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1. Executive Summary 
This report contains KEMA’s load impact evaluation of PG&E’s SmartAC Program after its first year of 
operation (2007).  The results provided in this report show that the SmartAC program successfully 
reduced air conditioning load during the event periods.   

Program Description 

PG&E’s SmartAC Program is a direct load control (DLC) program that first began enlisting customers in 
spring 2007.  The Program began by recruiting customers in San Joaquin County (the city of Stockton 
and its surrounding areas) but has since expanded to other areas of the PG&E service territory.  As of the 
end of the 2007 cooling season, the program had over ten thousand participants.  The vast majority were 
residential customers.  

The SmartAC Program uses paging signals to reduce the energy consumption of participants’ air 
conditioners during times of peak system demand. The air conditioners are controlled either by a 
programmable thermostat or a switch that the Program installs at the participant’s residence or business.  
The switch employs an adaptive switching technology that controls the air conditioner based on prior air 
conditioning behavior.  Of the 8,800 participants enrolled as of the end of August, 2007 (at the time of 
system peak), 30 percent opted for the programmable thermostat while the remainder opted for the 
switch. 

Load Impact Evaluation Methodology 

The load impact evaluation’s primary goal was to estimate residential demand reduction as a function of 
temperature, time of event, event duration, and unit size.  KEMA selected a sample of 297 homes with 
353 AC units for the metering sample.  The sample was split into two roughly equal groups for the two 
control technologies, further stratifying by size (cooling tons from all units) and number of units (one, or 
two or more.)  Models for AC unit-specific baselines were developed for load and duty cycle, and used to 
compare with event day performance.  KEMA aggregated unit-level results using a ratio estimator on tons 
to improve accuracy and address potential sample bias.   

This evaluation took place at a time of daily, and substantial, increases in the number of SmartAC 
participants.  Participation increased from 6 to over 10 thousand residential customers during the cooling 
season of 2007.  The weights utilized for the analysis varied accordingly - for each event, they were based 
on the composition of the population on that day.   

The SmartAC load impact evaluation included fifteen events.  Of those, two were conducted for the entire 
population of SmartAC participants, and the remainder were conducted for the sample only.  The two 
population events occurred under relatively mild conditions.   

Load Impact Evaluation Results 

The SmartAC evaluation results indicate substantial demand reduction for the participants with switches.  
Participants with thermostat controls, facing the ramping strategies employed by the Program in 2007, 
produced demand reduction lower than that realized by switch participants.  The results for the two 
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control technology groups reflect potential differences from self-selected populations1 and ex ante control 
levels.  Given the populations as sampled and the control levels employed, the switches provided greater 
demand reduction.  These results should not be construed as necessarily reflecting the relative efficacy of 
thermostat controls versus switches.  

Overall, Program 2007 savings are estimated to range between 0 and 1.21 kW per unit (average over the 
duration of the SmartAC event, depending on weather conditions at the time of the event.)  Thermostat 
savings range between 0 and 0.89 kW per unit, and switch estimates between 0 and 1.34 kW per unit.  A 
number of the events called for the purpose of this evaluation were on relatively mild days.  On these 
days, effectively no savings were identified.  These results include the effect of participants opting out of 
events.  Opting out of an event was an option for SmartAC participants but was almost never used.   

Figure 1-1 illustrates per-unit savings on the three hottest days of the load impact evaluation.  On August 
28, 2007, the average hourly temperature was 84, and the high temperature of the day was 99.  These 
temperatures were 87 and 100, and 88 and 98, respectively, for August 30 and August 31.  The maximum 
load impact estimated is 1.44 kW per unit, on August 31 at 7 PM.  

Figure 1-1  
Program Impact Results, Average Per-Unit kW Reduction per Hour on the  

Three Hottest Days of the Load Impact Evaluation 
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The day of the system peak (August 29, 2007 at 5 PM) was not an event day. Using impact estimate from 
the surrounding days, full program savings at time of the system peak are estimated to be between 0.88 
and 1.23 kW per unit.  The low estimate of savings, 0.88 is the average 5 PM savings of the two 
surrounding days.  The high estimate comes from the event day two days after the peak when the 
temperature was closest to the peak day’s conditions. Had a Program-wide event been activated on that 

                                                      
1 Program participants at the time of this evaluation were exposed to information regarding both technologies, and 
thus self-selected into one of the control device populations.  It is very likely that the choice of technology may be a 
proxy for behavioral differences that are not accounted for in this evaluation. 
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day, this would have translated into peak savings of 7.8 to 10.9 MW from the Program participants that 
were enrolled at the time.  

Two different setpoint increase ramping strategies were compared.  Participants with thermostat control 
were divided into two groups and received the different ramping strategies in alternating fashion. The 
steeper ramping strategy was expected to provide increased load reduction at least in some hours.  Results 
confirm this expectation though apparent differences between the ramping strategy groups make this a 
tentative conclusion. 

This evaluation also looked at impact per ton relative to unit size and number of units for the two different 
control technology groups.  These results are suggestive but impossible to disentangle from other possible 
group differences. 

Load Impact Projections 

The load impact models were utilized to project savings across a range of temperatures.   

Savings for SmartAC Switches are estimated to range between 0.3 and 0.7 kW per unit on days when the 
average temperature is 80 degrees, to 1.54 and 1.74 kW per unit on days when the average temperature 
reaches 94 degrees.   

Savings for SmartAC Thermostats are estimated to range between 0.3 and 0.4 kW per unit on days when 
the average temperature is 80 degrees, to 1.3 and 0.5 kW per unit on days when the average temperature 
reaches 94 degrees.  The Thermostat load impact estimates derived from this model are lower than the 
Thermostat load impact estimates derived from day of the event data.  This suggests the need for model 
refinements that will be possible when additional data becomes available in 2008.   

Program level projections are not provided, because they are determined by the number of each type of 
SmartAC device installed at the time of the event.   

 



 
 

 

Pacific Gas and Electric  
SmartAC Evaluation, Measurement, and Verification April 24, 2008 

2-1 

2. Introduction 

2.1 Scope of the Evaluation 

The impact evaluation goals for the SmartAC program include: 
• Estimates of demand reduction as a function of temperature, time of event, event duration and 

unit size.  
• The temperature sensitivity of demand reduction and connected load. 
• Effects of customer behavior, override, signal/switch failure, attrition and snapback. 
• Measuring the difference between two different thermostat setback approaches2 
• Avoiding bias despite a likely non-representative sample3.  

To meet these goals, three hundred residential customers were recruited for a measurement and 
verification sample, and fifteen load control events were called across a wide range of temperature 
conditions.  These data provide insight into demand reduction as a function of temperature, time of event, 
event duration and unit size.  We also use these data to provide projected demand reduction and 
connected load across a range of temperature conditions.  All results are reported by the two control types 
and thermostat control results are also reported by ramping strategy. We used a ratio estimation approach 
to address concerns about bias due to the ongoing development of the program population. 

There was not enough over-ride behavior or attrition to make possible any conclusions as to the potential 
effect of these important drivers of demand reduction.  These issues will be revisited as the program 
matures. 

2.2 Program Description  

PG&E’s SmartAC Program is a direct load control (DLC) program. The program uses paging signals and 
control technologies to limit air conditioner usage during program events. Actual program events are 
triggered by insufficient system operating reserve or localized transmission or distribution emergencies 
constraints.  The events used for this evaluation were called for the purposes of the evaluation itself. 

The SmartAC Program first began enlisting customers in Spring 2007.  As of the end of August, 2007 the 
program had approximately 8,800 participants. By January, 2008 there were 26,000 participants with 
installed devices and another 22,000 participants who were enrolled and awaiting device installations. 
The vast majority of these participants are residential customers. The Program began by recruiting 
customers in San Joaquin County (the city of Stockton and its surrounding areas) but has since expanded 
to other areas of the PG&E service territory. 

                                                      
2 This evaluation goal was added after project kick-off, on May 31, 2007. 
3 The EM&V sample for the first year of the SmartAC program was recruited from the first three thousand 
participants.  By the end of 2007, the program had expanded to twenty-five thousand participants.  While the sample 
was representative of participants at the time it was recruited, it is very likely that the characteristics of participants 
changed as participation in the program increased. 
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PG&E manages the marketing efforts, initiates the control events, and manages the overall program. An 
implementation vendor handles the dedicated Program hotline, enrolls customers, schedules installation 
appointments, and installs the control devices. A technology vendor manufactures the control devices and 
manages the system that makes the control events possible. The Smart AC Program pays all participants a 
one-time $25 “thank you” payment. 

2.3 Report Organization 

Section 3 provides an in depth discussion of the program details relevant to this impact evaluation.  In 
particular, these include the choice of the two control technology options and the implications these 
technologies have for load impacts.  Section 4 provides a discussion of the data and methodology used for 
this analysis.  Section 4 includes a discussion of drivers of impact results that provides further background 
for the results section.  A further discussion of methodology is included in an appendix.  Section 5 
provides the results from the analysis.  Section 6 provides conclusions. 
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3. Program Details 
PG&E’s SmartAC program is a complex, large-scale endeavor.  Many aspects of the program have 
already been discussed and evaluated by KEMA in an earlier, process-oriented report4.  This impact 
evaluation is focused on the program performance in terms of load reduction.  Aspects of the program 
design have a direct bearing on the potential impacts of the program.  This section discusses the specifics 
of the SmartAC Program as they relate to these potential impacts. 

3.1.1 Technology Options 

The SmartAC Program offers participants a choice of control technologies for their AC units. The 
thermostats and switches used by the PG&E SmartAC program share only basic similarities.  Both 
technologies use one-way communication capabilities to remotely control usage at the AC unit.  Each 
technology can be communicated with via a paging device and activated and de-activated for a program 
event.  Neither the switches nor the thermostats have two-way communication capabilities.   

Beyond these basic similarities, the two control technologies offer a quite different array of 
characteristics. The thermostat option offered by the program replaces a participant’s existing 
thermostat(s) with a programmable thermostat advertised as a $200 value.  The participant gains the 
functionality of a programmable thermostat, including web-based access to remotely change the home AC 
settings.  Installation of the thermostat requires an indoor visit by a technician. 

The switch technology offered by the SmartAC program is installed at the AC unit.  The installation of 
the switch generally does not require an indoor visit.  The switch provides the participants no additional 
functionality.  The switch may be effectively invisible to the participant. 

The different features of these two control technologies give PG&E flexibility in their marketing efforts.  
Participants may be motivated by monetary value and functionality (thermostat) or privacy and 
invisibility (switch).  A choice of control technologies allows PG&E to cater to a wider range of potential 
participants. 

3.1.2 Control Mechanism 

Thermostats and switches control AC usage in different ways.  In general, switches control AC unit 
compressor run-time while thermostats control household temperature. 

3.1.2.1 Switches 

Switches directly control operation of the AC compressor.  Traditional switches control AC usage by 
limiting potential compressor run-time to a maximum amount during a time period. For a 50% control 
level, for instance, the unit will only be able to run a maximum of half of the time.  Most commonly, 
programs with 50 percent control level limit run-time to 15 minutes per half hour (50% * 30 min = 15 
minutes of control). All avoided run-time above 15 minutes per half hour represents load reduction.  This 
could amount to 15 minutes of impact per half an hour if the unit would have been running full time.  

                                                      
4 Final Report:  Process Evaluation of 2007 PG&E Smart AC Program. Study ID PGE0262.01. March 31, 2008 
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Load reduction will be less if the unit would have been running less than full time.  A unit running at only 
50 percent run-time, however, will adjust to the schedule enforced by the switch but will provide 
essentially no load reduction for the program.  

The program-level effectiveness of traditional switches is limited by AC units that are not to running full 
time. Oversized units and mild weather both cause “natural”, un-controlled run-times to be less than full 
time, thus lowering the avoided run-time.  Oversizing, in particular, is an issue that undermines load 
reduction even under the extreme conditions that motivate a DLC program event. This limitation to the 
effectiveness of traditional switches has led to a new generation of adaptive switches designed to adjust to 
the natural duty cycle of the AC unit.  The PG&E SmartAC Program uses Cannon’s TrueCycle 
technology adaptive switch. 
 
The adaptive switches address the traditional switch limitation by “learning” the run-time behavior of the 
unit. The program administrator or system operator chooses learning days that have the characteristics of 
potential event days.  The observed amount of run-time on these learning days provides an estimate of 
expected run-time on an event day.  With this information the switch determines a more appropriate 
control level.   
 
For the purpose of explanation, it is easiest to think in terms of duty-cycle rather than run-time.  Duty-
cycle is in the percentage of an hour during which the compressor is on. Control is the percentage of an 
hour during which duty cycle is restricted from running. The traditional switch maintains a constant, 
“actual” 50 percent level of control. That actual 50 percent control is only an effective 50 percent of the 
natural duty cycle if the unit is running at 100 percent. TrueCycle is designed to approximate an effective 
control level of 50 percent (in the case of the SmartAC Program) of the natural duty cycle even if the 
natural duty cycle drops below 100 percent.  
 
