Synchronization in Power Networks and in Non-uniform Kuramoto Oscillators

Florian Dörfler and Francesco Bullo

Center for Control, Dynamical Systems & Computation
University of California at Santa Barbara
http://motion.me.ucsb.edu

Quick facts about the power grid:
- large-scale, complex, and nonlinear
- various dynamic phenomena and instabilities
- 100 years old and operating at its capacity limits
- increasing number of blackouts: New England '03, Italy '03, Brazil '09

Mathematical model of a power network:

\[
\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + P_{mi} - P_{ei}
\]

\[\theta(t)\] is measured w.r.t. a 60Hz rotating frame

Active node
Passive node
Reduce network to its active nodes
All-to-all admittance

Expected additional synergetic effects in future “smart grid”:
- increasing complexity and renewable stochastic power sources
- increasingly many transient disturbances to be detected and rejected

Transient Stability: Generators have to maintain synchronism in presence of large transient disturbances such as faults or loss of power lines and components, generation or load.

The New York Times

Energy is one of the top three national priorities [B. Obama, '09]

Classic model considered in transient stability analysis:

\[
\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ji} \sin(\theta_i - \theta_j + \varphi_{ij})
\]
Mathematical model of a power network:
- swing equation for generator i:
 \[
 \frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + P_{mi} - P_{ei}
 \]
- $\theta(t)$ is measured w.r.t. a 60Hz rotating frame
- network-preserving model leads to DAEs
- network-reduction model leads to ODEs with reduced admittance matrix $Y_{ij} = |Y_{ij}| e^{i(\frac{\pi}{2} - \varphi_{ij})}$

$P_{ei} = E_i^2 G_{ii} + \sum_{j \neq i} E_i E_j |Y_{ij}| \sin(\theta_i - \theta_j + \varphi_{ij})$

Classic model considered in transient stability analysis:
\[
\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})
\]

Transient stability and synchronization:
- frequency equilibrium: $(\dot{\theta_i}, \ddot{\theta_i}) = (0, 0)$ for all i
- synchronous equilibrium: $\theta_i - \theta_j$ bounded & $\dot{\theta}_i - \dot{\theta}_j = 0$ for all $\{i, j\}$

Classical problem setup in transient stability analysis:
- power network in stable frequency equilibrium
- \rightarrow transient network disturbance and fault clearance
- stability analysis of a new frequency equilibrium in post-fault network

More general synchronization problem:
- synchronization in presence of transient network disturbances

Classical analysis methods: Hamiltonian arguments
\[
\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i - \nabla_i U(\theta)^T
\]

Energy function analysis, (extended) invariance principle, analysis of reduced gradient flow [N. Kakimoto et al. '78, H.-D. Chiang et al. '94]
\[
\dot{\theta}_i = -\nabla_i U(\theta)^T
\]

Key objective: compute domain of attraction via numerical methods

Open problem [D. Hill and G. Chen '06]: power sys $\xrightarrow{?}$ network:
- transient stability, performance, and robustness of a power network $\xrightarrow{?}$ underlying network topology, parameters, and state
Consensus Protocol in \mathbb{R}^n

\[\dot{x}_i = - \sum_{j \neq i} a_{ij} (x_i - x_j) \]

- **Number of Identical Agents**: n with state variable $x_i \in \mathbb{R}$
- **Graph**: with globally reachable node and weights $a_{ij} > 0$
- **Objective**: is state agreement: $x_i(t) - x_j(t) \to 0$
- **Application**: social networks, computer science, systems theory, robotic rendezvous, distributed computing, filtering and control . . .
- **Some References**: [M. DeGroot '74, J. Tsitsiklis '84, . . .]

Kuramoto Model in \mathbb{T}^n

\[\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j) \]

- **Oscillators**: with phase $\theta_i \in \mathbb{T}$, frequency $\omega_i \in \mathbb{R}$, complete coupling
- **Objective**: is synchronization: $\theta_i(t) - \theta_j(t)$ bounded, $\dot{\theta}_i(t) - \dot{\theta}_j(t) \to 0$
- **Application**: physics, biology, engineering, coupled neurons, Josephson junctions, motion coordination . . .
- **Some References**: [Y. Kuramoto '75, A. Winfree '80, . . .]

Intro: The Big Picture

Open problem in synchronization and transient stability in power networks: relation to underlying network state, parameters, and topology

\[\frac{M_i}{\pi f_0} \ddot{\theta}_i = - D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) \]

Consensus Protocols:

\[\dot{x}_i = - \sum_{j \neq i} a_{ij} (x_i - x_j) \]

Kuramoto Oscillators:

\[\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j) \]
Dörfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 9 / 31

From the swing equations to the Kuramoto model

\[M_i \frac{\ddot{\theta}_i}{\pi f_0} = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \phi_{ij}) \]

\[\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j) \]

Possible connection has often been hinted at in the literature!

