AP1000 Nuclear Power Plant

Terry L. Schulz Consulting Engineer Westinghouse Electric Company, LLC (412) 374-5120 schulztl@westinghouse.com July 22, 2008

AP1000 Outline

- Introduction
- Advanced Reactor Design Background
- Overview of AP1000 Plant Design
- AP1000 Passive Safety Systems
- AP1000 Non-safety Defense-in-Depth Systems
- AP1000 Safety Analysis/PRA
- AP1000 ... Ready for Commercialization

AP1000 ... Westinghouse Standard Plant

- Simple
- Safe
- Mature
- Affordable

Contracted

AP1000 Investment in Technology

AP1000 Major Uprate of AP600

• Design Approach

- Increase the capability/capacity within "space constraints" of AP600
- Retain design and regulatory bases for Advanced Passive Plants
- Retain credibility of "proven components"
- Retain AP600 plant design (footprint); largely preserves detailed design investment
- Retain the basis for the cost estimate, construction schedule and modularization scheme

Comparison of Selected Parameters

Parameter	Doel 4/Tihange 3 AP1000	
	(3 SG / RCPs)	(2 SG / 4 RCPs)
Net Electric Output, MWe	985	1117
Reactor Power, MWt	2988	3400
Hot Leg Temperature, ^o F (^o C)	626 (330)	610 (321)
Number of Fuel Assemblies	157	157
Type of Fuel Assembly	17x17	17x17
Active Fuel Length, ft (m)	14 (4.27)	14 (4.27)
Linear Hear Rating, kw/ft	5.02	5.71
Control Rods / Gray Rods	52 / 0	53 / 16
R/V I.D., in. (m)	157 (3.99)	157 (3.99)
Vessel Flow, gpm (m ³ /hr) x10 ³	295.5 (67.1)	300 (68.1)
SG Surface Area ea., ft^2 (m ²) x 10 ³	68 (6.3)	125 (11.1)
Pressurizer Volume, ft ³ (m ³)	1400 (39.6)	2100 (59.5)

Overview of AP1000 Plant Design

AP1000 Design Overview

- For the Power Generation Function, AP1000 is a typical Westinghouse PWR with advances in materials and components
 - Fuel, Reactor Vessel, Reactor Coolant Loop
 - Steam Generators, Reactor Coolant Pumps, Turbine, Plant Controls
- Reactor Safety Functions are achieved without using any safetyrelated AC power
 - Valve Actuations (fail safe, battery powered)
 - Condensation, Natural Circulation, Evaporation, Compressed Gasses
- Actuation of Passive Safety Systems is by simple, reliable changes in valve positions.
- System performance has been proven by extensive testing approved by the NRC

AP1000 Design Features

- Integrated Power Plant Design
- Proven Power-Producing Components (Reactor, Fuel, etc)
- Simplified RCS Loops with Canned Motor Pumps
- Simplified Passive Safety Systems
- Simplified Non-safety Defense-In-Depth (DID) Systems
- Microprocessor, Digital Technology Based I&C
- Compact Control Room, Electronic Operator Interface
- Optimized Plant Arrangement
 - Construction, Operation, Maintenance, Safety, Cost
- Extensive Use of Modular Construction
 - 3-Year Construction Schedule (first concrete pour to HFT)

Proven AP1000 Major Components

• Fuel, Internals, Reactor Vessel

- Similar to Doel 4, Tihange 3, S. Texas
- No bottom-mounted instrumentation
- Improved materials 60 year life

Steam Generators

- Similar to large W/CE SGs in operation
 - System 80, ANO RSG

Reactor Coolant Pumps

- Canned motor pumps, no shaft seals
 - Early commercial reactors (Shippingport, Yankee Rowe)

Simplified Main Loop

Reduces welds 67%, supports 90%

Pressurizer

50% larger than operating plants

AP1000 Core Design

AP1000 Core Design Features

- Higher power density
- 18 month cycles
- Initial and equilibrium cycle designs presented in Design Cont Document
- Normal BLACK rods for operation
- New GRAY rod configuration
 - Load follow / rapid power reduction
 - No boron changes required

Reactor

Coolant Pump

- Based on Field-Proven, Canned Motor Pumps
 - No shaft seals
 - No seal injection / leakoff system
 - No seal leakage / failure
 - Water lubricated bearings
 - No oil lubricating system
 - Eliminates fire protection issues
 - Compact, high inertia flywheels
 - Upper and lower
 - Inservice inspection not required
 - No services required in accident
 - Tripped to allow CMT operation
 - No planned maintenance