Figure 3-1 provides a visual representation for an expected natural duty cycle of 60 percent. If the 
expected duty cycle is 60 percent, then the TrueCycle process will cut that in half to a 30 percent duty 
cycle.  It will limit the unit to a maximum 30 percent duty cycle by enforcing an actual control level of 70 
percent. As the expected duty cycle decreases from 100 percent (left to right) the actual control increases 
from 50 percent to 100 percent to maintain an effective control of 50 percent of the expected duty cycle. 
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Figure 3-1 
Actual vs. Effective Control for Expected Duty Cycle of 60 Percent 
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The success of the adaptive switch in overcoming the limitations of the traditional switch relies on the 
estimate of expected duty cycle.  At the beginning of the cooling season, or any time the process fails, the 
default expect duty cycle for any hour is 100 percent. Under these default conditions, the TrueCycle 
switch control is identical with the traditional switch.  As learning days are identified, an average duty 
cycle is calculated that includes the observed duty cycle from the learning day.  Cannon indicates that 
they generally use a weight of one eighth for a single learning day.  If fewer than eight learning days have 
been identified then the remaining days included in the mean calculation are assumed to be at the default 
of 100 percent.  Using this approach a rolling estimate of expected duty cycle for each hour is maintained 
for each AC unit.  These estimates are supposed to represent expected duty cycle under the extreme 
conditions likely for program event day.  Cannon also indicates that the estimated expected duty cycle 
may be adjusted to pre-event duty cycle levels though the mechanics of this adjustment are not provided. 

The TrueCycle adaptive technology has a number of implications for the estimation of load impacts.  
Most importantly, traditional switch performance is the lower bound for the adaptive switches.  The 
adaptive load reduction can only improve on that offered by the traditional switches.  In this respect, the 
TrueCycle technology has the potential to address the limitations of traditional switches with essentially 
no risk of decreasing load reduction. 

The actual effectiveness of the TrueCycle technology in estimating expected duty cycle is much more 
difficult to determine.  The number and choice of learning days drives the estimate.  Extreme conditions 
are experienced only infrequently so the data on AC unit usage under extreme conditions is, in fact, 
sparse. To the extent less extreme days are included in the calculation, the adaptive algorithm has the 
potential to under-estimate an AC unit’s extreme day duty cycle.  In this case, the participant could 
potentially face an effective control level greater than 50 percent.  Under this scenario, the overall load 
reduction is increased, but participants may be experience greater control-related discomfort. 
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Finally, it is important to reiterate two switch characteristics in the context of the discussion of the 
effectiveness of load reduction.  Switches are essentially invisible to the participant.  A light on the switch 
indicates control mode, but few participants will notice this as the switch is installed at the AC unit.  
Furthermore, as the switch is designed to provide regular periods of control, it also provides regular 
periods of cooling.  In addition, when the compressor is turned off, the circulation fan still operates5.  The 
operating characteristics of the switch technology facilitate the “invisibility” of the process even under 
event conditions.   

On the other hand, switches do not directly control indoor temperature.  The increase of indoor 
temperatures will be a function the controlled unit run-time, outdoor temperature and household 
characteristics.  Across a population, the range of indoor temperature increase will vary, with some 
participants at the high end experiencing increases of greater than five degrees. 

3.1.3 Thermostats 

Thermostat control technology directly controls household temperature6. When activated to event mode, 
thermostats increase the temperature to which the house is cooled.  The unit may turn off if already in 
cooling mode.  If the unit is already off, it may remain off for a longer period so as to allow the thermostat 
to reach the new, higher setpoint temperature.  Using the thermostat setpoint as the focus of control puts 
the premium on controlling the increase in participant indoor temperatures.  No participant should 
experience an indoor temperature increase greater than the setpoint.  In theory, increasing the thermostat 
setpoint equitably distributes temperature increase across the participating population regardless of house 
and AC unit characteristics. 

As indicated, the direct control of thermostat setpoint has an indirect effect on AC energy usage.  How an 
AC unit responds to the setpoint increase will be a function of the pre-event cooling regime, the cycling 
schedule of the AC unit, house-specific characteristics affecting the rate of indoor heat gain, and the 
amount of setpoint increase.  The most common scenario involves the AC unit turning off (or staying off) 
until the indoor temperature reaches the level of the higher setpoint.  For this period, while the house 
warms to the new setpoint equilibrium, program-related savings are 100 percent of the pre-program 
usage.  Once the new equilibrium is reached, the AC unit returns to cycling behavior necessary to 
maintain cooling at this higher setpoint.  As AC usage is fundamentally a function of differential with 
outside temperature, usage at the new setpoint will be reduced relative to pre-event usage levels.  
However, compared to the interim period of readjustment, the energy usage at this new equilibrium 
temperature will be greater. 

                                                      
5 Depending on the characteristics of the house and the placement of the unit, this may or may not have a positive 
effect on indoor temperature.  For example, if air circulates through uninsulated pipes in very hot attics, it may 
increase indoor temperature more than if the fan was off at the same time as the compressor.  

6 The thermostats employed by the SmartAC Program have traditional switch capabilities.  In the future, the 
thermostats will have TrueCycle adaptive algorithm capability. For the purpose of this evaluation, however, we 
focus on the setpoint-related capabilities of the thermostat. 
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When thermostats were first deployed for DLC programs, the most common control strategy was a single 
setpoint increase of three, four or five degrees Fahrenheit.  A setpoint increase of this sort has two 
important implications for DLC programs.  First, the load reduction is greater during the first part of the 
event.  During the initial period of readjustment the majority of units turn off as the indoor temperature 
slowly increases to the new setpoint.  This high level of load reduction is maintained until units reach 
their new equilibrium temperature.  From a system load reduction perspective, this inability to maintain a 
constant level of load reduction can be seen as a limitation. 

Second, a single block setpoint increase has implications of a parallel nature for participants’ perceptions 
of comfort.  The period of readjustment to the new setpoint is experienced by the inhabitant as a period of 
no cooling.  For what could be a substantial period of time, there is no blowing of the circulation system, 
no experience of cooling air.  From a participant comfort perspective, the block set point increase also has 
limitations. 

Utilities have experimented with ramped control strategies to combat these twin limitations of the block 
setpoint increase. Multiple increases of a degree or two should, in theory, mitigate both problematic 
aspects of the single block setpoint increase.  Instead of experiencing the load reduction and resulting lack 
of cooling in one long period at the beginning of the event, the periods of temperature equilibrium 
readjustment are shorter and spread out through the event. 

The SmartAC program chose to use a ramping strategy for all program thermostat participants if there 
were full-program events during summer 2007.  Once the program was deployed the ultimate strategy 
chosen imposed an increase of 1°F at the beginning of the first, third, and fifth hours of the event7.  We 
refer to this strategy as the “gradual” strategy. For the purpose of testing the ramping strategy concept, 
PG&E identified a second, more aggressive ramping strategy to be tested only on the meter sample which 
we refer to as the “steep” strategy.   

Figure 3-2 diagrams the two strategies applied in an alternating pattern to the two halves of the thermostat 
sample during the summer of 2007. The “gradual” strategy is represented by three equal steps of one 
degree over two hours.  The “steep” strategy increases the setpoint 1°F at the beginning of each of the 
first four hours.  After the fourth increase, the “steep” strategy stays at a 4°F increase for the duration of 
the event.  All else being equal, the “steep” strategy ought to provide greater impacts, at least during 
certain hours, than the “gradual” strategy. 

                                                      
7 Prior to program deployment, PG&E had anticipated that the “steep” strategy would consist of setting back 
thermostats 4°F on the first hour, and that the “gradual” strategy would consist of increasing 1°F at the beginning of 
each of the first four hours.  Prior to initiating the EM&V events, PG&E changed the strategies to what is described 
in this section.   
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Figure 3-2 
Comparison of Ramping Strategies for 2 pm Start Time 
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The goal of both ramping strategies is to combat the limitations of a single block setpoint increase: front-
weighted impacts and long periods with no cooling activity.  This evaluation directly assesses the effect 
of the ramping strategy on load reduction. 
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4. Data and Methodology 
This section summarizes the data and methods used to conduct this evaluation.   

4.1 Data 

This section describes the data used to complete this load impact evaluation, and their sources.  The data 
includes: 

• Program enrollment data  

• Load data collected specifically for this EM&V process 

• Billing data 

• Weather data from PG&E  

• Process evaluation data collected specifically for this EM&V process.  

4.1.1 Program Enrollment Data 

Program tracking data files were provided by PG&E’s implementation contractor.  Site, work order, 
device and dropout data were received in separate datasets.  Datasets were received in a rolling fashion 
for the purpose of selecting the EM&V sample.  The impact evaluation made use of tracking data 
provided in November, for the purposes of developing weights that were specific to each DLC event. 

Important fields from the tracking data include: 

• Site data 
o Customer ID  
o Structure size 
o Structure age 

• Work order data 
o Date installed 

• Device data 
o Type of device 
o Tonnage 

• Dropout Data 
o Date removed 

Unit tonnage is central to the load impact analysis presented in this report.  Unit tonnage is relatively easy 
to collect from the unit nameplate and is strongly correlated with unit connected load.  Impact results are 
calculated as impact per ton.  As of August of 2007, 86 percent of the AC unit records in the tracking data 
included unit tonnage.   
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Structure size and structure age were important for the imputation process used to fill the missing unit 
tonnage data.  Both fields were present for about 98 percent of the units in the tracking data.  Average unit 
tonnage was computed for each combination of structure size and structure age categories.  This average 
was used to impute tonnage for records with missing tonnage values.   

Date installed and removed determined the rolling program population total for any given event day.  
Units were assumed to be active a day after installation. 

SEER would have been extremely useful information to have.  Unfortunately, SEER is frequently not 
available on the unit nameplate.  Alternative approaches to finding SEER like model number look-ups are 
time-consuming and have there own limitations.  It is usual for DLC program evaluation to lack SEER 
data from program participants. 

Table 4-1 provides a summary of the program tracking data as of August 31st, 2007.  The table provides 
the number of sites and units, and the average tons across the full population, control technology sub-
groups and single and multiple units. 

Table 4-1 
SmartAC Program Population Statistics as of August 31st, 2007 

All
Single 
Unit Multi Unit All

Single 
Unit Multi Unit All

Single 
Unit Multi Unit

Participant 
Sites 8,193 7,605 588 2,445 2,282 163 5,748 5,323 425
Units 8,843 7,605 1,238 2,610 2,282 328 6,233 5,323 910
Average Tons 3.3 3.3 3.3 3.2 3.2 3.2 3.4 3.4 3.3

Category

Program Thermostat Control Switch Control

 
 

4.1.2 Load Data 

Sample design took place in early summer during a period of rapid population increase.  The final sample 
was created using program tracking data as of June 11th, 2007.  The sample, by necessity, reflected the 
program as it existed at that time.   The sample was pulled with the intent of metering all units at the 
selected sites. 

This section discusses the original sample design utilized to deploy the loggers used to collect load data, 
and the re-stratification performed for this analysis.  The re-stratification supports the ratio-estimation 
approach used to aggregate unit-level results to program and control-type results.  This approach 
addresses a concern of this load impact study -potential bias due to changes in the composition of the 
population that occurred after the sample had been selected. 

4.1.2.1 Sample Design and Re-Stratification 

The original sample design had eight strata.  This design was based on type of device, tons per site and 
whether or not multiple ACs are present at the site.  The tracking data variable that captured unit tonnage 
had approximately 17 percent missing data.  For the sample design, these tonnage missing values were 



 
 

 

Pacific Gas and Electric  
SmartAC Evaluation, Measurement, and Verification April 24, 2008 

4-11 

imputed through the analysis of billing data supplied by PG&E.  The sample design that was used to 
implement the logger sample is provided in Table 4-2. 

Table 4-2 
Original Sample Design For Logger Data Collection 

1 PCT <4 0 483               93                    93                 88                 90                 
2 PCT <4 1 6                   3                      6                   2                   4                   
3 PCT >=4 0 148               37                    37                 39                 39                 
4 PCT >=4 1 34                 17                    34                 17                 37                 
5 Switch <4 0 1,404            77                    77                 72                 73                 
6 Switch <4 1 21                 5                      10                 5                   10                 
7 Switch >=4 0 637               54                    54                 53                 53                 
8 Switch >=4 1 123             17                  34               21                 46               

2,856          303                345             297               352             Totals

Stratum
Type Of 
Device

Total Tons 
From All 

Units

Multiple AC 
units on site 

(1=Yes)

Program 
Participants 

as of 
06/11/2007

Design 
Number of 
Loggers

Number of 
Metered 
Homes

Number of 
Metered AC 

Units
Design 

Sample Size

 

For the impact evaluation it was desirable to estimate unit impact as a function of tons.  With this in mind, 
KEMA conducted an additional effort to fill the missing tonnage data in a more informative manner.  This 
process is discussed below.  Because the impact evaluation results use the tonnage variable, it was 
necessary to re-stratify the sample using the new imputations.  As a result of the re-stratification, strata 2 
and 6, which had multiple units but small tonnage, became impractically small.  To address this problem, 
strata 2 and 6 were combined with strata 4 and 8, respectively.  This collapsed stratification, within each 
device type, preserved the stratification of single unit sites into less than 4 tons (“small”) or 4 tons or 
more (“large”), but groups all multiple unit sites into the same stratum. 

The ultimate effect of the re-stratification is small.  Table 4-3 illustrates the collapsed strata with the 
missing tons imputation method that was employed for the sample design.  

Table 4-3 
Original Sample Design Collapsed to Six Strata 

1 PCT <4 0 483 72% 93 93 88 90
3 PCT >=4 0 148 22% 37 37 39 39
4 PCT 1 40                 6% 20                 40                 19                 41               
5 Switch <4 0 1404 64% 77 77 72 73
7 Switch >=4 0 637 29% 54 54 53 53
8 Switch 1 144             7% 22               44                26                 56             

2856 303 345 297 352
*Original sample participant count was determined by when the file was created, June 11th, 2007.