Power systems: [D. Subbarao et al., '01, G. Filatrella et al., '08, V. Fioriti et al., '09]
Networked control: [D. Hill et al., '06, M. Arcak, '07]
Dynamical systems: [H. Tanaka et al., '97]

Intro: The Big Picture

Dörfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 10 / 31

Singular Perturbation Analysis

Time-scale separation in power network model:

- **Motivation:** harmonic oscillator

\[\ddot{x} = -\frac{2}{\epsilon} \dot{x} - x \]

for \(\epsilon \ll 1 \Rightarrow \) two time-scales

- **Singular perturbation analysis:**

Outline

1. **Introduction**
 - synchronization and transient stability
 - power network model
 - consensus and Kuramoto oscillators

2. **Singular perturbation analysis**
 (to relate power network and Kuramoto model)

3. Synchronization analysis (of non-uniform Kuramoto model)
 - Main synchronization result
 - Sufficient condition (based on weakest lossless coupling)
 - Sufficient condition (based on lossless algebraic connectivity)
 - Further results

4. **Conclusions**
Time-scale separation in power network model:

- **Motivation:** harmonic oscillator
 \[\ddot{x} = -\frac{2}{\epsilon} \dot{x} - x \]

- **Singular perturbation analysis:**
 \[\epsilon \ll 1 \quad \epsilon < 1 \quad \epsilon = 1 \]
 \[\epsilon \gg 1 \]
 for \(\epsilon \ll 1 \rightarrow \) two time-scales

\[z(0) \neq h(x(0)) \]

- **Discussion** of the assumption \(\epsilon = \frac{M_{\max}}{\pi f_0 D_{\min}} \) sufficiently small:
 - physical interpretation: damping and sync on separate time-scales
 - classic assumption in literature on coupled oscillators: over-damped mechanical pendula and Josephson junctions
 - physical reality: with generator internal control effects \(\epsilon \in O(0.1) \)
 - simulation studies show accurate approximation even for large \(\epsilon \)
 - non-uniform Kuramoto model corresponds to reduced gradient system \(\dot{\theta}_i = -\nabla_i U(\theta)^T \) used successfully in academia and industry since 1978

Tikhonov’s Theorem:
Assume the non-uniform Kuramoto model synchronizes exponentially. Then \(\forall (\theta(0), \dot{\theta}(0)) \) there exists \(\epsilon^* > 0 \) such that \(\forall \epsilon < \epsilon^* \) and \(\forall t \geq 0 \)
\[\theta_i(t)_{\text{power network}} - \theta_i(t)_{\text{non-uniform Kuramoto model}} = O(\epsilon). \]
Main Synchronization Result

Conditions on network parameters:

network connectivity > network's non-uniformity + network's losses, and gap determines domain of attraction

1. Non-Uniform Kuramoto Model:
 ⇒ exponential synchronization: phase locking & frequency entrainment
 ⇒ for $\varphi_{ij} = 0$: explicit synchronization frequency & synchronization rates
 ⇒ for $\varphi_{ij} = 0$ & $\omega_i = \omega_j$: exponential phase synchronization

2. Power Network Model:
 ⇒ there exists ϵ sufficiently small such that for all $t \geq 0$
 \[\theta_i(t)_{\text{power network}} - \theta_i(t)_{\text{non-uniform Kuramoto model}} = O(\epsilon). \]
 ⇒ for ϵ and network losses φ_{ij} sufficiently small, $O(\epsilon)$ error converges

Dörfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 16 / 31

Outline

1. Introduction
 1. synchronization and transient stability
 2. power network model
 3. consensus and Kuramoto oscillators
 2. Singular perturbation analysis
 (to relate power network and Kuramoto model)
 3. Synchronization analysis (of non-uniform Kuramoto model)
 1. Main synchronization result
 2. Sufficient condition (based on weakest lossless coupling)
 3. Sufficient condition (based on lossless algebraic connectivity)
 4. Further results
 4. Conclusions

Dörfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 17 / 31
Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in \mathbb{T}^n:

$$D_i \dot{\theta}_i = \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$$

- **Non-uniformity** in network: $D_i, \omega_i, P_{ij}, \varphi_{ij}$
- **Directed coupling** between oscillator i and j:
 - coupling weights: $\frac{P_{ij}}{D_i} \neq \frac{P_{ji}}{D_j}$
 - coupling functions: $\sin(\theta_i - \theta_j + \varphi_{ij}) + \sin(\theta_j - \theta_i + \varphi_{ij}) \neq 0$
- **Phase shift** φ_{ij} induces lossless and lossy coupling:
 $$P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) = P_{ij} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + P_{ij} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Synchronization analysis in multiple steps:

1. phase locking: $\theta_i(t) - \theta_j(t)$ becomes bounded
2. frequency entrainment: $\dot{\theta}_i(t) - \dot{\theta}_j(t) \to 0$
3. phase synchronization: $\dot{\theta}_i(t) - \dot{\theta}_j(t) \to 0$

Synchronization of Non-Uniform Kuramoto Oscillators

Classic (uniform) Kuramoto Model in \mathbb{T}^n:

$$\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$$

Condition (1) for synchronization:

$$K > \omega_{\text{max}} - \omega_{\text{min}}$$

Gap determines the admissible initial lack of phase locking in a $\frac{\pi}{2}$ interval.