AP1000 Reactor Coolant System

AP1000 Passive Safety Systems

AP1000 Approach to Safety

Passive Safety-Related Systems

- Use "passive" process only, no active pumps, diesels,
 - One time alignment of valves
 - No support systems required after actuation
 - No AC power, cooling water, HVAC, I&C
- Greatly reduced dependency on operator actions
- Mitigate design basis accidents without nonsafety systems
- Meet NRC PRA safety goals without use of nonsafety systems

Active Nonsafety-Related Systems

- Reliably support normal operation
 - Redundant equipment powered by onsite diesels
- Minimize challenges to passive safety systems
- Not required to mitigate design basis accidents

Passive Systems Greatly Simplify Safety Systems

Standard PWR AP1000 Natural Convection Air Discharge $\Delta \Delta \Delta \Delta$ PCCS Gravity Refueling Drain Water Tank Water Containment Storage ۶ Хю Water Film Spray System Tank Evaporation Outside Cooling þ Air Intake Q HHSI Safety Diesel Steel Pumps Internal condensation Containment and Post Accident Vessel natural recirculation Recirc Sump Air Baffle Safety Diesel ᡘᢆᠣᢤᠣ LHSI/RHR Pumps 品

Passive Safety Features

Passive Residual Heat Removal

Natural circulation HX connected to RCS

• Passive Safety Injection

- Natural circulation / gravity drain core makeup tanks (RCS pres)
- N₂ pressurized accumulators (700 psig)
- Gravity drain refueling water storage tank (containment pres)
- Automatic depressurization valves, Pressurizer and RCS hot leg

• Passive Containment Cooling

 Natural circulation of air / evaporation of water on outside surface of steel containment vessel

Passive Safety Features (cont'd)

- Passive Radiation Removal from Containment Atm.
 - Natural circulation / removal mechanisms
- Passive Main Control Room Habitability
 - Compressed air pressurization of MCR
- Passive MCR / I&C Room Cooling
 - Natural circulation to concrete walls / ceiling
- Passive Containment pH Control
 - Baskets of TSP flooded by accident

AP1000 Passive Core Cooling System

Passive Core Cooling System at Work

Passive Decay Heat Removal

Passive Safety Injection

IRWST uses Squibs and check valves

_

LOCA Long Term Cooling

- Uses No Pumps
- Addresses Debris
 Head Loss Issues
 - No fiber generation
 - Large advanced design screens
 - Demonstrated by test
 - Low flows, deep flood up
 - Low velocities
 - Delayed start of recirculation

Passive Containment Cooling System

- PCS Water Storage Tank
 - Provides 72 hr drain
 - Afterwards use on/offsite water
 - Air only cooling prevents failure
 - Flow decreases with time
 - 4 standpipes control flow
- PCS Flow Rates
 - High initial flow
 - Rapidly forms water film
 - Effectively reduces cont pressure
 - Later flows match decay heat
- 3 Redundant Drain Paths
 - 2 AOV, 1 MOV
 - Improves PRA reliability
 - T&H uncertainty of cont cooling without water drain

Passive Containment Cooling System at Work

AP1000

AP1000 Most Tested Reactor

AP1000 Safety Analysis

Safety Analysis Performed

- Computer codes were verified
 - Adequate to model passive systems
 - Verified against extensive AP600 tests
 - Tests well scaled for AP600 and AP1000
 - NRC / ACRS reviewed tests and computer code verification
- Extensive accident analysis were performed
 - Range of Design Basis Accident conditions, single failures
 - NRC / ACRS reviewed and approved results

Westinghouse Uses PRA as Design & Licensing Tool

- 7 Major PRA Quantifications Performed on AP600
 - First in 1987, final in 1997
 - Extensive interaction with plant designers
 - Changes were made to analysis, procedures and design
 - Used to guide severe accident design, ensures reliability
 - Extensive NRC review / comment
- 4 Major PRA Quantifications Performed on AP1000
 - Started with AP600 models / analysis
 - Benefited from AP600 development and NRC review
 - Modified models to account for the few changes from AP600
 - Extensive NRC review / comment

AP1000 Provides Safety and Investment Protection

Note (a) CDF includes random and internal hazard events from at-power and shutdown conditions.