Percent of 
Total 

Population by 
Device Type

Totals*

Stratum
Type Of 
Device

Total Tons 
From All 

Units

Multiple AC 
units on site 

(1=Yes)

Program 
Participants 

as of 
06/11/2007

Design 
Sample Size

Design 
Number of 
Loggers

Number of 
Metered 
Homes

Number of 
Metered AC 

Units

  

Table 4-4 shows the population and sample after re-stratification on the improved tonnage variable.  In 
terms of the program population, the re-stratified sample allocation is almost identical to the original 
sample.  For the re-stratification process we used tracking data from the end of the cooling season.  It 
includes both the population used for the original sample and the final population needed to characterize 
the program through the summer.  We used installed date to recreate a population similar to the 
population used for the original sample. Table 4-4 illustrates the effect of re-stratification on the original 
population counts, by limiting the counts to units installed by June 4th, 2007 
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Table 4-4 
Sample Design with Re-Stratification Based on Improved Tonnage Variable 

1 PCT <4 0 501 73% 110 110 88 88
3 PCT >=4 0 139 20% 30 30 39 39
4 PCT 1 44 6% 10 19 21 45
5 Switch <4 0 1431 64% 96 96 74 74
7 Switch >=4 0 633 28% 43 43 48 48
8 Switch 1 169 8% 11 23 27 59

2917 300 321 297 353

Percent of 
Total 

Population by 
Device Type

Final 
Number 

of 
Loggers

Design 
Number of 
Loggers

Totals*

Program 
Participants 

as of 
06/11/2007

Design 
Number of 
Loggers

Final Sample 
SizeStratum

Type Of 
Device

Total Tons 
From All 

Units

Multiple AC 
units on site 

(1=Yes)

 
*Re-stratified sample participant count uses an installed date of June 4th, 2007.  Final number of loggers reflects an additional 
logger installed at a multi-unit site.  

Table 4-5 presents the final population numbers for the 2007 cooling season.  The last event of the season 
took place on September 26th, 2007.  At that time, there were about 9,600 participants enrolled in the 
program.  Interestingly, though the population increased more than threefold between June and 
September, and thermostat adopters increased from about one fourth to about one third of the program’s 
participants, the percent of the device population represented by each strata is identical when rounded.   

Table 4-5 
SmartAC Population as of September 26th, 2007, Re-stratified 

 

1 PCT <4 0 2275 73%
3 PCT >=4 0 625 20%
4 PCT 1 208 7%
5 Switch <4 0 4170 64%
7 Switch >=4 0 1850 28%
8 Switch 1 503 8%

9631Totals*

Stratum
Type Of 
Device

Total Tons 
From All 

Units

Multiple AC 
units on site 

(1=Yes)

Program 
Participants 

as of 
09/26/2007

Percent of 
Total 

Population by 
Device Type

 

4.1.2.2 Onsite Data Collection - Metering 

To enable the impact estimate analysis methodologies that KEMA planned to use for this evaluation, 
KEMA installed a combination of one-minute and 15-minute loggers on all units at the sites selected for 
the meter sample.  All sites using switch control were monitored using one-minute loggers.  Sites with 
thermostat controls were logged with a mix of 15- and one-minute loggers.   

The loggers used were the HOBO Energy Logger ProTM (for one-minute data) and the DENT 
DATAproTM Data Logger (for 15-minute data.)  Both loggers used a current transformer (CT), installed 
around a single leg of an air-conditioning unit, to monitor the voltage of the electromagnetic field 
produced by an alternating current, and were programmed to convert that voltage reading into amps.  Four 
different sized CTs were used for this study: 20, 70, 100, or 150 amp.  The data that was stored in both 
loggers for each reading during the metering period captured the following information: 
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• Date 

• End Time 

• Average Amp 

• Plot Number 

The DATAproTM loggers were programmed to capture 15-minute interval data.  The loggers took 
instantaneous amp readings every minute and recorded the average of those readings at the end of 
fifteenth minute.  

The HOBO Energy Logger ProTM is a modular, reconfigurable data logging system which was combined 
with the S-FS-TRMSA FlexSmart TRMS Module to record an instantaneous amp reading every minute.  

4.1.2.3 Data Cleaning 

Data cleaning was performed at two levels. 

• Logger level quality control-- Determine that the logger operated correctly and recorded air 
conditioner compressor load levels. 

• Interval level -- Identify and remove intervals that are deemed unreliable. 

4.1.2.3.1 Logger Quality Control 

The primary data cleaning decision was determining whether the logger represented valid readings of 
compressor load for the site and the AC unit.  To answer this question, a number of different pieces of 
information were considered: 

• Device issues.  Some loggers failed in the field and others failed in the data download process.  In 
both cases, data was unavailable. 

• AC energy use signature.  The majority of AC compressors have only two modes, on or off.  
Logger data from AC compressors (both one- and fifteen-minute) have a distinct signature.  
Connected load, the load when the compressor is on, is a function of ambient temperature.  When 
logger data is plotted with respect to hourly temperature, a clear trend is evident in compressor 
logger data.  Each logger was plotted and determined to have a signature that reflected air 
conditioner usage. 

• Comparison of aggregated logger load data to monthly billing data.  Loggers with sparse data 
may represent a failed logger or a valid AC unit that was not used very frequently.  To address 
this concern we compared logger usage data with billing data provided by PG&E.  For each site, 
we compared site AC usage over the billing period to premise kWh from billing data.  AC usage 
generally drives summer energy usage and a clear parallel trend exists between whole premise 
and the AC-only data.  For the majority of sites a clear visual relationship exists between billing 
data and aggregated logger data.  In instances where billing data indicated weather-sensitive load 
and the aggregated logger data did not show air conditioner usage, the loggers were considered 
faulty. 
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To include a logger in the second level of cleaning, the logger data needed to satisfy expectations on all of 
the three counts described above.  Table 4-6 provides the results from the initial logger quality control 
check.  The table classifies reasons for removal from this analysis into three categories. 

Table 4-6 
Logger Disposition 

Billing Data 
Comparison

Failed 
logger

No 
Tracking

1 8 5 0 13
3 7 2 0 9
4 4 3 0 7
5 8 4 0 12
7 3 1 0 4
8 3 6 1 10

No Strata 0 0 1 1
 Total 33 21 2 56

Strata Total

Reason for Removal from Analysis

 

Failed loggers include loggers that were:  

• Broken or damaged when collected by the technician,  

• Found disconnected, removed or otherwise not installed properly, or 

• Failed to download the recorded data properly. 

The loggers with no tracking data were loggers installed on units that did not correspond to those 
identified in the program tracking data. 

The largest number of failed loggers is classified under the Billing Data Comparison field.  The billing 
data comparison became the final hurdle questionable loggers needed to clear.  Loggers with sparse data 
or with data lacking the compressor load signature might still accurately record units that were hardly 
used through the summer.  On the other hand, the data on the logger could be bad data.  If the billing data 
provided clear evidence of a summer cooling load then the logger was removed and classified under this 
category.  Many loggers with little to no usage passed this test because the billing data did not provide 
evidence of cooling load. 

4.1.2.3.2 Interval Cleaning 

The cleaning of individual loggers started with the trimming of the partial day at the beginning of the 
logging period and all data recorded after November 1st, when KEMA started collecting the loggers from 
the field. This trimming removed almost all anomalous intervals.  In the fifteen-minute data, only three 
loggers remained with a handful of negative or extremely high readings.  The intervals were set to 
missing and the logger-level QC process reconsidered to confirm that despite the anomalous loads 
removed, these loggers contained otherwise valid data. 
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In addition to trimming the data, the data was checked for missing intervals and intervals not consistent 
with the air conditioning usage signature discussed above.  There were no missing data intervals present 
other than those created by the cleaning process.  The data do include a very small number of intervals 
that show higher load than is consistent with the energy use signature.  These intervals are few in number 
and are consistent with an instantaneous read that coincided with the initial energy draw at the beginning 
of a duty cycle.  While these few artificially high intervals are easily detected in the interval data plotted 
by hourly temperature, artificially low readings are difficult to impossible to discern, especially in the 
fifteen minute logger data.  In the interest of not biasing cleaned data, these few possibly questionable 
intervals were not removed. 

4.1.2.3.3 Final Logger Disposition 

Table 4-7 provides the final strata counts of metered homes and AC units. 

Table 4-7 
Final, Post-Cleaning Number of Homes and AC Units by Strata 

1 PCT <4 0 76 76
3 PCT >=4 0 30 30
4 PCT 1 17 35
5 Switch <4 0 62 62
7 Switch >=4 0 44 44
8 Switch 1 25 50

254 297

Number of 
Metered 
Homes

Number of 
Metered AC 

Units

Totals

Stratum
Type Of 
Device

Total Tons 
From All 

Units

Multiple 
AC units 
on site 
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Table 4-8 provides the counts of loggers used to estimate the results reported in this analysis. There was 
sample attrition due to two program participants leaving the program.  A third sample participant opted 
out of the sample but remained in the program. 

Table 4-8 
Sample Unit Counts by Event for All Treatment Sub-groups 

 

All
Gradual 
Ramp

Steep 
Ramp

7/12/2007 71 297 156 141 141
7/17/2007 73 297 156 141 69 72
7/23/2007 81 297 156 141 72 69
7/26/2007 75 297 156 141 69 72
7/27/2007 76 297 156 141 72 69
8/1/2007 77 297 156 141 69 72
8/9/2007 75 297 156 140 71 69

8/10/2007 78 297 156 140 69 71
8/21/2007 84 297 156 140 71 69
8/22/2007 83 297 156 140 69 71
8/28/2007 84 295 155 139 70 69
8/30/2007 87 295 155 139 69 70
8/31/2007 88 295 155 139 70 69
9/10/2007 74 295 155 139 69 70
9/26/2007 74 295 155 139 139

Event 
Date

Event 
Temp 
(DAT)

Thermostat Count
Switch 
Count

Program 
Logger 
Count

 

4.1.2.4 Conversion of Logger Readings to kW 

Both the one-minute and 15-minute loggers recorded amps.  The one-minute loggers recorded an 
instantaneous amp reading every minute.  The 15-minute loggers measured instantaneous amp readings 
every minute, and recorded the average of those readings every 15 minutes.  For the 15-minute data 
produced from the one-minute loggers, we calculated the average amps over the 15 minutes, consistent 
with the process internal to the 15-minute loggers.  One-minute intervals were aggregated to 15-minute 
data prior to interval cleaning.  Thus, 15-minute data from the one-minute loggers was produced and 
cleaned identically with the 15-minute logger data.  The available one-minute interval data for use at the 
one-minute level was cleaned at that level. 

The amperage was converted to kW using the voltage levels measured at the units. Voltage measures 
were attempted at all units.  Where they were not successful, we substituted the average measured voltage 
calculated across all measured units.  Among the units where voltage was successfully measured, there 
was relatively little variation across measured voltage. 

4.1.3 Weather Data 

For the purpose of the impact analysis, PG&E provided observations of dry bulb temperature and relative 
humidity in half-hour intervals for three weather stations covering the initial phase of the SmartAC 
Program (Stockton and surrounding areas) as of summer of 2007, for the period from January 1 through 
December 31, 2007. 
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The load and duty cycle modeling used daily average temperature (DAT) as the weather variable in all 
models.  The daily average temperature is calculated as:  

DAT = (Maximum Temperature + Minimum Temperature)/2 

In addition, PG&E provided historical weather data for Stockton that included observations of daily 
average temperature for the period from May 1 through October 31 for the years 1983-2006.  These data 
established percentiles cut-offs to identify the one, five and ten percent hottest days across the 25 years.  
The first percentile contains days with daily average temperature above 87.5o F.  The fifth percentile 
contains days with daily average temperature above 83.1o F.  These two cut-offs in particular are of 
interest for the SmartAC program because they represent the days when the program is likely to operate 
for system-related reasons, and when meaningful impacts are generated. 

The historical weather data allow us to characterize the summer of 2007 in relation to past years, 
particularly the hot summer of 2006.  Based on counts of days above the three thresholds, 2007 was a 
typical summer compared to the ten previous summers. Figure 4-1 shows the range and median number 
of days at each threshold.  The 2007 counts are slightly above the median for the 1st percentile days but 
below for the 5th and 10th percentiles. 

Figure 4-1 
Comparison of Summer 2007 to Previous Decade, Count of Days in 1st, 5th and 10th Percentiles 
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The summer of 2006, along with 1998, had the highest number of day in the first percentile temperatures 
at or above 88o F.   The summer of 2007 only had half as many of these most extreme days compared to 
2006.  The summer of 2007 only had two thirds of the 5th percentile days compared to 2006. 
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Figure 4-2 shows the hottest days from the summer of 2007 with the 15 event days and the 11 learning 
days8.  This figure show the large number of events called during relatively mild conditions.  It also 
shows that there were non-event days across the spectrum of temperature.  Non-event days in all 
temperature ranges are essential for modeling purposes.  Finally, Figure 4-2 shows that a number of quite 
mild days were included as learning days for the TrueCycle technology. 

