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SHSG Project Goals

 Demonstrate how ICT-enabled collaborative aggregations of 

Smart Houses can achieve maximum energy efficiency

 Concept:

Aggregate houses as intelligent networked collaborations 

instead of seeing them as isolated passive units in the energy grid

 Develop real-life technology 

with potential for mass application across Europe

for enabling energy efficiency gains

 EU co-funded, timeline Sept 2008 – Aug 2011
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SHSG Key Issues

 ICT and Interfaces for mass scale integration of Smart Houses into Smart 
Grids

Source: SHSG Deliverable D1.2, „Technology 
Trends for SmartHouse/SmartGrid“, Feb 2009, 

www.smarthouse-smartgrid.eu

Source: SHSG Deliverable D2.1, „In-house 
architecture and interface description“, June 

2009, www.smarthouse-smartgrid.eu
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SHSG Field Tests

FT A: ICT for Smart 
House mass 
application 

scenario

FT B: Smart house 
roll-out in 

Domestic cluster 

FT C: Smart Houses 
supporting the grid 
in emergency cases 

Source: http://www.smarthouse-
smartgrid.eu/index.php?id=147
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SH/SG Architecture
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Amalgamated Service Architecture
Basic Concepts

Power Matcher

• Decentralized 
decision making

• Automated control 
of production and 
consumption units

• Decision-making 
based on centralized 
market equilibrium 

• Real-time mapping 
of demand and 
supply

BEMI

• Decentralized 
decision making

• Automated control 
of production and 
consumption units

• Decision-making 
based on centralized 
tariff generation

• Day ahead mapping 
of demand and 
supply

MAGIC

• Decentralized 
decision making

• Automated control 
of production and 
consumption units

• Decision-making 
based on centralized 
negotiation

• Mapping of demand 
and supply

Source: The SH/SG Team, 2011
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Simulation Team A – Study 1 setup

Source: The SH/SG Team, 2011

 3000 Households, 1500 with micro CHP, 1500 with heat pumps
 Scaling down from 2040 Dutch network scenario
 Offshore wind installed power: 750 ... 1000 kW

 Comparision of operation in 2 November weeks with and without 
PowerMatcher controlling micro CHP and heat pumps
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Simulation Team A – Study 1 results

AMOUNT OF TOTAL IMPORT FOR EACH CASE
Offshore 

Wind Traditional PowerMatcher Reduction

750 kW 27389 kWh 23447 kWh 14%
800 kW 26287 kWh 22154 kWh 16%
850 kW 25218 kWh 20920 kWh 17%
900 kW 24178 kWh 19739 kWh 18%

1000 kW 22194 kWh 17478 kWh 21%

Effects of PowerMatcher control:

 Energy Exports reduced by 90 ... 65 %  less need for export capacity
 Energy Imports reduced by 14 ... 21 %  potential CO2 reduction
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 Considering fictive LV feeder, 
25 households, 12 with heat pumps, 13 with micro CHP

 Cable loss reduction from 11.7MJ to 7.0MJ by adding PowerMatcher control
 I.e. 1.3kWh of energy / day or annually 100+ euro / 25 households

Simulation Team A – Study 2
Results (cable losses)

Source: The SH/SG Team, 2011
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Simulation for the year 2030 of the autonomous system of Crete 
for various load control scenarios
 Steady-state simulation
 economic dispatch
 load flow analysis

 Transient analysis

The Cretan System:
1. 690MW installed thermal capacity on 3 power plants 

(Chania, Atherinolakkos, Linoperamata)
2. 166MW installed wind power capacity (December 2009), 

most on the eastern part of the island
3. Since 2000, wind energy accounts for around 10% 

of the annual energy demand of the island

Simulation Team C overview

Source: The SH/SG Team, 2011
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Scenario 1 (Business as usual): no load control actions considered

Scenario 2 Various levels of controllable load (water heaters & A/C) considered 
(varying from 10% to 30%)
 Scenario 2A: load control is performed equally to all the regions of Crete
 Scenario 2B: load control is performed primarily to the households of 

Chania and Iraklio, which are the most populated cities of the island
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Simulation Team C load control scenarios

Source: The SH/SG Team, 2011
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CO2 emissions (tonnes) per Scenario –
Percent change of CO2 emissions with respect to Scenario 1

Operational cost (€) per Scenario – percent change with respect to Scenario 1

Scenario 1 Scenario 2A Scenario 2B
10%

1,468,351

1,467,728 -0.04% 1,465,906 -0.17%
20% 1,466,253 -0.14% 1,463,738 -0.31%

30% 1,464,271 -0.28% -

Scenario 1 Scenario 2A Scenario 2B
10%

215,957,553
215,204,940 -0.35% 214,455,919 -0.70%

20% 212,843,853 -1.44% 214,720,126 -0.57%
30% 213,694,172 -1.05% -

Simulation Team C results

Transient analysis: Load shedding supports system frequency from reaching 
low levels - should be part of a complete protection scheme

An optimum load control 
penetration level exists.

Controller location is relevant.

Higher load control 
penetration level improves 

CO2 reduction 

Source: The SH/SG Team, 2011
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Field Test B (Mannheim, Germany)

Source: MVV Energie AG, Mannheim

A Smart House Energy Gateway 
could provide:

- Energy Management
- Building Automation

- Room heating control
- EV charging control

...
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OGEMA Key Facts

 OGEMA defines gateway core 
specification

 Environment for parallel execution 
of different applications with access 
to smart grid data and devices
(e.g. controllable loads)

 Standardized data models and 
services for different home 
automation systems

 Support of different in-house and smart grid communication 
systems

 OGEMA defines a public open standard

 Public (open source) reference implementation for quick start
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Open source 
Operating system 

(e.g. Linux)

OGEMA for Energy 
management

Loads

KWK-Daten
2,3 kW 

System OK

Display

CHP

Smart Meter

Device Control App

Emergency load 
shutdown

Resource 
Administration

www.ogema-alliance.org

Open Gateway Energy Management Alliance 
(OGEMA)
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Open source 
Operating system 

(e.g. Linux)

OGEMA for Energy 
management

Loads

KWK-Daten
2,3 kW 

System OK

Display

CHP

Smart Meter

Device Control App

Emergency load 
shutdown

Resource 
Administration

www.ogema-alliance.org

OGEMA features:
 applications from different 

manufacturers run in parallel

 standardized data models

 flexible and modularized 
architecture

OGEMA goals:
 develop an open, manufacturer-

independent standard

 develop and test open source 
reference implementation 

 pave the way for energy 
management gateway 

mass-roll out

Open Gateway Energy Management Alliance 
(OGEMA)
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OGEMA 
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Open Gateway Energy Management Alliance 
(OGEMA)

www.ogema-alliance.org
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http://www.ogema-alliance.org
http://www.modellstadt-mannheim.de
http://www.smarthouse-smartgrid.eu

Thank you for your attention!

Dr.-Ing. David Nestle
Fraunhofer IWES, Königstor 59, D-34119 Kassel, 

Tel.: +49 561 7294 – 234, Email: david.nestle@iwes.fraunhofer.de

This report is based on a research project partly funded by the EU FP7 project SmartHouse/SmartGrid 
(Grant no.: FP7‐ICT‐2007‐224628) and by research partially funded by the German Federal Ministry for 

Environment, Nature Conservation and Nuclear Safety of Germany (Project: moma – Modellstadt 
Mannheim, FKZ Nr. 0325089A). The authors are responsible for the content of this publication.