Severe Accidents Addressed

- Core-Concrete Interaction
 - Ex-vessel cooling retains damaged core
 - Tests and analysis of IVR reviewed by U.S. NRC
 - Prevents core-concrete interaction
- High Pressure Core Melt
 - Eliminated by redundant, diverse ADS
- Hydrogen Detonation
 - Prevented by redundant, diverse igniters and passive autocatalytic recombiners
- Steam Explosions
 - Prevented by IVR

Severe Accident Design at Work

AP1000 Non-Safety Defense-In-Depth Systems

AP1000 Active Nonsafety Features

Active Nonsafety Functions

- Reliably support normal operation
- Minimize challenge to passive safety systems
- Not required to mitigate design basis accidents
- Not required to meet NRC safety goals

Active Nonsafety Design Features

- Simplified designs (fewer components, separation not required)
- Redundancy for more probable failures
- Automatic actuation with power from onsite diesels
- Active Nonsafety Equipment Design
 - Reliable, experienced based, industrial grade equipment
 - Non-ASME, non-seismic, limited fire / flood / wind protection
 - Availability controlled by procedures, no shutdown requirements
 - Reliability controlled by maintenance program

Startup Feedwater System

• Simplified, Reliable Non-Safety System

- Auto start on low SG level with auto SG level control
 - Same flow if one or two pumps start
 - Operation does not cause excessive RCS cooldown or SG overfill
- Auto load on non-safety DG
- Simple reliable system design
 - Two electric motor pumps, no steam turbine driven pumps
 - No physical separation requirements
- PRHR HX not actuated if SFW works as designed

AP1000 Startup Feedwater System

System Defense In Depth

• AP1000 Provides Multiple Levels of Defense

- First actuation is usually nonsafety active system
 - High quality industrial grade equipment
- Second actuation is safety passive system
 - Provides safety case for SSAR
 - Highest quality nuclear grade equipment
- Other passive features provide additional levels of defense
 - Example; passive feed/bleed backs up PRHR HX
- Available for all shutdown conditions as well as at power
- More likely events have more levels of defense

AP1000 I&C Systems

Control System

- Plant wide non-1E system for all normal displays & controls
- Microprocessor / software based, multiplexed communications

Safety System

- Reduced size 1E system for all safety displays & controls
 - Use of passive systems eliminates many safety components
- Microprocessor / software based, multiplexed communications
- May use same hardware / software as Control I&C

Diverse System

- Limited scope non-1E system, PRA based displays & controls
 - Backs up Safety I&C where common mode failure a risk
- Different microprocessor & software than Safety I&C
 - No multiplexing

AP1000 Human-Machine Interface

Compact Control Room

- Designed for 1 Reactor Operator and 1 Supervisor

Displays

- Plant status / overview via wall panel (non 1E)
- Detail display via workstation video displays (non 1E)
- Small number dedicated displays; safety (1E) & diverse (non 1E)

Controls

- Soft controls (non 1E) for normal operation
- Small number dedicated switches; safety (1E) & diverse (non 1E)
- Advanced Alarm Management
- No Paper Procedures

Main Control Room 3D Model

AP1000 Passive Safety System Design Improves Economics and Construction Schedule

Slide 41

Comparison of Seismic Category I Buildings

WESTINGHOUSE GENERATION II PWR	AP1000
1. Shield / Containment 2. Auxiliary Building 0 20 40 60 80 100m 1 1 1 1 4 4. Diesel Generators	 5. Essential Service Water Pumphouse 6. Emergency Fuel Oil Storage 7. Refueling Water Storage Tank

Modular Construction Allows More Tasks To Be Done in Parallel Result: Shorter Construction Schedule

Modules Designed into AP1000 from the Beginning

AP1000

New Reactor License Applications in U.S. (31 Currently Planned)

The Steps to Bring a New Plant On-line in 2016 (United States)

How AP1000 Reduces Risk

AP1000 ... Ready for Commercialization

• Meets Utilities' Needs

- Satisfies U.S. Utility Requirements
- Provides New Standard of Safety
 - Simplified Passive Safety features

Major Simplifications Achieved

- Construction, operation, maintenance
- Licensing Certainty
 - Design Certification in Dec 2005
- More economical to build
- Four units in construction in China, 2013 startup
- Two units contracted by Southern Co
- Two units contracted by SCANNA

Ground Breaking of AP1000 in China

Questions