Figure 4-2 
Summer 2007 Hottest Days, Event Days and Learning Days 
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4.2 Overview of Analysis Methodologies 

For this evaluation, two different modeling approaches were used to estimate expected AC load on event 
days.  We used a basic load model to estimate load for units with the thermostat control technology.  In 
addition, a duty cycle model was used to estimate load for the switch participants. 

4.2.1 Load Model 

4.2.1.1 Basic Model 

The basic kW model estimates load as a function of dry bulb temperature in the form of average daily 
heating or cooling degree-days.  Using hour-specific dummy variables, the intercept and both degree-day 
measures are included in the model on an hour-specific basis. This means that each of the 24 hourly load 
                                                      
8 “Learning days” are days when the Program operators send a signal to the SmartAC Switches, to record the air 
conditioner’s activity on that day.  The devices use this information to implement adaptive load curtailments on 
event days.   
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indicator variables for each day are regressed against an hour-specific intercept term and degree-day term. 
The resulting parameters, though based on only a single daily temperature measure, provide an hourly 
estimate of load as a function of weather.  

Equation 1 
( ) ( )= + + +Hi Ciihd ih Hih d Cih d ihdL H Cα β τ β τ ε  

where 

Lihd = sum of 15-minute interval AC consumption at hour h of day d for unit i; 

Hd(τHi) = heating degree-days at the heating base temperature τHi for unit i on day d, based 
on daily average temperature; 

Cd(τCi) = cooling degree-days at the cooling base temperature τCi for unit i, on day d, based 
on daily average temperature; 

εihd = regression residual; 

αih, βHih, βCih = coefficients determined by the regression; and 

τHi τci = base temperatures determined by choice of the optimal regression. 

The degree-day variables are calculated as: 

Cd(τCi) = max((Fd - τCi),0) 

Hd(τHi) = max((τHi - Fd),0) 

The model is fit separately for each AC unit across a range of heating and cooling degree day bases. The 
ideal cooling base temperature is the minimum ambient temperature at which AC use begins and below 
which there tends to be no AC load. The ideal heating base temperature, where relevant, is the maximum 
ambient temperature above which there is no heating load. Base temperatures vary across premises 
because individuals’ indoor temperature preferences vary and because homes vary in their physical 
properties that influence indoor temperature.  

We also estimate the model with no heating parameters and no heating or cooling parameters as well.  We 
then compare all the different model specifications using an appropriate F-test to choose the combination 
with the best explanatory power for each premise.  

4.2.1.2 kW Model Load Estimates 

The optimal kW model for each unit includes a set of estimated parameters.  Depending on the optimal 
model chosen, the model may or may not include heating and cooling parameters.  The most common 
optimal model including only base and cooling parameters is provided in Equation 2. 
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Equation 2 

( )ˆˆ ˆ ˆ= + Ciihd ih Cih dL Cα β τ  

Where the hat variables on the right hand side represent estimated parameters from the regressions and 
ˆ

ihdL  is the estimated load for unit i in hour h on day d. 

The basic weather normalization model estimates a base load as well as heating and cooling parameters.  
Where AC load is the only dependent variable being modeled, we would expect this base load to be zero 
unless the AC unit is a heat pump, or there is some ongoing, low-level load used by the condenser.  In 
instances where the weather normalization model produced base load parameters that were, in aggregate, 
negative, we set the base load parameters to zero. This restricted weather normalization model is identical 
to the basic weather normalization model shown in Equation 2 except that it lacks the jhα parameters. 

4.2.2 Duty Cycle Modeling 

Duty cycle modeling directly estimates a unit’s duty cycle as a function of some weather variable. To do 
this kind of modeling, duty cycle must be derived from the logger data.  At the same time the unit’s 
connected load (full load kW) must also be derived so the duty cycle can be converted back to kW.  The 
resulting duty cycle-based modeling is amenable to estimating the impacts of program controls that 
function on the unit’s duty cycle. 

4.2.2.1 Deriving Duty Cycle and Connected Load 

Deriving duty cycle and connected load amounts to careful cleaning of one-minute logger data based on 
knowledge of how air conditioner units work.   

One-speed air conditioner compressors are either on or off. If the logger is truly recording only 
compressor load then each one-minute interval of kW is either zero or the full load kW for that unit.  Duty 
cycle, the percent of an hour the compressor is running, is easily calculated by counting the number of 
minutes in the hour during which the logger was at full load kW. 

Each unit’s non-zero full load kW can be expressed as a linear function of hourly temperature: 

Equation 3 
idh dhCL fα β= +  

where 

CLidh = Connected load for unit i for day d , hour h  

fdh = Dry bulb temperature for day d and hour h 

α, β = Estimated parameters 
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Equation 4 provides the equation for estimated connected load. The fit values of this equation represent 
the connected load for that unit across the full range of cooling temperatures.  In general, connected load 
increases approximately one percent per degree Fahrenheit increase. 

Equation 4  
 ididh fLC βα ˆˆˆ +=  

idhLĈ  = Connect load for unit i for day d , hour h 

fβα ˆ,ˆ  = Estimated parameters 

Plotting and performing this simple regression of logger data reveals that air conditioner data does, for the 
majority of intervals, conform to this simple structure.  The process also reveals readings that do not 
conform to this structure. Two kinds of data commonly fall in this category: 

• Fans and other auxiliary devices picked up by the logger, 

• High kW readings likely measuring the onrush of current as the compressor starts up. 

Data points representing each of these data issues are easily identified. Non-compressor loads picked up 
by the logger are generally small and have a distinct structure with regards to temperature.  The high data 
points are rare and randomly situated outside of the realistic bounds of compressor load.  Because there is 
so much data supporting the connected load relationship with temperature, both of these undesired 
readings are easily removed from the connected load regressions.  

Once the modeled definition of connected load is derived, a decision is made as to how these readings are 
characterized with regard to connected load.  Fans and other auxiliary loads below the level of connected 
load indicate the compressor is off.  The rare, random high loads are explained as a current onrush and 
deemed to represent a running compressor.  

In combination the duty cycle and connect load derived from the one-minute kW intervals fully represent 
the load used by a unit during any hour. 

4.2.2.2 Estimating Expected Duty Cycle 

The duty cycle component of the analysis consisted of estimating the expected duty cycle under a range 
of times and conditions. Duty cycle is a function of cooling demand. Cooling demand is, in turn, a 
function of the difference between the actual and desired internal temperatures of the cooled space. Actual 
temperature reflects the heat building up in the house over the course of the day. The desired internal 
household temperature is completely determined by human behavior as indicated by thermostat setpoints. 
Hourly duty cycle will reflect the combination of these two factors. 

To start, a simple linear relationship between duty cycle and temperature is hypothesized.  Daily average 
temperature provides the best measure of the daily heat load of a house. In this case, human behavior is 
too varied to account for directly in a statistical model. However, by estimating separate models for each 
hour between 12 noon and 10 PM, we can account for general patterns of behavior that might have 
changed over the hours of the afternoon. 
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The duty cycle analysis recognizes that the relationship between desired cooling and temperature is 
essentially linear, but the cooling provided cannot be less than zero or more than 100 percent of the unit’s 
capacity. We therefore use a statistical method that assumes an underlying unconstrained linear 
relationship of desired cooling, which would be negative (desired heating) at low temperatures and 
exceed 100 percent capacity at high temperatures. The theoretical unconstrained duty cycle also has 
random variation around the line. The observed duty cycle data are assumed to be the result of this 
underlying linear relationship with random noise, constrained to a minimum of zero and maximum of 100 
percent runtime.  

The model form that has this structure is a Tobit model. Details of the model structure and its application 
to the duty cycle analysis are provided in Appendix A.  

Figure 4-3 
Duty Cycle Model Schematic 
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Figure 4-3 illustrates the Tobit duty cycle model. The straight diagonal line represents the assumed 
underlying linear relationship between, in this case, expected unconstrained duty cycle and daily average 
temperature. The S-shaped curve shows how the model estimates the resulting constrained relationship 
between expected duty cycle and temperature. For any given temperature, the values on the S-shaped 
curve indicate the expected duty cycle. 
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4.2.2.3 Duty Cycle Model Load Estimates 

Load estimates for the duty cycle approach are calculated by combining duty cycle and connected load, as 
shown in Equation 5: 

Equation 5 

ihdidhihd LCCDL ˆˆˆ =  

4.2.3 Choice of Weather Data 

Daily average temperature is the primary weather variable used in the kW model.  Daily average 
temperature captures the range of temperatures experienced by the house through the day.  Houses are 
temperature integrators.  That is, they heat up and cool down more slowly than ambient temperatures.  
The previous night’s temperature is an important indicator of how much of the previous day’s heat the 
house shed during the night.  This information is equally as important as maximum temperature in the 
estimation of cooling load.   

KEMA also included humidity and lagged temperature variables in the modeling efforts using a 
temperature-humidity index and a weighted three day average temperature.  Our conclusions in the 
modeling process were that humidity plays a less significant role in driving cooling load in the Stockton 
area.  Lagged temperature variables, while more promising, did not improve estimates for enough units to 
justify the added complexity lagged temperatures bring to projected impacts. 

4.2.4 Impact Estimates 

The unit level savings regardless of estimation approach are calculated per Equation 6: 

Equation 6 
$= − ihdihd ihdS LL  

Both the kW model and the duty cycle model estimate load on an hourly basis as indicated in the equation 
above. The load data, however, were available on a quarter-hour basis. Kilowatt-hour impacts for each 
quarter-hour interval were calculated analogously to the hourly equations indicated above. For the 
quarter-hourly estimates, the load in each time increment was estimated used the load model coefficients 
for the hour that included that increment.  

Impacts were also calculated at the unit level for each hour and for the fully active period of the event. 
The first half hour of each event was left out of event level calculation because units are randomly 
activated through that first half hour and thus all units are not yet active.  The event level results do 
include through the official end of each event as that is the point at which units start returning to normal 
operation. 

Estimates of snapback include the 90 minutes starting 30 minutes after the official end of the event. Once 
again, the random nature of each unit’s start and end means that the first 30 minutes after the official end 
of the event will include a mix of controlled and un-controlled units. 
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4.2.5 Projected Impact Estimates for General Conditions 

4.2.5.1 Load Model Projections 

Projected impact estimates are derived from the unit-level kW models.  For any hour, daily average 
temperature and setpoint increase, the estimated impact is:  

Equation 7 

( )ˆ ˆ∆ ∆=if h CiCih fS Cβ τ
ur

 

where 

∆if hS
ur

 = Estimated impact for unit i for hour h at temperature f for temperature differential 
∆, and 

( )ˆ∆ CifC τ
 = The difference in cooling degree-days given the cooling base temperature τHi for 

unit i for hour h at temperature f for temperature differential ∆. 

If the daily average temperature is above the cooling degree day base then there will be impacts. Once the 
daily average temperature is more than the temperature differential above the degree day base then the 
projected impact becomes constant. 

4.2.5.2 Duty Cycle Model Projections 

The duty cycle reduction due to cycling control is the difference between the uncontrolled duty cycle and 
actual control level, if the uncontrolled duty cycle would be above that actual control level. Even when 
the expected duty cycle is below actual control level, there is some probability that the uncontrolled duty 
cycle would exceed actual control level because of random variation around the S-shaped expected duty 
cycle curve. Thus, the expected duty cycle reduction is positive even when the expected duty cycle itself 
is below actual control level.  
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The fitted Tobit model for each unit and time period allows estimation not only of the expected duty cycle 
but also of the expected duty cycle reduction as a function of temperature and actual control level.  Figure 
4-4 shows a plot with the natural duty cycle and duty cycle reduction representing two different levels of 
control.  Standard control is the flat, 50 percent control that has been commonly used by switch programs. 
The adaptive control effectively controls duty cycle to half the level of the natural duty cycle.  The duty 
cycles reduction associated with these two levels of control provide an approximate bound to the duty 
cycle reduction expected with the adaptive algorithm used by the adaptive switches installed for 
SmartAC.  Details of the specific calculations used are found in the Appendix. 

Figure 4-4 
Natural Duty Cycle with Duty Cycle reduction for 50 Percent and Adaptive Control 

 

4.2.6 Ratio Estimation 

Unit-level results must be expanded to represent the full program population.  The ratio estimation 
approach we used estimates impact per ton.  Ratio estimation has a number of advantages over a non-ratio 
based approach: Improved precision, lower bias due to changes in population composition and the 
requested direct estimate of impact per ton. 
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The ratio estimator is calculated as shown in Equation 8. 

Equation 8 
6

1 11
6

1 11

= ==

= ==

=
∑∑∑

∑∑∑
k c

k c

hd

n m

kci kcihd
c ik

n m

kci
c ik

kci
T

w SS
w T

 

where 

Skcihd = gross demand impact of the for CAC i in hour h on day d, 

Tkci = tons for CAC i in cluster c and strata k, 

wkci = sampling weight for impact of CAC i, identified as CAC k in cluster c of stratum q, 

k = stratum number with a total of nq clusters, 

c = cluster number within stratum k, 

i = CAC unit number within cluster c of stratum k,  

nk = number of clusters in stratum k, 

mc = number of units in cluster c, 

hdS  = gross demand impact of the average CAC in the program population in hour h at daily 
average temperature d, 

With sampling weights calculated as: 

Equation 9 
( )( )/ /kci k k kc kcw N n M m=  

 

nk = total number of clusters (sites) in meter sample, strata k, 

Nk = total number of clusters (sites) in program population, strata k, 

mkc = Number of CACs in meter sample, strata k and cluster c, 

Mkc = Number of CACs in program population, strata k and cluster c, 
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The ratio estimator result provides the estimate of unit load reduction per ton.  The final estimate of unit 
load reduction for the events of the summer are calculated as shown in Equation 10: 

Equation 10 

*= hd
hd T

T
SS  

Where *T is the average tons for the population on the day of the event.  Using the ratio estimator 
addresses concerns about bias resulting from sample drift as the program grows.  If the character of the 
population changes with respect to the size of the unit, then that change will be accounted for by using the 
average tons from the day of the event.  

