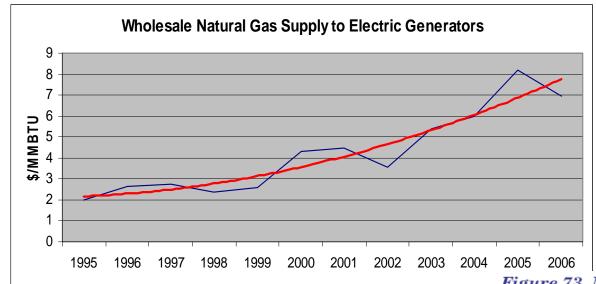
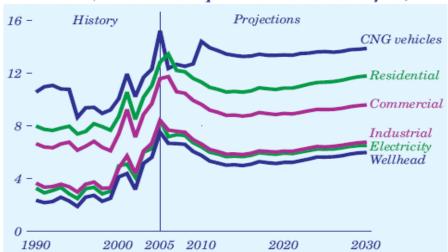
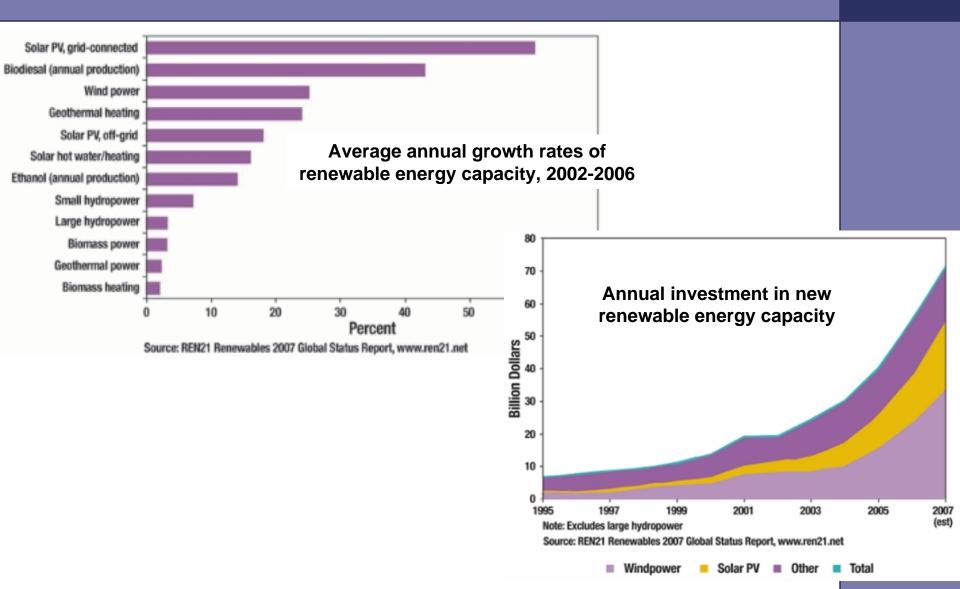



Figure 73. Natural gas prices by end-use sector, 1990-2030 (2005 dollars per thousand cubic feet)


251% increase in the last decade.

What will the future price be? Any Bets?

Renewables Growth

Today's Grid	Principal Characteristic	Modern Grid
Consumers are uninformed and non-participative with the power system.	Enables active consumer participation	Informed, involved and active consumers. Broad penetration of Demand Response
Relatively small number of large generating plants. Numerous obstacles exist for interconnecting DER	Accommodates all generation and storage options	Very large numbers of diverse distributed generation and storage devices deployed to complement the large generating plants. "Plug-and-play" convenience. Significantly more focus on and access to renewables.
Limited wholesale markets still working to find the best operating models. Not well integrated with each other. Transmission congestion separates buyers and sellers. Limited opportunities for consumers	Enables markets	Mature wholesale market operations in place, well integrated nationwide and integrated with reliability coordinators. Retail markets flourishing where appropriate. Minimal transmission congestion. New commercial goods and services available to consumers

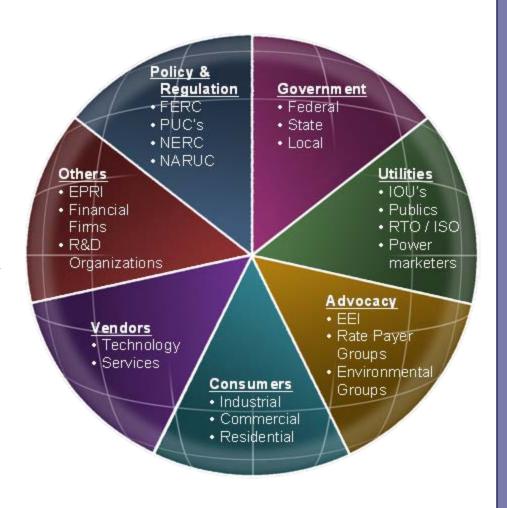
Today vs. Tomorrow (cont.)

