DTE Energy:
Energy Storage Demonstration Projects

Hawk Asgeirsson
Manager – Power Systems Technologies
asgeirssonh@dteenergy.com
Agenda

• Distributed Generation Applications at DTE Energy
• Energy Storage Applications
• PV and Energy Storage
• Community Energy Storage Project
 – 25 kW – 50 kWh
 – Secondary use of EV batteries
The Evolution of the Electric Utility System

One way power flow, limited renewable resources and simple interaction with load.

Two way power flow, multiple distributed resources and stakeholders.

Sources: The Economist, ABB
DG’s keeping the lights on during 2011 heat wave

July 22 – 23, 2011
1.5 MW DG

July 23, 2011
2.0 MW DG
Detroit Edison’s Renewable Energy Plan includes two pilot solar programs

Residential & Small Commercial

- Approximately 5MW or 1,500 customers through REC contracts
- Customer funds and owns solar photovoltaic system < 20 kW
- Provides financial incentives to make solar more affordable

Commercial & Industrial

- Approximately 15MW of Detroit Edison owned solar assets
- Lease large rooftops, ground-mounted and/or on DTE facilities
Electric Utility Energy Storage Applications

Large Central Storage
100’s of MW
Or
In conjunction with Wind Farm Firming

Substation or Circuit Level Storage
1 - 2 MW

Storage Close to Customer
25-50 kW
Ludington pumped storage facility stores renewable energy

• Began operation in 1973
• 27 billion gallon water reservoir
• Currently produces enough energy to power 1.4 million homes
• $800 million upgrade underway
• Will increase generating capacity from 1,872 MW to 2,172 MW
• Stores renewable energy produced at off-peak hours
Energy Storage Modes of Operation – Value Streams

- PV Output Leveling
- PV Output Shifting
- Frequency Regulation
- Circuit Peak Shaving
- Reactive Support
- Voltage support
- Islanding during outages
PV and energy storage integration
Ford Motor Co and Xtreme Power

- 500 kW PV
- 750 kW/2 MWh storage
- Within auto assembly plant
- Load shifting based on system load curve
- PV Output Leveling
- PV Output Shifting
- Frequency Regulation
- Reactive Support
- Voltage support
PV and Battery Storage Integration

Location
- Monroe County Community College
- 23 miles Southwest of Detroit

System
- 500kW PV
- 500kW – 30min (250kWh) Storage
- Dynamic 4-Quadrant PCS / Grid Interface
- Installation / Operation Aug 2011
- 20 Community Energy Storage Systems – Distributed
- Two will be used EV batteries
Community Energy Storage (CES)

- CES is a small distributed energy storage unit connected to the secondary of transformer serving a few houses or small commercial load
- Offers value similar to substation batteries when aggregated
- Buffers customer renewable generation
- Local voltage and var management
- Offers backup power to customers
- Can optimize battery life by deploying different control algorithms
- Can use new or used PEV batteries
Key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (active and reactive)</td>
<td>25 kVA/25 kW</td>
</tr>
<tr>
<td>Energy</td>
<td>50 kWh</td>
</tr>
<tr>
<td>Voltage</td>
<td>120/240 V AC</td>
</tr>
<tr>
<td>Battery – A123 Prismatic</td>
<td>Li-Ion Prismatic</td>
</tr>
<tr>
<td>Round trip efficiency</td>
<td>> 85%</td>
</tr>
</tbody>
</table>

Local Benefits:
- Backup Power
- Voltage correction
- Renewable Integration

Circuit Benefits:
- Load Leveling at substation
- Power Factor Correction
- Ancillary services

Specifications for CES are “OPEN SOURCE”. EPRI hosted open webcasts to solicit industry wide input.

www.aeptechcenter.com/ces
CES External Features
25 kW – 50 kWh

Battery System
- Lifting cleats
- Chassis ground stud
- Power and Communications Cables
- Liquid tight seals at all penetrations
- Sealed resin transfer molded cover and base container

Inverter System
- Lifting brackets
- Cooled via natural convection
- Terminal Door (Transformer connections)
- Service access door
- Access for battery connections
- Utility Grade NEMA 4 Enclosure
 Approx Dims: 33 in x 39 in x 30 in tall
Conclusion

- DTE Energy has a long history of deploying distributed generation
- Energy storage has multiple value streams
- Plug-in vehicle Li-ion batteries show promise for grid applications