In these equations h=hour but it also could be 15-minute intervals or the full event period.  Unit level data 
is aggregated to the desired level before combining across units with the ratio estimation process. 

4.3 Drivers of the Impact Results 

The results reported in Section 5 reflect the estimated per-unit impacts of the SmartAC program from a 
number of different perspectives.  While temperature is the fundamental driver of program impacts, a 
wide array of factors interact with temperature to determine how much impact the program will have 
under different conditions.  Three participation-related factors directly affect the potential impact of 
demand response programs: (1) non-use of the air conditioner, (2) device or signal failure and (3) event 
opt-out.  In addition, the different control strategies for thermostats also played a major role in the impact 
outcomes. 

4.3.1 Participation-Related Factors 

Non-use of air conditioners – To register reductions in usage an air conditioner has to be used.  Air 
conditioner usage is ultimately determined by customer behavior. Even at the hottest temperatures, there 
will be customers who use there air conditioner minimally or not at all.  Units that are never turned on 
and, thus, generate no savings, are included and reduce the impact estimates.   

Device or signal failure – This category encompasses any failure in the process of controlling an 
individual unit.  This could include the paging signal not being received by the switch or thermostat.  It 
could also be a failure of the control device to successfully control the unit despite receiving the broadcast 
signal.  In some older demand response programs, extremely high rates of control device/signal failure 
have been identified.  In a new program such as SmartAC, it is reasonable to expect relatively low failure 
rates. 

Control device and signal failure are accounted for in the estimated impacts reported above.  It is assumed 
that this kind of failure is present in the meter sample at level representative of failure in the population as 
a whole. Units experiencing this kind of failure will not be controlled and thus will decrease the overall 
estimated impact. 

Under certain circumstances, it is possible improve the accuracy of impact estimates by treating units with 
some form of failure as a separate group. This approach does not affect the estimated mean impact but it 
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can decrease the variation around that estimate. This results in lower standard errors and tighter 
confidence intervals. Some demand control programs use two-way technology that provides a 
confirmation of receipt of the paging signal.  This confirmation is available for all participants in the 
program population, not just the metered sample.  This population level signal failure data can be used to 
account for that failure without contributing to the error of the estimated impact.  The SmartAC program 
does not use technology with two-way capability.  The expected low failure rate in a program such as 
SmartAC would limit the increased accuracy gained with this approach. 

Event opt-out – Many demand response programs offer participants the option of over-riding (opting out 
of) program control when they so choose.  The over-ride option can be an important feature for selling 
demand response programs to customers.  There are a wide range of over-ride options used by different 
programs.  The initiation of the over-ride can take place at the thermostat or can involve internet or 
telephone access. In some programs, over-ride options include a monetary disincentive.  When over-ride 
has a low cost in terms of money or hassle, hot day over-ride rates can be as high as 50 percent.  When 
the over-ride option plays this kind of role in a program, it is essential to model its effect on the program 
directly. 

Event opt-outs for the SmartAC program were very few.  Over all fifteen EM&V events, there were only 
13 instances of over-rides by 7 meter sample participants.  Two of these participants eventually dropped 
out of the SmartAC program.  The opt-out option played such a small role in the 2007 EM&V SmartAC 
events that it was not possible to assess its effect as a separate driver of program savings.  The impact 
results presented in this report are based on all participants including those participants who opted-out 
and, thus, take into consideration opt out.  The projected results are based solely on the underlying unit-
specific models and do not account for potential future opt outs. 

As program participation extends beyond “early adopters”, and PG&E changes the solicitation and post-
installation materials provided to SmartAC participants to increase awareness of opt-out options, it is 
possible there will be an increase in the number of participants who choose to opt out of future program 
events.  
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5. Impact Evaluation Results 
This section presents the impact evaluation results.  We report results separately for each of the fifteen 
event days during the 2007 cooling season. The results include  

• Overall program impact estimates. 

• Impact per unit for each control technology, 

• Hourly results, overall and by control technology 

• Comparison between thermostat ramping strategies 

• Impact by site and unit characteristics 

• Projected impacts 

• Connected load, and 

• Snapback. 

As discussed in the methodology section, different modeling approaches were applied to the two control 
technologies. For the switch-based controls, we modeled duty-cycle (run-time) and connected load (kW 
when running) at the unit level, directly from one-minute interval data.  The duty cycle model facilitates 
modeling switch-based control strategies like the adaptive algorithm used by the SmartAC program. For 
thermostat controls, we modeled air conditioner kW as a function of weather variables at the unit level.  
The models provide a unit-specific estimate of load across the full range of temperature conditions.  

We use the terms “estimated impact” or “observed impact” to refer to the impact calculated as the 
difference between a baseline (calculated with our regression models) and the observed load at the time of 
an event. We use the term “projected impact” to refer to the impact predicted by our regression models 
under specific conditions.   
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5.1 Event Level Results 

Table 5-1 provides load impact estimates for the full SmartAC program, in order of observed descending 
daily average temperature.  The estimated demand reduction on the hottest event day generated an 
average of 1.21 kilowatts of load savings for each participating unit.  The five hottest event days 
generated impacts with statistical precision of 11 to 17 percent at the 90 percent confidence level. For 
August 31st, the statistical precision of 11 percent at the 90 percent confidence level indicates that if 
repeated samples were pulled from the SmartAC population, 90 percent of the time the estimated per unit 
impact would fall between +/- 11 percent of the this estimate of 1.21 kW per unit.  A common goal in 
impact evaluations is 90/10 precision or 10 percent precision at the 90 percent confidence level.  This 
level of precision is particularly challenging for run-time oriented end-use like air conditioners.  A 
precision of greater than 100 percent means the per unit estimate cannot be statistically distinguished 
from zero. 

Table 5-1 
Program Impact Results, Average Per-Unit kW per Event(*) 

Event 
Date

Event Day 
Daily Average 
Temperature Event Start

Event 
Duration

Per Unit 
Impact (kW)

Participating 
Units

Program Wide 
Impact (MW)

Confidence 
Interval 

Lower Bound 
(MW)

Precision at 
90 Percent 
Confidence 

(90/xx)
8/31/2007 88 2 PM 5 1.21 8,843 10.7 9.5 11%
8/30/2007 87 3 PM 4 1.02 8,809 9.0 7.8 13%
8/28/2007 84 3 PM 4 0.85 8,690 7.4 6.6 12%
8/21/2007 84 2 PM 5 0.71 8,306 5.9 5.1 13%
8/22/2007 83 2 PM 5 0.56 8,391 4.7 3.9 17%
7/23/2007 81 12 PM 4 0.18 6,566 1.2 0.6 44%
8/10/2007 78 2 PM 4 0.35 7,613 2.6 2.1 20%
8/1/2007 77 2 PM 4 0.04 7,049 0.3 -0.2 > 100%

7/27/2007 76 2 PM 4 0.06 6,825 0.4 0.0 97%
8/9/2007 75 2 PM 4 0.12 7,523 0.9 0.5 43%

7/26/2007 75 2 PM 4 -0.01 6,757 -0.1 -0.5 > 100%
9/26/2007 74 2 PM 5 0.30 10,344 3.1 2.6 16%
9/10/2007 74 4 PM 3 0.06 9,297 0.5 0.0 > 100%
7/17/2007 73 12 PM 5 -0.02 6,215 -0.2 -0.4 > 100%
7/12/2007 71 2:30 PM 3.5 -0.01 5,949 0.0 -0.3 > 100%  

(*) Event Averages do not include the first half hour of the event period when all participants are not yet activated. 

Impact results are estimated using the difference between site-level estimated load or duty cycle and 
actual load or duty cycle.  On mild days when there is little cooling there may be effectively no savings.  
In these cases, the per-unit impact represents the model error relative to observed load.  When this is the 
case small negative impact results are possible. 
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Table 5-2 presents results by control device.  On the hottest event day of the summer, August 31, 2007, 
the average impact for the switch control is 50 percent higher than the average impact for the thermostats.  
Over the five hottest days, the average impact for the switch controls is almost twice the average impact 
for the thermostats.  These hot day impact differences between thermostats and switches are all 
statistically significant. 

Table 5-2 
Thermostat and Switch Impact results, Average Per-Unit kW per Event 

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 90 
Percent 

Confidence 
(90/xx)

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 
90 Percent 
Confidence 

(90/xx)
8/31/2007 88 0.89 0.11 21% 1.34 0.10 12% X
8/30/2007 87 0.48 0.11 38% 1.24 0.11 14% X
8/28/2007 84 0.45 0.09 33% 1.02 0.08 12% X
8/21/2007 84 0.51 0.08 27% 0.79 0.07 15% X
8/22/2007 83 0.27 0.09 52% 0.68 0.07 18% X
7/23/2007 81 0.10 0.09 > 100% 0.20 0.06 46%
8/10/2007 78 0.25 0.06 42% 0.38 0.05 22% X

8/1/2007 77 -0.02 0.08 > 100% 0.07 0.05 > 100%
7/27/2007 76 0.00 0.07 > 100% 0.09 0.04 86%

8/9/2007 75 0.20 0.05 38% 0.08 0.04 75% X
7/26/2007 75 0.03 0.07 > 100% -0.02 0.04 > 100%
9/26/2007 74 0.34 0.05 25% 0.28 0.04 21%
9/10/2007 74 0.08 0.06 > 100% 0.05 0.05 > 100%
7/17/2007 73 0.00 0.04 > 100% -0.03 0.03 > 100%
7/12/2007 71 -0.09 0.04 79% 0.02 0.03 > 100% X

Event 
Date

Event Day 
Daily 

Average 
Temperature

Thermostat Participants Switch Participants Per-Unit 
Impact 

Difference 
Statistically 
Significant

 
(*) Thermostat control results are a combination of the two ramping strategies used by the program.   

The sample was designed to achieve 10 percent precision at the 90 percent confidence level for overall 
program results.  Results at the control technology level were not expected to attain this level of precision. 
The results in Table 5-2 illustrate that variation across units with thermostat control is generally greater 
than the variation across units with switch control.   

5.2 Impact at Time of System Peak 

PG&E experienced its 2007 system peak on August 29th at 5pm.  This day was not a SmartAC EM&V 
event day9.  August 28th, 30th and 31st were event days.  Because of the proximity of these event days to 
the day of the system peak, these days provide the best indication of potential program impact at the time 
of the system peak.    

                                                      
9 SmartAC EM&V event days were scheduled on the day prior to the event.  This is addressed in the Process Report 
that is part of the SmartAC evaluation project.   
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Table 5-3 and Figure 5-1 provide hourly impact estimates for the SmartAC program for the three days 
around the day of the system peak.  These are also the three hottest event days of the summer of 2007.  
The system peak took place at 5 pm.  The lowest average kW reported at this time was 0.78 kW on 
August 28th.  The highest average kW was 1.23 kW on the 31st.  These hours have precision levels of 12 
to 15 percent at ninety percent confidence.  

Table 5-3 
Program Impact results, Average Per-Unit kW per Hour on Hottest Event Days 

Event Date
Hour 

Ending

Per Unit 
Impact 
(kW)

Participating 
Units

Program 
Wide 

Impact 
(MW)

90 Percent 
Confidence 

Interval Lower 
Bound (MW)

Precision at 90 
Percent 

Confidence 
(90/xx)

3 PM 0.70 8,843 6.2 4.9 21%
4 PM 1.01 8,843 8.9 7.6 14%
5 PM 1.23 8,843 10.9 9.6 12%
6 PM 1.40 8,843 12.3 11.0 11%
7 PM 1.44 8,843 12.7 11.6 9%
4 PM 0.73 8,809 6.4 5.2 20%
5 PM 0.99 8,809 8.7 7.4 15%
6 PM 1.13 8,809 9.9 8.6 13%
7 PM 1.08 8,809 9.5 8.3 13%
4 PM 0.71 8,690 6.2 5.1 17%
5 PM 0.78 8,690 6.8 5.8 14%
6 PM 0.93 8,690 8.1 7.1 12%
7 PM 0.92 8,690 8.0 7.1 12%

8/31/2007
Temperature: 
Average = 88

Maximum = 98

8/30/2007
Temperature: 
Average = 87

Maximum = 100
8/28/2007

Temperature: 
Average = 84

Maximum = 99  
(*) Participating units are number of residential units enrolled in the program on the day of the event 

Figure 5-1 shows the increase in impacts across the days and the trend of impacts across the hours on 
each of the three event days.  August 29th, the day of the system peak, had a daily average temperature of 
89°F for the EM&V sample sites.  The maximum temperature for that day was 103°F, between the hours 
of 4 and 6 pm.  Air conditioner usage and measured impacts generally increase as heat waves extend to 
multiple days. This is clearly the case for this four day period. This trend would point to a system peak 
impact estimate falling between the estimates of the 28th and 30th.  The 5 PM midpoint between these two 
days is 0.88. 
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Figure 5-1 
Program Impact Results, Average Per-Unit kW Reduction per Hour on the  

Three Hottest Days of the Load Impact Evaluation 
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On the other hand, August 29th, the day of the peak and the second of the four-day heat wave, was the 
hottest. It was a half a degree hotter in terms of daily average temperature than August 31st, the next 
hottest of the four and last in the four day sequence.  If temperature alone was considered the driver then 
the average kW estimates of 1.23 and 1.40 kW from August 31st would be the best proxy values for the 
system peak estimated impact.  
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Table 5-4 and Figure 5-2 provide results by control device.  These data reinforce the event-level results 
indicating higher impacts from the switches. 