Today's Grid	Principal Characteristic	Modern Grid
Focused on outages rather than power quality problems. Slow response in resolving PQ issues	Provides power quality for 21st century needs	Quality of power meets industry standards and consumer needs. PQ issues identified and resolved prior to manifestation. Various levels of PQ at various prices.
Minimal integration of limited operational data with Asset Management processes and technologies. Siloed business processes. Time based maintenance.	Optimizes assets and operates efficiently	Greatly expanded sensing and measurement of grid conditions. Grid technologies deeply integrated with asset management processes to most effectively manage assets and costs. Condition based maintenance.
Responds to prevent further damage. Focus is on protection of assets following system faults.	Self-heals	Automatically detects and responds to actual and emerging transmission and distribution problems. Focus is on prevention. Minimizes consumer impact.
Vulnerable to malicious acts of terror and natural disasters	Resists attack	Resilient to attack and natural disasters with rapid restoration capabilities

What's taking so long to get there?

So many variables to align:

- Lot of players
- Regulatory Policies
- Legislation
- Communication and Culture
- Technical



Lot of players!

MODERN GRID STRATEGY

- All Play a Part
- Need a clear vision
- Alignment critical
- Keep the "End in mind"
- Must be "win-win"

Office of Electricity Delivery and Energy Reliability

Regulatory policy could incentivize investment in the Smart Grid:

- Time based rates incentives for consumers to become actively involved
- More favorable depreciation rules recovery of book value for assets that are retired early for "smart grid" reasons
- Policy changes that provide incentives and remove disincentives to utilities – investment in a Smart Grid should make business sense
- Clear cost recovery policies uncertain cost recovery increases investment risk
- Societal benefits business cases should include societal benefits for completeness and correctness to ensure informed decisions are made by the regulator

Common Regulatory Goals

Improved system operations

- More efficient use of the network
- Improved customer service, reduced costs

Improved economic efficiency

- Greater information on usage and costs
- Increased reliance on dynamic pricing

Increased deployment of customer-sited resources

- End-use efficiency
- Distributed generation, combined heat-and-power
 - Source: Regulatory Assistance Project

Legislation Since 2005 - Grid

EPACT 2005

- Studies: congestion, energy efficiency, demand response, trends in the workforce, etc
- National interest corridors and transmission siting
- RD&D and commercial application programs related to distributed energy and advanced grid reliability

EISA – 2007

- RD&D Program for SmartGrid technologies
- Regional Demonstration Initiative with cost sharing
- 20% Cost Reimbursement
- Regulators "shall consider"

Communication and Culture

A significant change management effort is needed:

- Communicate a vision
- Strengthen consumer education and sense of urgency
- Align stakeholders around the vision
- Provide the motivation (win-win)
- Develop metrics to monitor progress
- Keep the "end in mind"
- Active leadership by regulators

Technical

Some technical issues:

- Standards (interconnection and interoperability)
- Integration vs. "widgets"
- Distributed system behavior not well understood
- Decades behind in "computing and communications"
- Loss of skilled human resources
- Minimal funding of R&D
- Transformation of transportation infrastructure

MODERN GRID STRATEGY

How do we achieve a Smart Grid?

Where does the industry start?

Plan

- Create the vision
- Identify the milestones
- Determine the sequence
- Define needed technologies and applications

Deploy

- Address the barriers
- Apply resources

Measure

- Establish metrics
- Monitor progress

The payoff to modernizing the electric infrastructure from the resulting economic progress could easily exceed \$1T per year in additional GDP within a decade.

Galvin Electricity Initiative, 2005

To Stay Involved

The Modern Grid Strategy

- Collaborative, public/private effort open to all
- Independent "broker"

www.netl.doe.gov/moderngrid/

- Downloadable documents
- Forums
- Meeting announcements

www.smartgridnews.com

- Grid modernization columns, articles and case studies
- Modern Grid BLOG (future)

moderngrid@netl.doe.gov

• (304) 599-4273 x101

Office of Electricity
Delivery and Energy
Reliability