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Introduction

• Motivation
– Increasing penetration of wind power in power systems

– Impact of wind power on traditional electricity markets

– Uncertainty in wind power output

– Wind power bidding strategies 

• Handle Uncertainty in Wind Power
– Pumped-storage (hydro) unit

– Financial hedging strategy

– Quick-start thermal unit scheduling 
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Introduction

• Chance Constrained Optimization
– Stochastic Programming Framework.

– Application in power systems
• load uncertainty

• transmission planning

– A chance constraint allows for a definition of a certain 
probability at which a given portion of the wind power can 
be utilized.
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Bidding Strategies in Electricity 
Markets

• Market Framework
– IPPs (Independent Power Producers) and customers 

submit the bids on day d

– The market operator provides the market clearing prices of 
electricity based on supply and demand

– IPPs need to self-schedule their generation portfolio and 
decide how much they bid into the market considering 
possible realizations of uncertain factors such as prices and 
wind power output

4



Assumptions

– IPPs are assumed to be price takers in the market.

– IPPs are considered to possess and schedule a number of 
thermal generators, wind farms and pumped-storage units 
in energy production.

– The wind power utilization falls into an interval with 
certain probability.
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Model Overview

– Two-stage stochastic programming

– First-stage decisions 
• unit-commitment 

• bidding quantity for the day-ahead market

– Second-stage decisions 
• optimal dispatch (thermal, hydro and wind)

• imbalance penalty

– The chance constraint is considered at the second stage.
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Mathematical Formulation
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Chance Constraint Description
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Sample Average Approximation 
(SAA)

• Basic Idea
– the true distribution of wind power generation is replaced 

by an empirical distribution using computer simulation.

• Structure
– Scenario Generation -> SAA;

– Convergence Analysis;

– Solving SAA Problem -> Approximated Optimal Solution;

– Solution Validation -> Solution Quality.
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Scenario Generation
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Scenario Generation

• Proposition: As the sample size N goes to infinity, the 
objective of the SAA problem converges to that of 
the true problem.
– Proof sketch:

• Convergence of the chance constraint

• Convergence of two-stage stochastic programming
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Solution Validation
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Solution Validation
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Case Study
• Simple System

– Three generators, one wind farm, one hydro unit.

– Wind Power: multivariate normal distribution
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Case Study
• Simple System

– Optimal solution with ten scenarios
• Optimal unit commitment (1-24 hour)

• Bidding curve 
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G1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

G3 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1



Case Study
• Simple System

– Optimal solution with ten scenarios

– It can be observed that G1 is committed most of the time
• G1’s fuel cost is low, 

• more flexible lower/upper bounds and ramp limits 

– It can be observed that the differences in bidding decisions 
in each time period are relevant to the volatility of the 
wind power and prices.

• Example: the bidding quantities are the lowest during hour 16 to 
hour 20, when the wind power is much lower than the other 
periods.
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Case Study
• Experimental Results

– Computational Results for the 3-generator System with different risk 
levels.

– The total profit will be lower if the utilization requirement of wind 
power output is more restrictive.
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Case Study
• Experimental Results

– Experiments at different scenario sizes

– the optimal objective value for the SAA problem converges as the 
sample size increases.
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Case Study
• Experimental Results

– To show the effectiveness of the hydro unit, we compare the 
imbalance value in one scenario (scenario size is 50 in this experiment) 
with and without the hydro unit.
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Case Study
• Experimental Results

– Statistical upper/lower bound by solution validation

– It can be observed that the gap decreases as the values of M (number 
of iterations) and N’ (number of scenarios) increase.
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Computation Issues

• Complicated System 
– Scenario Size.

– Number of thermal unit, wind farm and hydro unit.

– Computation complexity increases significantly.

• A Heuristic Method
– Upper Bound

• Get an upper bound for the max. problem by relaxation.

• Integer variables lead to the difficulty of solving our problem.

• Relax the integrality for hydro constraints.
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Computation Issues

• A Heuristic Method
– Lower Bound

• Get an lower bound by finding the feasible solution;

• First-stage solution from the above part should satisfy the first-
stage constraints in the SAA problem;

• Fix the first-stage solution obtained from the above part, and solve 
the second stage sub-problem to obtain a feasible solution.

22



Computation Issues

• Computational Result
– It can be observed from Table I that CPLEX cannot solve the original 

model to optimum within the predefined time limit (2 hours), when 
the scenario size is larger than 150.

– However, as Table II indicates, the upper and lower bounds can be 
obtained by our proposed method within acceptable CPU time.
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Computation Issues

• Computational Result
– Heuristic-based Solution Validation

• Statistical upper bound can be obtained based on the upper 
bound derived from heuristics.  

• Similarly with the statistical lower bound.
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Conclusion

• A stochastic chance-constrained optimization for 
wind power bidding strategies is presented
– Price taker.

– Uncertain wind power.

• Chance constraint is applied to the wind power 
utilization constraint.

• Solution Method: SAA
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Q&A

• Thank you!

• Jianhui.wang@anl.gov
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