Table 5-4 
Thermostat and Switch Impact Results, Average Per-Unit kW per Hour on Hottest Event Days 

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 
90 Percent 
Confidence 
(90/xx)

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 
90 Percent 
Confidence 
(90/xx)

3 PM 0.17 0.13 > 100% 0.93 0.11 20% X
4 PM 0.58 0.12 34% 1.19 0.11 16% X
5 PM 0.87 0.14 27% 1.39 0.11 13% X
6 PM 1.15 0.13 19% 1.50 0.11 13% X
7 PM 1.32 0.13 16% 1.49 0.10 11%
4 PM 0.03 0.13 > 100% 1.02 0.11 18% X
5 PM 0.37 0.13 60% 1.25 0.11 15% X
6 PM 0.69 0.14 33% 1.31 0.12 15% X
7 PM 0.62 0.13 34% 1.27 0.10 14% X
4 PM 0.24 0.12 83% 0.90 0.09 17% X
5 PM 0.36 0.12 54% 0.96 0.08 14% X
6 PM 0.59 0.11 31% 1.07 0.09 14% X
7 PM 0.52 0.11 36% 1.09 0.08 12% X

Event Date

8/31/2007
Temperature: 
Average = 88

Maximum = 98

8/30/2007
Temperature: 
Average = 87

Maximum = 100
8/28/2007

Temperature: 
Average = 84

Maximum = 99

Per-Unit 
Impact 
Difference 
Statistically 
Significant

Hour 
Ending

Thermostat Participants Switch Participants

 

Of greater interest, Figure 5-2 shows that the two devices have different impact trends through the hours 
of the events.  The thermostat impacts are much lower than the switch impacts during the early hours.  By 
the last hour of the events, the difference is reduced, and in the case of August 31st, substantially so. 

Figure 5-2 
Thermostat and Switch Impact Results, Average Per-Unit kW per Hour on Hottest Days 
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This result is unexpected given the ramping strategies employed by the program.  Generally thermostat 
impacts for un-ramped controls are “front-loaded”.  The largest impacts come early in the event when all 
units are off as the house temperatures increase to the new set point.  Once units turn back on to maintain 
the house temperature at the higher set point, the impacts moderate.  Ramping strategies are employed to 
address this issue.  The ramping smoothes out the initial high impacts across the whole event period.  The 
evidence here indicates that an initial one degree increase might be too small to generate early impacts.  It 
also suggests that other factors, such as home occupancy at the time of the event, may be different for 
each of the technology groups.   

5.3 Comparison of Thermostat Ramping Strategies 

Thermostat sample participants were randomly assigned to two groups, and stayed in the same group 
throughout the summer.  The two thermostat control strategies were applied to these two thermostat 
groups alternately.  This alternation was designed to control for differences in the thermostat subgroups in 
the overall load modeling.  Even with the random assignment, it is evident from these results that one of 
the subgroups consistently generated greater impacts than the other.  For instance, all of the days when 
the two strategies are statistically different are days when the group with greater impacts received the 
“steep” ramp strategy. 

Table 5-5 provides the results for the two ramp strategies. As expected the “steep” strategy has higher 
impacts for all of the five hottest days.  On only two of these days, however, is the difference between the 
two strategies statistically significant. 

 

Table 5-5 
Gradual and Steep Thermostat Ramp Strategy results, Average Per-Unit kW per Event 

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 90 
Percent 
Confidence 
(90/XX)

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 
90 Percent 
Confidence 
(90/XX)

8/31/2007 88 0.93 0.15 27% 0.85 0.17 33%
8/30/2007 87 0.23 0.15 > 100% 0.75 0.17 38% X
8/28/2007 84 0.38 0.11 47% 0.53 0.15 47%
8/21/2007 84 0.39 0.11 47% 0.64 0.12 33%
8/22/2007 83 0.10 0.12 > 100% 0.44 0.12 46% X
7/23/2007 81 0.24 0.11 79% -0.04 0.13 > 100%
8/10/2007 78 0.23 0.08 58% 0.27 0.10 61%
8/1/2007 77 -0.24 0.13 88% 0.19 0.10 86% X

7/27/2007 76 0.03 0.09 > 100% -0.03 0.10 > 100%
8/9/2007 75 0.13 0.07 92% 0.28 0.06 38%

7/26/2007 75 -0.01 0.10 > 100% 0.07 0.10 > 100%
9/26/2007 74 0.34 0.05 25%
9/10/2007 74 -0.08 0.09 > 100% 0.25 0.08 56% X
7/17/2007 73 0.01 0.05 > 100% -0.01 0.07 > 100%
7/12/2007 71 -0.09 0.04 79%

Event 
Date

Event Day 
Daily Average 
Temperature

Gradual Ramp Steep Ramp Per-Unit 
Impact 

Difference 
Statistically 
Significant
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Table 5-6 and Figure 5-3 focus on the hourly results for the three hottest event days of the 2007 cooling 
season.  These results repeat the findings presented above at the event level.  Only during the August 30th 
event did the steep ramp provide statistically significantly higher impact results, and then only in the last 
three hours.  As stated above, this appears to reflect differences in the two thermostat subgroups in 
addition to the difference in ramping strategies. 

Table 5-6 
Gradual and Steep Thermostat Ramp Strategy results, Average Per-Unit kW per Hour on Hottest 

Event Days 

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 
90 Percent 
Confidence 
(90/xx)

Per- Unit 
Impact 
(kW)

Standard 
Error

Precision at 
90 Percent 
Confidence 
(90/xx)

3 PM 0.19 0.18 > 100% 0.14 0.19 > 100%
4 PM 0.68 0.16 40% 0.49 0.18 62%
5 PM 0.99 0.19 31% 0.75 0.22 48%
6 PM 1.06 0.17 27% 1.24 0.21 28%
7 PM 1.34 0.17 21% 1.29 0.19 25%
4 PM -0.09 0.19 > 100% 0.15 0.17 > 100%
5 PM 0.13 0.18 > 100% 0.60 0.19 53% X
6 PM 0.45 0.17 64% 0.94 0.22 38% X
7 PM 0.25 0.19 > 100% 1.00 0.17 29% X
4 PM 0.25 0.17 > 100% 0.24 0.18 > 100%
5 PM 0.30 0.15 82% 0.42 0.19 74%
6 PM 0.48 0.14 49% 0.71 0.17 41%
7 PM 0.43 0.12 45% 0.60 0.20 54%

Gradual Ramp Steep Ramp

Event Date

8/31/2007
Temperature: 
Average = 88
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8/30/2007
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Average = 87
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Figure 5-3 
Gradual and Steep Thermostat Ramp Strategy results, Average Per-Unit kW per Hour on Hottest 

Event Days 
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5.4 Load Reduction by Site and Unit Characteristics 

This section examines in more detail the difference in load reduction across the two control device 
populations.  These differences could reflect the differences between these two self-selected populations 
(since Program participants had a choice between each of the two devices) or differences in the control 
technologies. 

The following figures compare the thermostat and switch load reduction results across two important unit-
level categories:  

• Unit size of less than four tons vs. unit size of four tons or more, and 

• Single vs. multiple AC units 

5.4.1 Large vs. Small AC Units 

This evaluation looked at impact per ton relative to unit size for the two different control technology 
groups.  The results are consistent with the expected interaction between control technology and 
oversized AC units. 

If all units are properly sized we expect similar usage per ton regardless of unit size.  All else being equal, 
impact per ton should also be similar across different sized units.  The different control technologies limit 
usage in different ways, but with right sizing that limitation should be consistent across unit size.   

This consistency across size changes if oversizing is present to a higher degree in larger units.  An 
adaptive switch will, at best, reduce usage by a consistent 50 percent regardless of sizing.  However, an 
oversized unit by definition has lower usage per ton, thus lower impact per ton.  If more oversized units 
are present in the large AC category then we would expect per ton impacts to be lower for that category 

To the contrary, within the range of normal usage the thermostat control has a constant effect regardless 
of unit size.10  Figure 5-4 and Figure 5-5 compare two size groups for each kind of control device on the 
five hottest days of summer 2007. If oversizing is present in the population, it is more likely to be in the 
larger size group.   

                                                      
10 At extremes this will not be the case.  If a unit is running constantly and not keeping the house cool then an 
increase in setpoint may not lower usage at all.  This has the effect of lowering impacts for undersized units. 
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Figure 5-4 
Thermostat Control Load Reduction per Ton, Large vs. Small Units 
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In Figure 5-4, for units with thermostat controls, there is no consistent pattern of per-ton load reduction 
comparing large and small units.  None of the differences are statistically significant.  This is consistent 
with the constant thermostat control effect. 
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In Figure 5-5, for units with switch controls, small unit per ton load reduction is higher than large unit 
load reduction for all five days.  The difference is statistically significant for two of the five days.  
Assuming a presence of oversize units in the population, this is consistent with the expected sensitivity of 
switches to oversizing. 

Figure 5-5 
Switch Control Load Reduction per Ton, Large vs. Small Units 
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* Dates with stripes, subgroup results are statistically different 

These findings are only suggestive.  The differences between the two control technology groups may 
extend to rates of oversizing.  Assuming oversizing is equally distributed, and also that the larger size 
group is more likely to contain oversized units, then these results support our hypothesis.  More 
importantly, these results point to the need for further exploration of the effect of oversizing on control 
method efficacy. 

5.4.2 Single vs. Multiple AC Units 

The presence of multiple air conditioning units is also a potential driver of load reduction.  The general 
concern is that households with multiple AC will deliver lower load reduction per ton.  This can be 
explained by secondary units that are programmed to run during limited hours or because control periods 
are not synchronized.  We find evidence of this for the SmartAC program, but it is only consistent and 
statistically significant for the households with switch controls. 
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Figure 5-6 and Figure 5-7 show per-ton load reduction for the five hottest event days of the summer for 
single and multiple unit households.  For thermostat households, multiple unit household load reduction is 
similar to single unit household load reduction.  On all five of these days the difference between single 
and multiple AC households is not statistically significant. 

Figure 5-6 
Thermostat Control Load Reduction per Ton, Single vs. Multiple Units 
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For households with switch control, those with multiple units supply approximately half the load 
reduction per ton of the single unit household units.  On all five days, the difference is statistically 
different. 
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Figure 5-7 
Switch Control Load Reduction per Ton, Single vs. Multiple Units 
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* Dates with stripes, subgroup results are statistically different 

These differences across the two self-selected populations are dramatic.  Both cooling behavior and 
control technology are at work here. Control technology effects alone are unlikely to cause this substantial 
difference. 

5.5 Projections for 2008 

One of the purposes of this evaluation was to establish predicted load reductions across a range of 
temperatures, durations and start-times.  These projections may be used for planning purposes for summer 
2008.  These per-unit projections multiplied by the number of units active for summer 2008 events give 
estimates of program load reductions. 

The control strategies used for both switches and thermostats create challenges for calculating projected 
impacts.  Both thermostat ramping strategies as well as the adaptable switching algorithm introduce 
control elements that are difficult to generalize.  The ramping strategies, for instance, are specific to both 
the hour of the day as well as the hour of the event.  The projected impact during the hour ending at 5 pm 
will differ depending on when the event started as well as the daily average temperature and ramping 
strategy.  The TrueCycle technology is even more difficult to account for as it is a unit-specific learning 
algorithm that adapts to unit usage as the summer progresses. 

5.5.1 Switch Projections for 2008 

The TrueCycle adaptive algorithm makes impact projections for units with switch controls more 
challenging. Projections always take models based on specific data (in this case, summer 2007) and 
project results across a range of scenarios. With the TrueCycle adaptive algorithm, the impacts will vary 
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depending on when the control day takes place relative to area weather. More specifically, impacts will 
reflect individual unit duty cycle on the days that have been chosen for “learning” purposes up to that 
date.   

Our solution to this dilemma is to provide a range of potential impacts.  The impacts at the low end of the 
range reflect the default behavior of the TrueCycle technology; that is, a standard 50 percent control, with 
no improvements through “learning”.  The impacts at the high end of the range reflect effective control at 
half of the expected duty cycle from our unit-level, hour-specific duty cycle models. This can be thought 
of as the level of control based on a regression-based learning algorithm using data from the whole 
summer. 

5.5.1.1 Projected Impacts for Switch Participants 

Figure 5-8 illustrates the duty cycle-based projections for switch participants.  The low projected impacts 
represent a standard, flat 50 percent control.  The high projected impacts represent an adaptive control 
with an effective control of half the expected duty cycle from our duty cycle models.  The observed 
impacts from the summer 2007 program are shown to illustrate where they fall relative to the projected 
ranges.  Table 5-7 provides the impact projections in tabular form. 

