

Active Distribution Networks: Canadian Example Projects

Chad Abbey

Natural Resources Ressources naturelles Canada Canada

Overview

- Background
 - Active distribution networks integration of DER and distribution automation
 - Canadian context
- Utility projects
- Natural Resources Canada initiatives
- Standardization activities
- Summary

Power Systems in Canada

Electricity – provincial jurisdiction

- Mix of deregulated and vertically integrated companies
- Provincially owned: BC Hydro, Sask Power, Manitoba Hydro, Hydro-Quebec, NLH
- Competitive markets: Alberta, Ontario
- Active distribution network drivers
 - Smart meter initiatives
 - Conservation
 - Reliability
 - Ageing infrastructure grid modernization
 - DER feed-in tariffs, e.g. Standard Offer Program

Ontario – DER Integration

Canadian Utility Projects

- ADA technologies being implemented
 - AMR, AMI
 - Fast reconfiguration S&C IntelliTeam products
 - Fault locating technologies
 - Voltage reduction schemes
 - Remote monitoring
 - Planned islanding
- Initiatives: Ontario Smart Grid Forum, CEATI Taskforce on Smart Grid, dedicated spectrum
- Utility examples: Hydro-Québec, Toronto Hydro, Hydro One, ENMAX, BC Hydro

Ontario Smart Grid Forum

Participation

- Led by IESO
- Utilities, suppliers, government
- Objectives
 - Develop a high level vision of Ontario Smart Grid
 - Educate industry leaders on drivers, technologies, and opportunities
 - Identify enablers and barriers
- Outputs
 - Report on findings and recommendations
 - Website: http://www.theimo.com/imoweb/marketsandprograms/smar t_grid.asp

CEATI Smart Grid Working Group

- Centre for Energy Advancement through Technological Innovation (CEATI) International
- Objectives
 - Definition of Smart Grid
 - Action plan for development of the Smart Grid
 - Identify technology gaps
 - Successful strategies for implementation of the Smart Grid
- Status
 - Initial teleconference Aug. 2008
 - Kick-off meeting Nov. 2008

Utilities Telecom Council (UTC) Canada request dedicated CI spectrum

- Spearheaded by 5 Canadian utilities
 - Intelligent grid: energy conservation, station security, distribution automation, real time outage management, new power generation (small distributed facilities).
 - Rural networks requires spectrum with good propagation
 - 700 MHz range comes with a premium
- Industry Canada proposal
 - Consultation process Gazette Notice SMSE-008-08:
 - http://www.ic.gc.ca/epic/site/smt-gst.nsf/en/sf08972e.html
 - 30 MHz contiguous frequency block in the 1.8 GHz band
 - relax the SRSP (Standard Radio System Plans) 301.7 to accommodate point-to-multipoint topologies
- Widely supported by respondents

Hydro-Quebec Plan

Hydro One

10

Natural Resources Ressources naturelles Canada Canada

Toronto Hydro

11

Natural Resources Ressources naturelles Canada Canada Source: Joshua Wong, Toronto Hydro

ENMAX – IntelliTEAM II – A Distributed Control System

Sub 39

Team Structure

- A team consists of a line segment bounded by intelligent switches
- Switches can belong to one or two teams
- A team may have may have from one to eight switches
- Teams are building blocks
- Interconnected teams form a selfhealing electrical network

Source: Dean Craig, ENMAX

BC Hydro – Volt/Var Optimization

NRCan - Grid Integration Program

Role of governmental lab

- Address technical and regulatory barriers to DG
- Provide much needed research support to many distribution companies
- Coordinate collaboration nationally and internationally
- Relevant projects (2007 2011)
 - Active distribution networks
 - Modeling, simulation and validation of DER
 - Communication and DER standards support

Test Facilities

Low voltage test facility (CETC-V):

- Multiple inverters and interconnection testing
- 120-kVA, 3ph Grid simulator
- 5kW/15kW Solar Simulator
- Adjustable RLC loads

Medium voltage test facility (IREQ-HQ):

- Distribution automation network testing
- A radial 25-kV feeder (20 poles, 370m)
- 300-kW, 600 V, resistive, inductive and motor loads

Canada

Ressources naturelles

15 **Power quality meters**

Natural Resources

Canada

DA / DER Standards Development

- IEC TC 57 Extension of IEC 61850
 - WG 17 object models for DER
 - Common information models (CIM) for distribution automation
 - Interoperability (near-term), Plug-and-play (long-term)
- IEEE 1547 series
 - IEEE 1547.2 Application guide
 - IEEE 1547.3 Communication models
 - IEEE P1547.4 Design and operation of DER Islands
 - IEEE P1547.6 DG in meshed/spot networks

Summary

Two technology pushes

- DER policy driven
- ADA utility efforts to modernize the grid
- Improved integration needed
 - Support utilities in DER integration pilots and demonstration, regulatory, standards
 - Leverage information communication technology investments
- NRCan project activities: Active distribution networks, modeling tools, communications, and support for harmonization of standards

Questions ?

Chad Abbey 450-652-4811 cabbey@nrcan.gc.ca

Natural Resources Ressources naturelles Canada Canada