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Introduction

* Motivation
— Increasing penetration of wind power in power systems
— Impact of wind power on traditional electricity markets
— Uncertainty in wind power output
— Wind power bidding strategies

 Handle Uncertainty in Wind Power
— Pumped-storage (hydro) unit
— Financial hedging strategy
— Quick-start thermal unit scheduling
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Introduction

 Chance Constrained Optimization
— Stochastic Programming Framework.

— Application in power systems
* load uncertainty

e transmission planning

— A chance constraint allows for a definition of a certain
probability at which a given portion of the wind power can
be utilized.
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Bidding Strategies in Electricity
Markets

e Market Framework

— |IPPs (Independent Power Producers) and customers
submit the bids on day d

— The market operator provides the market clearing prices of
electricity based on supply and demand

— |IPPs need to self-schedule their generation portfolio and
decide how much they bid into the market considering

possible realizations of uncertain factors such as prices and
wind power output
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Assumptions

— |IPPs are assumed to be price takers in the market.

— |IPPs are considered to possess and schedule a number of
thermal generators, wind farms and pumped-storage units
in energy production.

— The wind power utilization falls into an interval with
certain probability.
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Model Overview

— Two-stage stochastic programming
— First-stage decisions

* unit-commitment
* bidding quantity for the day-ahead market

— Second-stage decisions
e optimal dispatch (thermal, hydro and wind)
* imbalance penalty

— The chance constraint is considered at the second stage.
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Mathematical Formulation

* Objective Function
max — Yi—q Nierc(SU;0it + SD;vie) +E[Q(0, v, ¥, §)]
* First Stage

— Min-on/off
— Start-up/Shut-down

* Second Stage
T
Q(o, v, y, §)=max Z(Rt(f) (48 + qim2(9)) — F(xie () — velai™ (&)1
t=1

— Generation upper/lower bound
— Ramp up/down
— Generation balance

— Hydro

K' — Wind (Chance Constraint)
( IEEE
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Chance Constraint Description

* The chance constraint considers the joint probability which is
at least 1 — € chance the usage of wind power is larger than
or equal to percentage for every operating hour.

* Formulation

- Pr(ni, (BW: () < qf' (N =1-¢€
— p isthe utilization of wind power;
— € istherisk level.
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Sample Average Approximation

(SAA)

e Basic Idea

— the true distribution of wind power generation is replaced
by an empirical distribution using computer simulation.

e Structure
— Scenario Generation -> SAA;
— Convergence Analysis;
— Solving SAA Problem -> Approximated Optimal Solution;
— Solution Validation -> Solution Quality.
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Scenario Generation

* Monte Carlo Simulation
— We use Monte Carlo simulation to generate scenarios;

— Assume the wind power is subject to a multivariate normal
distribution for every time period t.

e SAA Problem

— After the scenarios are generated (e.g. N scenarios), we
can get the approximated problem; (i.e. SAA problem)

— E[Q(o, v, y, £)] is estimated by N1 ?’:1 Q(o,v,y,&) [1];

— The chance constraint can be estimated by an indicator
function N1 Z}N:l 1(0,OO)G(x(§j), )y <1-e€l2l
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Scenario Generation

* Proposition: As the sample size N goes to infinity, the
objective of the SAA problem converges to that of
the true problem.

— Proof sketch:
e Convergence of the chance constraint

» Convergence of two-stage stochastic programming
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Solution Validation

* Basicldea

— Assume that x is an optimal solution for the SAA problem; and v is the
corresponding objective value.

— Solution validation provides a scheme to validate its quality by
obtaining upper and lower bounds for the corresponding solution.

 Method to obtain Statistical Upper/Lower Bound

— We introduce a group of Notations

* N is the scenariosize of the SAA problem, M is the iteration number, N’ is
the validation process to obtain a lower bound;

g is the lower bound of the true problem; is

X, is the optimal solution

U, is the optimal objective value in iterationm ;

v is the upper bound of the true problem.

@’w e & IEEE



- 45
Solution Validation

« Setm=l, 2, ..., M and repeat the following steps for each m:

— For a given sample size N, generate a corresponding SAA problem and solve
the SAA problem to obtain x,,, and v,,,

— For a given sample size N’ for the validation process, generate independent
scenarios and estimate the lower bound of the problem using the following
formula:

- gm = f(fm) + 1/N,Z£’=1 Q(fm;{n)
* Take the average of vy, ..., V), as the upper bound.