Figure 5-8 
Impact Projections for Switch Participants with Summer 2007 Estimated Impacts 
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Table 5-7 
Impact Projections for Switch Participants 

Stockton Daily 
Average 

Temperature

Projected 
Impact - 

Low

Projected 
Impact - 

High
80 0.30 0.68
81 0.37 0.77
82 0.45 0.86
83 0.54 0.95
84 0.63 1.03
85 0.72 1.12
86 0.82 1.20
87 0.92 1.28
88 1.02 1.37
89 1.11 1.44
90 1.21 1.51
91 1.30 1.58
92 1.39 1.63
93 1.46 1.69
94 1.54 1.74  

If a real-time learning algorithm is working, it is reasonable to expect an improvement in control over the 
course of the season.  Results earlier in the season will be closer to the low projections as the learning 
algorithm will have little data from which to diverge from the default 50 percent control.  Results later in 
the cooling season, provided a large number of hot days have taken place, will be closer to the high 
projections.  The results in Figure 5-8 illustrate this trend.  The three highest impacts are also the three 
latest event contained in this figure.  They fall substantially closer to the high projections than the other, 
earlier events. 

The high projections produced by the duty cycle models are not designed to reproduce the TrueCycle 
algorithm.  The duty cycle models reflect the unit level data from the whole summer.  The TrueCycle 
algorithm only has learning day data from dates previous to the event.  In addition, the SmartAC 
technology vendor indicates that learning days are integrated into the expected duty cycle with a weight 
of 1/8.  Only after 8 learning days will the default assumptions be completely removed from TrueCycle 
expected duty cycle.  This indicates that the high range projections will tend to over-estimate impacts 
earlier in the season.   

In fact, there is some possibility that both full season duty cycle projections will over-estimate early 
season impacts. At the same temperatures, there tends to be less cooling early in the season. The duty 
cycle models have a tendency to project late summer cooling behavior into those early summer periods 
potentially overestimating expected duty cycle and thus overestimating impacts. The low estimated 
impact on Figure 5-8 corresponds to July 23rd: it is not an early summer event, but it followed more than 
two weeks of moderate temperatures. 
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5.5.2 Thermostat Impact Projections for 2008 

The impact projections for participants with thermostat controls are derived from the kW modeling used 
to estimate program impacts.  The models provide an estimate of average air conditioner load as a 
function of degree days.  The model optimizes the choice of degree day base thereby identifying, on 
average, the outdoor temperature above which the air conditioner starts to be used.  Above that 
temperature, the model indicates the average load used for cooling for each temperature level. 

The impact projections for units with thermostat control uses outdoor temperature differential as a proxy 
for indoor thermostat setpoint increase.  This approach assumes a three degree increase in setpoint is 
analogous to cooling the house at an outdoor temperature decreased by three degrees.  This approach has 
provided reasonable projections for non-ramped setpoint increases.  The innovation needed to 
accommodate ramping strategies is the use of hour-specific estimates of load differential for different 
temperature differentials.   

The projections addressed two ramping strategies applied to events starting at many different hours.  As a 
solution, for the purpose of projections, KEMA constructed a model event based on the most common 
start time of events in summer 2007, which was 2 pm.  We generated projections for each of the ramping 
strategies for an event starting at 2 pm. 
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Figure 5-9 illustrates the kW model-based projections for thermostat participants.  The projected impacts 
of the two ramping strategies are indicated by the crosses and flat lines.  The flat lines represent the 
projected impact for the gradual ramping strategy while the higher crosses represent the steep ramping 
strategy.  Estimated impacts for the two ramping strategies from the summer 2007 program are shown to 
illustrate where they fall relative to the projected values for each ramping strategy   Table 5-8 provides the 
impact projections in tabular form. 

Figure 5-9 
Impact Projections for Thermostat Participants with Summer 2007 Estimated Impacts 
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Table 5-8 
Impact Projections for Thermostat Participants 

Stockton 
Daily Average 
Temperature

Projected 
Impact -
Gradual 
Ramp

Projected 
Impact -
Steep 
Ramp

80 0.27 0.40
81 0.29 0.42
82 0.30 0.44
83 0.30 0.45
84 0.30 0.46
85 0.31 0.47
86 0.31 0.47
87 0.32 0.48
88 0.32 0.48
89 0.32 0.48
90 0.32 0.48
91 0.32 0.48
92 0.32 0.48
93 0.32 0.48
94 0.32 0.48  

 

There are two noticeable features of the kW model impact projections compared to the duty cycle model 
projections: 

1. Unlike the switch unit projections, the projections for both ramping strategies level off above 
87°F.  The leveling off of the projected impacts at higher temperatures is an expected feature of 
setpoint increase-based controls.  A setpoint increase, ramped or not, should have the same 
approximate effect on duty cycle across the range of temperatures at which the unit is running.  
As expected, load increases with ambient temperature.  That increase, however, is gradual at only 
one percent per one °F outdoor temperature and can easily be masked by the use of daily average 
temperature as the explanatory variable and the averaging of impacts over many hours.  The 
increase in projected impacts as daily average temperature increases up to 87°F is actually the 
result of additional units in operation and, thus, being controlled.  Above 87°F average daily 
temperature, all units that ever operated during the summer of 2007 are projected to be operating, 
and thus impacts level out. 

2. The observed impacts on six hottest days appear to vary widely from the projected levels.  The 
variability of the observed impact estimates is important to take into consideration.  In this sense, 
Figure 5-9 does not inspire as much confidence as Figure 5-8, above.  Only the four event/ ramp 
strategy combinations with impacts over 0.6 kW (and the one negative event) are statistically 
different than the projected impacts.  It is possible that these more extreme results can be 
explained by factors outside the capabilities of our models.   

The projected impacts reported here clearly underestimated observed impacts on the hottest days of 2007.  
This points to a need to refine the underlying model that generates the basis for both the estimated and the 
projected impacts.  The data currently available does not support such refinement, but it may be possible 
when additional data becomes available in the summer of 2008.   
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5.6 Connected Load  

The impact analysis for units with switch control directly estimates unit connected load as a function of 
hourly temperature.  Connected load, the kW draw of a unit when cooling, generally increases linearly 
with the ambient temperature.   Different makes and sizes of units will have unique levels and slopes 
characterizing their connected load.  Section 4.2.2 discusses the derivation of connected load as part of 
the duty cycle modeling approach 

Table 5-9 presents the population average connected load for three important hourly temperature 
benchmarks.  An hourly temperature of 81°F represents the low end of possible cooling weather.  Our 
analysis found very little cooling activity at daily average temperatures consistent with a maximum 
temperature of 81°F.   

Table 5-9 
Connected Load (kW) by Hourly Temperature 

Hourly 
Temperature

Connected 
Load (kW)

Standard 
Error

Precision at 90 Percent 
Confidence (90/xx)

81 3.6 0.09 4%
91 3.9 0.09 4%

101 4.1 0.10 4%  

A maximum temperature of 91°F is consistent with a daily average temperature of about 79°F.  This is the 
temperature above which the program generated meaningful savings.  A maximum temperature of 101°F 
or more happens only on the most extreme days.  Only one day in the summer of 2007 had maximum 
temperatures over 101°F across the Stockton area.  The hottest day of summer 2007, and the event day 
with the greatest measured impacts, exhibited a maximum temperature of 103°F with a daily average 
temperature of 88°F.   The increase in load across this temperature span (between a daily maximum 
temperature of 81°F and a daily maximum temperature of 101°F) is 14 percent.  This result applies only 
to units with switch controls that had enough usage to establish a unit–level connected load. 

5.7 Snapback 

The results provided in this report show that the SmartAC program successfully reduced air conditioning 
load during the event periods.  Positive program impacts indicate that in the absence of the program the 
air conditioning units would have provided additional cooling.  At the end of an event, it is not 
uncommon for units to compensate for the lost cooling over the previous hours. This can lead to a 
program-induced increase in load after the event, over what would have happened during those hours had 
there been no event.  This greater than normal load during the post-event period is referred to as 
snapback. 
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Table 5-10 reports the program-wide snapback results for all event days.  The results are reported in a 
manner that is consistent with the load reduction results.  That is, load reduction is expressed as a positive 
number while a snapback-related increase in load is expressed as a negative number.  

Table 5-10 
Estimated Program Snapback results, Average Per-Unit kW per Event(*) 

Event 
Date

Event Day 
Daily Average 
Temperature Event Start

Event 
Duration

Per Unit 
Snapback 

(kW)
Participating 

Units

Program Wide 
Snapback 

(MW)

Confidence 
Interval 

Lower Bound 
(MW)

Precision at 
90 Percent 
Confidence 

(90/xx)
8/31/2007 88 2 PM 5 0.18 8,843 1.6 2.8 79%
8/30/2007 87 3 PM 4 -0.37 8,809 -3.2 -2.1 35%
8/28/2007 84 3 PM 4 -0.20 8,690 -1.8 -0.6 64%
8/21/2007 84 2 PM 5 -0.26 8,306 -2.2 -1.1 51%
8/22/2007 83 2 PM 5 -0.64 8,391 -5.4 -4.3 20%
7/23/2007 81 12 PM 4 -0.22 6,566 -1.4 -0.6 57%
8/10/2007 78 2 PM 4 -0.08 7,613 -0.6 0.2 > 100%
8/1/2007 77 2 PM 4 -0.68 7,049 -4.8 -3.9 19%

7/27/2007 76 2 PM 4 -0.59 6,825 -4.0 -3.1 23%
8/9/2007 75 2 PM 4 -0.40 7,523 -3.0 -2.2 27%

7/26/2007 75 2 PM 4 -0.49 6,757 -3.3 -2.6 22%
9/26/2007 74 2 PM 5 0.16 10,344 1.7 2.2 31%
9/10/2007 74 4 PM 3 -0.05 9,297 -0.5 0.1 > 100%
7/17/2007 73 12 PM 5 -0.34 6,215 -2.1 -1.4 33%
7/12/2007 71 2:30 PM 3.5 -0.22 5,949 -1.3 -0.8 38%  

(*) Snapback period starts 30 minutes after event time and last for 90 minutes. 

Snapback was estimated for the 90 minutes following the immediate 30 minutes after the end of the event.  
The first 30 minutes after the end of the event are removed from the analysis to account for the random 
start/stop that is implemented by each device.  

The estimated snapback results range from an increase of almost 0.68 kW per unit to an apparent 
continued post-event decrease of load of 0.18 kW.  While the load reduction estimates are highly 
correlated with daily average temperature (the correlation coefficient is 0.92), the snapback results are not 
(the correlation coefficient is 0.10).  This is somewhat counter-intuitive as the post-event cooling load 
should be driven by temperature as is the load reduction. In fact, on the hottest day and the day with the 
greatest load reduction, there was no snapback effect. On that day a low level load reduction effect 
appears to have continued through the snapback period. 
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These snapback results provide an indication of a potential issue with the weather model estimated load 
on some of the event days. An over-estimated baseline load will overestimate the load reduction and 
underestimate the snapback. At the opposite extreme, an underestimated baseline load will underestimate 
the load reduction but overestimate the snapback.  Table 5-11 shows there were four days with daily 
average temperatures in the mid-70s with almost no recorded load reduction but substantial snapback. 
There is also a day with an extremely high temperature, and no snapback.  These examples indicate that 
our models underestimate load reduction in the low range of cooling temperatures while they over-
estimate load reduction at the highest temperatures.  This is consistent with using a linear estimate of a 
relationship that should have a non-linear shape.  There is, in fact, less evidence of this problem when 
comparing the switch participant results which are modeled non-linearly with a Tobit model of duty 
cycle. 

Table 5-11 
 Program Load Reduction vs. Snapback, Per Unit kW 

Impact 
(MW)

Snapback 
(MW)

Impact 
(MW)

Snapback 
(MW)

 Impact 
(MW)

Snapback 
(MW)

8/31/2007 88 2 PM 5 1.2 0.2 0.9 0.3 1.3 0.1
8/30/2007 87 3 PM 4 1.0 -0.4 0.5 -0.1 1.2 -0.5
8/28/2007 84 3 PM 4 0.9 -0.2 0.5 0.0 1.0 -0.3
8/21/2007 84 2 PM 5 0.7 -0.3 0.5 -0.3 0.8 -0.3
8/22/2007 83 2 PM 5 0.6 -0.6 0.3 -0.5 0.7 -0.7
7/23/2007 81 12 PM 4 0.2 -0.2 0.1 -0.2 0.2 -0.2
8/10/2007 78 2 PM 4 0.3 -0.1 0.2 -0.3 0.4 0.0
8/1/2007 77 2 PM 4 0.0 -0.7 0.0 -0.9 0.1 -0.6

7/27/2007 76 2 PM 4 0.1 -0.6 0.0 -0.4 0.1 -0.6
8/9/2007 75 2 PM 4 0.1 -0.4 0.2 -0.5 0.1 -0.4

7/26/2007 75 2 PM 4 0.0 -0.5 0.0 -0.6 0.0 -0.5
9/26/2007 74 2 PM 5 0.3 0.2 0.3 0.2 0.3 0.2
9/10/2007 74 4 PM 3 0.1 -0.1 0.1 0.0 0.0 -0.1
7/17/2007 73 12 PM 5 0.0 -0.3 0.0 -0.5 0.0 -0.3
7/12/2007 71 2:30 PM 3.5 0.0 -0.2 -0.1 -0.4 0.0 -0.2

Program Wide Thermostat Participants Switch Participants
Event 
Date

Event Day 
Daily Average 
Temperature Event Start

Event 
Duration
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6. Conclusions 
The SmartAC program allows participants to choose the control technology with which they will 
participate in the program.  As discussed in section 3, the quite different characteristics of the two 
technologies are likely to drive participant choice of control technology.  As participants self-select into 
the two control technology groups, those groups may be quite different with respect to participant 
characteristics that affect AC usage or program performance.  In addition, the control strategies applied 
by the program are difficult to compare ex ante.  For both these reasons, comparing results between the 
two control technologies is not a formal comparison of the effectiveness of the two technologies. 

