Duke Energy
PMU Deployment in the Carolinas with Communication System Modernization

Abstract
Duke Energy’s (Duke) phasor measurement unit (PMU) deployment in the Carolinas with communication system modernization project upgrades the existing serial-based communications infrastructure across the Carolinas. This includes the installation of PMUs and phasor data concentrators. An update to the existing energy management systems will be performed, along with visualization software to provide enhanced situational awareness for grid operators. Fifty-one substations across the Carolinas, at the 230 KV and 500 KV levels, are targeted to have the communications upgrade and approximately two PMUs planned per substation. PMUs provide high-resolution monitoring that improves grid operators’ ability to visualize and manage the transmission system, improving reliability and grid operations.

Smart Grid Features
Communications infrastructure includes the upgrade of existing serial communications systems to internet protocol-based communications at Duke substations to deliver PMU data to phasor data concentrators and on to Duke’s grid control center.

Wide-area monitoring and visualization systems enable a more expansive view of the bulk transmission system, while revealing dynamic operating details. Observing the nature of grid disturbances earlier, and more precisely, helps grid operators improve grid reliability and prevent the local disturbances from cascading into regional outages. Enhanced monitoring capabilities provide greater precision in daily operational decision-making, and improve overall system utilization and efficiency.

Advanced transmission applications for the synchrophasor system include:
• Angle and frequency monitoring provides grid operators and engineers with detailed information about grid conditions and power flows.
• Post-mortem analysis enables power system engineers and grid operators to analyze disturbances and large-scale system events, to better understand their causes and to improve future system models and operations.
• Improved state estimation addresses parts of the transmission grid that lack physical monitoring to improve accuracy of power systems models for planning and operations.
• Steady-state model benchmarking increases the accuracy of power systems models for planning and operations.

At-A-Glance
Recipient: Duke Energy Carolinas
State: North Carolina, South Carolina
NERC Region: SERC Reliability Corporation
Total Budget: $7,855,797
Federal Share: $3,927,899

Project Type: Electric Transmission Systems

Equipment
• 102 Phasor Measurement Units
• 2 Phasor Data Concentrators
• Transmission Systems Communication Equipment

Advanced Transmission Applications
• Angle/Frequency Monitoring
• Post-Mortem Analysis
• Improved State Estimation
• Steady-State Model Benchmarking

Key Targeted Benefits
• Improved Electric Service Reliability and Power Quality
• Reduced Wide-Scale Blackouts

March 2011
Timeline

<table>
<thead>
<tr>
<th>Key Milestones</th>
<th>Target Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications system deployment begins</td>
<td>Q1 2010</td>
</tr>
<tr>
<td>Phasor measurement system installation begins</td>
<td>Q3 2010</td>
</tr>
<tr>
<td>Communications system deployment complete</td>
<td>Q2 2013</td>
</tr>
<tr>
<td>Phasor measurement system installation complete</td>
<td>Q2 2013</td>
</tr>
</tbody>
</table>

Contact Information

Stephen G. DeGange
Carolinias Project Control Coordinator
Duke Energy
Stephen.Degange@duke-energy.com