Condition (1) strictly improves existing bounds on Kuramoto model: [F. de Smet et al. '07, N. Chopra et al. '09, G. Schmidt et al. '09, A. Jadbabaie et al. '04, J.L. van Hemmen et al. '93].

Necessary condition for sync of n oscillators: $K > \frac{n}{2(n-1)} (\omega_{\text{max}} - \omega_{\text{min}})$ [J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09]

Dörfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 18 / 31

Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Condition (1) for synchronization:

Assume the graph induced by $P = P^T$ is complete and

$$\frac{n P_{\text{min}}}{D_{\text{max}} \cos(\varphi_{\text{max}})} > \frac{\max_{i,j} (\omega_i - \omega_j)}{\max_{i,j} (\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j})} + \max_i \sum_j \frac{P_{ij}}{D_i} \sin(\varphi_{ij})$$

worst lossless coupling worst non-uniformity worst lossy coupling

Gap determines the admissible initial lack of phase locking in a $\frac{\pi}{2}$ interval.

Dörfler and Bullo (UCSB) Power Networks Synchronization Princeton MAE 19 / 31

Theorem: Phase locking and frequency entrainment (1)

Non-uniform Kuramoto with complete $P = P^T$

Assume minimal coupling larger than a critical value, i.e.,

$$P_{\text{min}} > P_{\text{critical}} := \frac{D_{\text{max}}}{n \cos(\varphi_{\text{max}})} \left(\max_{i,j} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j} \right) + \max_i \sum_j \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \right)$$

Define $\delta = \frac{\pi}{2} - \arccos(\cos(\varphi_{\text{max}}) \frac{P_{\text{critical}}}{P_{\text{min}}})$ and set of locked phases

$$\Delta(\delta) := \{ \theta \in \mathbb{T}^n | \max_{i,j} |\theta_i - \theta_j| \leq \delta \}$$

Then

1. **phase locking**: the set $\Delta(\delta)$ is positively invariant
2. **frequency entrainment**: $\forall \theta(0) \in \Delta(\delta)$ the frequencies $\dot{\theta}_i(t)$ synchronize exponentially to some frequency $\dot{\theta}_\infty \in [\dot{\theta}_{\text{min}}(0), \dot{\theta}_{\text{max}}(0)]$
Non-uniform Kuramoto Model in \mathbb{T}^n - rewritten:

$$\dot{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$$

Condition (2) for synchronization:

Assume the graph induced by $P = P^T$ is connected with unweighted Laplacian L and weighted Laplacian $L(P_{ij} \cos(\varphi_{ij}))$ and

$$\lambda_2(L(P_{ij} \cos(\varphi_{ij}))) > f(D_i) \cdot \left(1/\cos(\varphi_{\max})\right) \times$$

lossless connectivity non-uniform D_is necessary phase locking

$$\left(\left\|\left[\ldots, \frac{\omega_i}{D_i}, \ldots\right]\right\|_2 + \sqrt{\lambda_{\text{max}}(L)} \left\|\left[\ldots, \sum_j \frac{P_{ij}}{D_i} \sin(\varphi_{ij}), \ldots\right]\right\|_2\right)$$

non-uniformity lossy coupling

Gap determines the admissible initial lack of phase locking in a π interval.

Condition (2) for synchronization:

$$K > \left\|\left[\ldots, \omega_i - \omega_j, \ldots\right]\right\|_2$$

Gap determines the admissible initial lack of phase locking in a π interval.

Condition (2) corresponds to the bound in [N. Chopra et al. ’09].
Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: Phase locking and frequency entrainment (2)

Assume graph induced by \(P = P^T \) is connected with unweighted Laplacian \(L \), incidence matrix \(H \), and weighted Laplacian \(L(P_{ij} \cos(\varphi_{ij})) \).

Assume algebraic connectivity is larger than a critical value, i.e.,

\[
\lambda_2(L(P_{ij} \cos(\varphi_{ij}))) > \lambda_{\text{critical}} := \left\| HD^{-1}\omega \right\|_2 + \sqrt{\lambda_{\text{max}}(L) \left[\ldots \sum_{ij} P_{ij} \sin(\varphi_{ij}) \ldots \right]} \right\|_2 \cos(\varphi_{\text{max}})/(\kappa/n) \min_{i,j} \{ D_{\neq(i,j)} \},
\]

where \(\kappa := \sum_{k=1}^n \frac{1}{D_{\neq k}} \), \(\mu := \sqrt{\min_{i,j} \{ D(D_i) \} / \max_{i,j} \{ D(D_j) \} } \).