6.1.1 Control Strategy  

All reported results indicate a higher level of impact for participants with switch control technology. 
These results reflect different ex ante control levels.  The adaptive cycling was set at 50 percent.  The 
most common cycling strategies range from 33 to 50 percent.  The level chosen for use by SmartAC was 
at the higher end of similar DLC programs. In addition, the adaptive nature of the TrueCycle technology 
only improves the efficacy of the switch control relative to the standard 50 percent cycling regime.   

The thermostat controls used ramping strategies.  Both strategies increased in single degree increments 
and topped out at a maximum of a three degree set point increase.  The “steep” ramping strategy reached 
the three degree set point increase in the third hour.   The “gradual” strategy reached the third degree in 
the fifth hour, when the control event was about to end, or not at all in situations where the event lasted 
four hours or less.  Ramping strategies are still relatively new.  They are used either to improve 
participant comfort or smooth the load impacts over the event, or both.  The hourly impact results for the 
combined ramping strategies indicate that thermostat impacts were relatively lower than switch impacts 
during early event hours but were closer to switch results by the end of the events. This could indicate too 
gradual a ramp.  Regardless, a three degree set point increase, steep or not, is only a moderate setpoint 
increase. 

The thermostat controls clearly provided lower load impacts than the switch controls. These results reflect 
the relative aggressiveness of the control strategies used for the two technologies. In theory, the 
thermostats could be controlled so as to produce impacts commensurate with the switch results reported 
here.  PG&E SmartAC applied switch control levels that are relatively aggressive compared to other 
similar programs.  Conversely, it also applied relatively moderate thermostat control levels.  

6.2 Participant Satisfaction 

One possible point of comparison for the two technologies is load impact relative to participant 
satisfaction.  As part of the Process Evaluation conducted for the SmartAC’s first year11, participants were 
asked about their awareness of and level of comfort during the events.   

Overall, only 40% of respondents were aware PG&E had activated their AC control technology.  The 
overall result breaks out into statistically significantly different results when considered by control 

                                                      
11 Final Report:  Process Evaluation of 2007 PG&E Smart AC Program. Study ID PGE0262.01. March 31, 2008 
 



 
 

 

Pacific Gas and Electric  
SmartAC Evaluation, Measurement, and Verification April 24, 2008 

6-2 

technology.  Forty-four percent of those with switch controls reported being aware of the events while 
only 28 percent of those participants with thermostat controls reported being aware of the events. 

Those respondents who were aware of the events where asked about comfort level.  Overall, 25 percent 
said they were “somewhat” or “very” uncomfortable during the control events.  This overall result also 
breaks out into statistically significantly different results when considered by control technology.  Twenty 
percent of those with switch controls reported being “somewhat” or “very” uncomfortable while 49 
percent of those participants with thermostat controls reported this level of comfort.   

The best way to combine these potentially confounding results is to isolate those participants expressing 
dissatisfaction with the level of comfort. Combining results from the two questions above the overall 
percentage of participants expressing discomfort from thermostat and switch groups was 14 and 9 
percent, respectively.  This difference is not statistically significant.  Thus, despite have a higher level of 
load impact, switches participants did not indicate higher levels of discomfort. 

Comparing participant satisfaction across the groups can only be done with the caveat that these two 
groups are self-selected and may have underlying differences that drive the differences.  While the survey 
results do indicate clear differences in awareness and comfort levels, the overall percentage of 
respondents both aware of the events and experiencing discomfort were not statistically different. 

6.3 Switch Summary 

Direct load control switches made up approximately 70 percent of the SmartAC population at the time of 
the 2007 system peak.  The SmartAC evaluation results indicate substantial savings for the participants 
with switches on the hot event days.  On the three event days surrounding the day of the system peak 
switch participants registered a minimum of 0.9 kW load reduction during the peak hours of the day. 
Results indicate that the adaptive switching technology performed better than if the standard 50 percent 
switching had been employed.  

There is some suggestive evidence that, despite the adaptive switch, the switch technology is still 
sensitive to AC unit oversizing.  There is also tentative evidence that the adaptive switch achieved higher 
impacts with no increase in expressed discomfort.  Further resolution of these questions is left open for 
future research. 

6.4 Thermostat Summary 

Thermostat demand control devices made up approximately 30 percent of the SmartAC population at the 
time of the 2007 system peak.  Thermostat control results indicate demand reduction substantially below 
that realized by switch participants.  On the three event days surrounding the day of the system peak 
thermostat participants registered load reduction ranging from zero to over 1.3 kW during the peak hours 
of the day.  We believe that the difference in impacts is explained by a combination of the choice of ex 
ante control level employed by the program and potential population differences resulting from self-
selection.  These results should not be construed as necessarily reflecting the relative efficacy of 
thermostat controls versus switches. 

Results comparing the two different ramping strategies provide some evidence of increased impact from 
the steeper strategy. There is suggestive evidence that the thermostat control is less sensitive to 
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oversizing.  On the other hand, there is also evidence that despite lower levels of impact, thermostat 
participants had similar levels of discomfort as switch participants.  Once again, further resolution of 
these questions is left open for future research. 
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7. Appendix A 

7.1 Tobit Model of Duty Cycles 

Using duty cycles derived from the one-minute interval data, we developed models to describe duty cycle 
as a function of weather. These models necessarily excluded all duty cycle observations on weekends and 
holidays, as well as all event days. 

The underlying relationship between natural duty cycle and weather is a linear one, but it is constrained 
by practical duty cycle limits of one and zero. A simple linear regression thus does not apply. To identify 
the underlying linear relationship while still accounting for the practical constraints to duty cycle, we 
employed a Tobit analysis. A Tobit analysis explicitly allows for the dependent variable in a linear 
relationship to be constrained, whether at lower, upper, or both ends of some range. The products of the 
Tobit analysis include a linear expression of duty cycle and scale factor by which the probability 
associated with a particular duty cycle can be determined.  

The Tobit analysis models a theoretical “unconstrained” duty cycle as a function of the weather variable. 
The unconstrained duty cycle is not limited by the practical limits to a duty cycle of zero and one, but 
instead can be negative or greater than one. The observed duty cycle is the result of bringing the 
unconstrained values into the physically possible bounds of 0 to 1, as in Equation 11. 

Equation 11 
*

*

* *

0, 0

1, 1

, 0 1

⎧ ≤⎪
⎪⎪= ≥⎨
⎪
⎪ < <
⎪⎩

ip

ipip

ip ip

DC

DC DC

DC DC

 

where 

*
ipDC  = unconstrained duty cycle during period p for CAC i. 

We fit multiple models for each unit to account for changes in cooling behavior over the course of the 
day.  For this evaluation there was sufficient data to estimate hourly models. For each unit, we estimated 
hourly duty cycle models for the hours between noon and 10 PM.  All the equations in this section are 
expressed with p for time period.  For this evaluation, the period was hourly. 
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The models were initially fit with the four weather variables described in section 4.2.3, to identify the 
variable that would give the best fit. The model of unconstrained duty cycle as a function of a temperature 
variable is given by Equation 12. For this equation and those that follow, Wd could be any daily 
temperature or THI variable. 

Equation 12 
* = + × +ip ip ip ipdDC Wα β ε  

where 
*
ipDC  = unconstrained duty cycle during hour h of period p for CAC i, 

αip, βip = Coefficients for period p and CAC i, 
Wd = daily temperature variable for day d, and 
εip = residuals independently and normally distributed in period p for CAC i, with mean 

equal to zero and variance equal to 2ˆ ipσ . 

We developed estimates of the coefficients in Equation 13, ˆipa  and îpb , and estimates of the variance, 
2ˆ ipσ , using standard Tobit estimation procedures.  

Equation 13 

( ) ( )
2

21
2

x x
u

x u du e duφ
π

−

−∞ −∞

Φ = =∫ ∫  

The duty cycle models allow unbiased estimates of natural duty cycle to be made for different weather 
variable levels. The calculation uses Equation 14.  

Equation 14 

( ) ( ) ( )
( ) ( )

( ) ( ){ } ( ) ( ){ } ( )*

| 0 1 Pr 0 1

| 1 Pr 1

ˆ ˆ 1

ipw ipw ipw ipw

ipw ipw ipw

ipw ip

E DC E DC DC DC

E DC DC DC

DC U L L U Uσ φ φ

= < < × < <

+ = × =

= × Φ − Φ + × − + − Φ

 

where 
( )ipwE DC  = estimated natural duty cycle in period p at temperature w for CAC i,  

*ˆ
ipwDC  = estimated unconstrained duty cycle in period p at temperature w for CAC i, 

Φ  indicates the standard normal cumulative distribution function, and 
φ  indicates the standard normal probability density function. 
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The expressions L and U in the preceding equation refer to the lower and upper practical constraints on 
duty cycle, here being zero and one respectively. They are defined by the following two equations: 

Equation 15 
^

0
ˆ

ip

ip

DC
L

−
=

σ
 

Equation 16 
^

1
ˆ

ip

ip

DC
U

−
=

σ
 

7.2 Individual Demand Impacts by Duty Cycle Approach 

The duty cycle modeling approach also provides estimated duty cycle reduction as a function of actual 
control level.  This is easiest to explain given a constant control level. A constant 50 percent control level 
has been widely used by switch programs.  The remainder of this discussion focuses on the estimated 
duty cycle reduction as a result of a 50 percent control level, however, the same basic technique can be 
employed for any level of control. 

The Tobit analysis estimates duty cycle within certain constraints given an underlying linear relationship 
with weather.  The natural duty cycle estimate above was constrained to stay between a duty cycle of zero 
and 100.  The model takes into consideration the probability that the expected underlying linear duty 
cycle would fall outside the constraints.  The same process takes place when estimating duty cycle given a 
control level of 50 percent.  The control level of 50 percent provides the new minimum constraint. 

The coefficients from the Tobit model fit ( )2ˆˆ ˆ, ,ip ip ipa b σ  were used to calculate for each CAC in different 

time periods p and at different temperatures W: 

• the probability that 0.5ipwDC ≥ , and 

• the expected value of DCipw, given that 0.5ipwDC ≥ . 
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The probability and the expected value of the duty cycle, given that the duty cycle is greater than 0.5, 
were calculated using the following two equations: 

Equation 17 
( ) ( )Pr 0.5 1ipwDC L≥ = − Φ  

Equation 18 
( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ } ( ) ( ){ } ( ){ }*

| 0.5 | 0.5 1 Pr 0.5 1| 0.5

| 1 Pr 1| 0.5

1 ˆ 1
1

ipw ipw ipw ipw ipw ipw

ipw ipw ipw ipw

ipw ip

E DC DC E DC DC DC DC

E DC DC DC DC

DC U L L U U
L

σ φ φ

≥ = ≤ < × ≤ < ≥

+ = × = ≥

⎛ ⎞
⎡ ⎤= × × Φ − Φ + × − + − Φ⎜ ⎟ ⎣ ⎦⎜ ⎟− Φ⎝ ⎠  

where 

( )| 0.5ipw ipwE DC DC ≥  = expected duty cycle in period p at temperature variable w for CAC i 
given that the duty cycle is at least 0.5. 

The expressions L and U in the two preceding equations refer to the lower and upper practical constraints 
being placed on duty cycle. The equation for U is the same as used Equation 16 where the upper duty 
cycle constraint is one. The equation for L here, however, uses a lower duty cycle constraint of 0.5 rather 
than zero as was used in Equation 15 with reference to an unconditional estimate of duty cycle. The 
expression for L for an estimate of duty cycle conditional on being greater than 0.5 is given by Equation 
19. 

Equation 19 
^

0.5
ˆ

ip

ip

DC
L

−
=

σ
 

The expected duty cycle given a minimum duty cycle of 50 percent represents the potential duty cycle 
reduction if limited to a maximum duty cycle of 50 percent.  The expect duty cycle given a minimum duty 
cycle of 50 percent will remain above 50 percent despite a natural duty cycle below 50 percent because 
there remains some probability that natural duty cycle is, in fact, greater than 50 percent.  The estimate of 
the natural duty cycle is a mean estimate with a surrounding probability distribution.  Even when the 
mean estimate of the natural duty cycle as a given temperature is less than 50 percent, there still remains 
part of the probability distribution above the 50 percent cut-off.   

Finally, the projected load reduction for 50 percent control is calculated by 

Equation 20 
( )5.0ˆˆ

5.0, −×= >ipwiwipw CDLCS
r

 

where 

ipwS
r

 = Load reduction in period p at temperature w for CAC i, and 
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5.0,
ˆ

>ipwCD  = expected natural duty cycle given that it is greater than 0.5 in period p at temperature w 
for CAC i. 

Any level of control, including an adaptive control that is a function of the natural duty cycle can be 
calculated by inserting the related lower duty cycle constraint for the 0.5 used in these equations. 