* Take the maximum of g1, g‘z, ..,g™. The lower bound can be

obtained as g = 1£na§Mg
m

* Obtain the optimality gap.
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Case Study

e Simple System
— Three generators, one wind farm, one hydro unit.
— Wind Power: multivariate normal distribution

al §

Wind Power Qutput

25
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Case Study

 Simple System
— Optimal solution with ten scenarios

e Optimal unit commitment (1-24 hour)
e Bidding curve

Gl 100111111111111111111111

G2 100011111111111100001111

Bidding Quantity
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G3 100000000001111100000111
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Case Study

 Simple System
— Optimal solution with ten scenarios

— It can be observed that G1 is committed most of the time
e G1’s fuel cost is low,
* more flexible lower/upper bounds and ramp limits

— |t can be observed that the differences in bidding decisions
in each time period are relevant to the volatility of the
wind power and prices.

e Example: the bidding quantities are the lowest during hour 16 to
hour 20, when the wind power is much lower than the other
periods.
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Case Study

 Experimental Results

— Computational Results for the 3-generator System with different risk
levels.

— The total profit will be lower if the utilization requirement of wind

Pn-.-.rer&EmrgyrSocery

power output is more restrictive.

Risk Level € | Obj.(s) | CPU Time(s)
0% 449000 2.88
10% 451551 64.64
40% 456497 S01.85
T0% 459574 207.00
100% 461785 249
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Case Study

e Experimental Results
— Experiments at different scenario sizes

— the optimal objective value for the SAA problem converges as the
sample size increases.
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Case Study

e Experimental Results

— To show the effectiveness of the hydro unit, we compare the
imbalance value in one scenario (scenario size is 50 in this experiment)
with and without the hydro unit.

15 T ' ' T
=&~ without pumped-storage

10| =0—with pumped-storage .

Imbalance in Scenario 8
=
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Case Study

e Experimental Results
— Statistical upper/lower bound by solution validation

— It can be observed that the gap decreases as the values of M (number
of iterations) and N’ (humber of scenarios) increase.

(M,N") LB UB Gap CPU Timeis)
(5, 50) 452297 | 454010 | 0.37% 210.6

(20, 100) | 452540 | 453908 | 0.30% §30.5

(50, 200) | 452913 | 453780 | 0.19% 2005.2
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Computation Issues

e Complicated System
— Scenario Size.
— Number of thermal unit, wind farm and hydro unit.
— Computation complexity increases significantly.

* A Heuristic Method
— Upper Bound

e Get an upper bound for the max. problem by relaxation.
* Integer variables lead to the difficulty of solving our problem.
e Relax the integrality for hydro constraints.
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Computation Issues

e A Heuristic Method

— Lower Bound

e Get an lower bound by finding the feasible solution;

* First-stage solution from the above part should satisfy the first-
stage constraints in the SAA problem;

e Fix the first-stage solution obtained from the above part, and solve
the second stage sub-problem to obtain a feasible solution.
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Computation Issues

e Computational Result

— It can be observed from Table | that CPLEX cannot solve the original
model to optimum within the predefined time limit (2 hours), when

the scenario size is larger than 150.

— However, as Table Il indicates, the upper and lower bounds can be
obtained by our proposed method within acceptable CPU time.

Table |
N Obj. CPU Time(s) Var. Num. | Con. Num.
50 1482420 11.55 16034 35289
100 | 1481150 458.58 31684 68889
150 [ 1480070 5025.05 47334 102489
200 - time limit exceeded 62084 136089

Table I
N LB UB CPU Time(s)
a0 1482420 | 1482420 6.536
100 1481150 | 1481150 98.25
150 1480070 | 1480070 391.13
200 | 1478570 | 1478570 1961.08

iner & Er1erg1,r Society®

$IEEE



ES————————————————-
Computation Issues

e Computational Result
— Heuristic-based Solution Validation

 Statistical upper bound can be obtained based on the upper
bound derived from heuristics.

e Similarly with the statistical lower bound.

(M,N") LB UB Gap | CPU Timei(s)
(10, 200) | 1466820 | 1482320 | 1.05% 66.3
(30, 500) | 1470050 | 1481070 | 0.75% 3098
(50, 800) | 1470760 | 1478650 | 0.53% 715.3
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Conclusion

* A stochastic chance-constrained optimization for
wind power bidding strategies is presented
— Price taker.

— Uncertain wind power.

 Chance constraint is applied to the wind power
utilization constraint.

e Solution Method: SAA
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Q&A

e Thank you!

* Jianhui.wang@anl.gov
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