Define \(\phi_{\text{min}} \in (0, \frac{\pi}{2}) \) by \(\text{sinc}(\pi - \phi_{\text{min}}) = (2/\pi)\lambda_{\text{critical}}/\lambda_2(L(P_{ij} \cos(\varphi_{ij}))) \).

1) **Phase locking:** \(\forall \left\| H\theta(0) \right\|_2 \leq \mu(\pi - \phi_{\text{min}}) \), there is \(T \geq 0 \) such that \(\left\| H\theta(t) \right\|_2 < \frac{\pi}{2} - \varphi_{\text{max}} \) for all \(t > T \)

2) **Frequency entrainment:** \(\forall \left\| H\theta(0) \right\|_2 \leq \mu(\pi - \phi_{\text{min}}) \) the frequencies \(\dot{\theta}_i(t) \)

synchronize exponentially to some frequency \(\dot{\theta}_\infty \in [\dot{\theta}_{\text{min}}(0), \dot{\theta}_{\text{max}}(0)] \)

Outlines

1. Introduction
 - Synchronization and transient stability
 - Power network model
 - Consensus and Kuramoto oscillators
2. Singular perturbation analysis
 - (to relate power network and Kuramoto model)
3. Synchronization analysis (of non-uniform Kuramoto model)
 - Main synchronization result
 - Sufficient condition (based on weakest lossless coupling)
 - Sufficient condition (based on lossless algebraic connectivity)
 - Further results
4. Conclusions

Theorem: A refined result on frequency entrainment

Assume graph induced by \(P \) has globally reachable node and there exists \(\delta \in (0, \frac{\pi}{2}) \) such that the phases are locked in the set \(\Delta(\delta) \)

If \(P = P^T \) & \(\varphi_{ij} = 0 \) for all \(i, j \in \{1, \ldots, n\} \), then \(\forall \theta(0) \in \Delta(\delta) \) the frequencies \(\dot{\theta}_i(t) \) synchronize exp. to the weighted mean frequency

\[
\Omega_c = \frac{1}{\sum_i D_i} \sum_i D_i \omega_i
\]

and the exponential synchronization rate is no worse than

\[
\lambda_{\text{fe}} = -\frac{\lambda_2(L(P_{ij})) \sin(\delta) \cos(\angle(D(1), \mathbf{1}))^2}{D_{\text{max}}} \frac{1}{\angle(D(1), \mathbf{1})}
\]

where

- \(\lambda_{\text{fe}} \) is the fastest exponent for frequency entrainment
- \(\lambda_2 \) is the second smallest eigenvalue
- \(D_{\text{max}} \) is the maximum degree of the graph
- \(\angle(D(1), \mathbf{1}) \) is the angle between the vector \(D(1) \) and the vector \(\mathbf{1} \)
Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: A result on phase synchronization

Assume the graph induced by P has a globally reachable node, and $\varphi_{ij} = 0$ and $\frac{\omega_i}{D_i} = \frac{\omega_j}{D_j}$ for all $i, j \in \{1, \ldots, n\}$. Let $\phi \in (0, \pi]$.

For the non-uniform Kuramoto model,

1) For all $\theta(0) \in \{\theta \in \mathbb{T}^n : \max_{i,j} |\theta_i - \theta_j| < \pi - \phi\}$ the phases $\theta_i(t)$ synchronize exponentially; and

2) if $P = P^T$, $\forall \|H\theta(0)\|_2 \leq \mu(\pi - \phi)$ the phases $\theta_i(t)$ synchronize exponentially at a rate no worse than

$$\lambda_{ps} = -\left(\frac{\kappa}{n}\min_{i,j \neq (i,j)}\left\{D_i\right\}\cdot \frac{\sin(\pi - \phi)}{\theta(0)}\cdot \lambda_2(L(P_{ij}))\right)$$

weight of D_i connectivity

Result can be reduced to [A. Jadbabaie et al. '04].

Simulation Studies

Simulation data:
- Initial phases mostly clustered besides red phasor
- $\epsilon = 0.6s$ is large
- Non-uniform network

Result: singular perturbation analysis is accurate ✓ both models synchronize ✓

Summary:
Open problem in synchronization and transient stability in power networks:
- Relation to underlying network state, parameters, and topology (not today)
- Time-varying Consensus Protocols:
- Singular Perturbation Approximation
- Non-uniform Kuramoto Oscillators

Future Work:
- Relation to network topology, clustering and scalability
- Synchronization in optimal power flow problems