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Distribution System Examples

Terrestrial Distribution Systems
[power.ece.drexel.edu]

DOE, NSF, Utilities, Vendors

Hybrid Electric Cars/Vehicles 
[www.honda.com]

IndustryShipboard Power Systems 
[www.navyleague.org]

ONR

Space Power Systems
[www.nasa.gov]



Terrestrial Distribution Systems

423 buses, ~1000 nodes, 
842 customers: 5.6MW, 1.2 MVAr

(only 3 phase buses drawn)

• Properties:

– large systems
(10,000+ nodes)

– normally operated in a 
radial manner 
(embedded switches for loops)

408 buses, 767 customers: 6.3MW, 2.5 MVAr
(only 3 phase buses drawn)

– limited # of real-time measurements
– uncertainty of loads and generation (stochastic)



Terrestrial Distribution Systems

• Enabling technologies:
– advanced monitoring (M)
– control automation (   )
– cost manageable, information networks

• U.S. Properties:
– multi-phase: 2, 3, 4 and 5-wire systems
– grounded and ungrounded
– above ground and underground
– large



Distribution Applications

• Specific Functions of Distribution Automation

• Examples
‒ Objective: Improve Reliability

• Application = Network Reconfiguration/Service Restoration

‒ Objective: Improve Efficiency
• App. = Network Reconfiguration/Load Balancing
• App. = Voltage/VAR Control (CVR)

‒ Objective: Peak Load Management 
• App = Voltage/VAR Control
• App = Demand Side Management
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Technical Approaches

• Unbalanced component and system analysis tools

• Problem Formulations (focus)
– planning: optimal placement and replacement/retrofit

• economically ($) driven
– operation: control of new technologies

• customer driven
• shortened time-windows

• Solution Algorithms
– heuristics

• Expert system & analytically-based
• Metaheuristics (intelligent system)

– mathematical programming  (require model/formulation simplifications)



• Examples
– Switch Placement & Control for Service Restoration
– Capacitor Placement & Control for Voltage Spread Reduction

• Optimization (C: objectives)
– F: Electrical network constraints (equality) 
– G: Operating constraints (inequality)  

– where
• x: states (θ,|V|); λ: parameters (uncontrollable loads); u: control 

variables (generation/loads, network device status)
• U is the search space

Problem Formulations
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Problem Formulation

• Switch Placement

Table: Select Goals Considered for Switch Placement Problems

Note:
– analytically determined values are shaded green
– to account for loads, analysis will be necessary

– U: gang-operated switches between any two 3P buses

Consideration Impact/Metric
Field Limitations U, search space, reduced

Regulatory: e.g. CAIFI Customer count between switches
SAIFI: Load Restored Transfer capability of switches

Load Variations 
(e.g. Cold-Load Pickup)

“
Load curtailment capability



Problem Formulation

• Switch Placement

Table: Select Constraints for Switch Placement Problems

– Note: all analytically determined values 

Consideration Constraint
Voltage Magnitude
Current Magnitudes

Power Flows

Voltage Rise

Switch Voltage
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Comments

• Switch Placement 
– if based only on non-analytical indices (e.g. customer count) 

reduces flexibility of operations when considering load variations 
(e.g. cold-load pick-up)

– transfer capability can be adjusted to account for forecasted load 
variations

• Switch Control
– What if the switches are already in place?

• Analytically based approaches can assist
• Load control/curtailment may be invoked if available 

e.g. [M. Kleinberg et. al. to appear – TPWRS.2010.2080327]

• Distributed resources may also be considered 
e.g. [Y. Mao et. al. 2003 - TPWRS]
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Improving Reliability: 
Service Restoration with Load Curtailment
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• Increases complexity
• Adds additional constraints
• System benefits

Improving Reliability: 
Service Restoration with Load Curtailment



• Examples
– Switch Placement & Control for Service Restoration
– Capacitor Placement & Control for Voltage Spread Reduction

• Optimization (C: objectives)
– F: Electrical network constraints (equality) 
– G: Operating constraints (inequality)  

– where
• x: states (θ,|V|); λ: parameters (uncontrollable loads); u: control 

variables (generation/loads, network device status)
• U is the search space

Problem Formulations
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Problem Formulation

• Capacitor Placement

Table: Goals Considered for Capacitor Placement Problems

Note:
– analytically determined values are shaded green

– U: all 3P buses, included sizing of existing capacitors

Consideration Impact/Metric
In-Field Physical Space U, search space, reduced

Regulatory:  Peak Load Reduction Substation voltage and PQ
System Voltage Spread Node voltages

System Loss Levels Branch flows/losses



Problem Formulation

• Capacitor Placement

Table: Constraints for Capacitor Placement Problems

– Note: all analytically determined values 

Consideration Constraint
Voltage Magnitude
Current Magnitudes

Power Flows

Voltage Rise

Substation Power Factor
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Comments

• Capacitor Placement 
– Priority of objectives should be adjusted wrt load levels.

• Example to include: peak, 70% loading and low load levels

– Introducing different levels of analytics yields different results
• Examples:

– With power factor constraints and without 
– With system loss considerations and without

• Capacitor Control
– # of load levels considered will impact operations
– time windows vary wrt voltage spread vs. loss reduction
– constraints are also time dependent: e.g. maximum number of 

switch operations within a 24 hr period.



System Analysis & 
Control Partitioning 

Energy resource power domains/commons

• Practical Field Limitations – reduce the 
search space

• Operator Preferences 
– controller proximity

• Create directed graphs

• Domain-Based Distributed Slack Bus 
Models  (P graphs)
‒ attribute load and losses 
‒ considers network characteristics/location

• Domain-Based Capacitor Placement (Q graphs)
‒ considers the location of other capacitors
‒ enables “physical spread” of caps  



Results – Capacitor Placement

Electrical Component Count

# of Buses 690

# of Nodes 1082

# of Customers 1864

# of Loads 365

# of 3-Phase Buses 245

3-Phase Capacitors 4

Substation Quantity
Total PLoad (kW) 5553

Total QLoad (kVAr) 1753

Bus Number
Size 

(kVAr) Cap Type
1546 900 Automated
1550 600 Automated
1619 900 Automated
1571 600 Manual

Figure: One-Line Diagram of a 690 bus system



Cap Results: Without Q Constraints

Peak Loading Base 
case

No Losses Losses

|V| spread (p.u.) 0.0317 0.0214 0.0314
Substation Q (kVAr) -895.83 -2100.33 -2089.77

Substation Power
Factor (PF)

0.9879 
leading

0.9393 
leading

0.9392 
leading

Total PLoss (kW) 164.55 199.58 165.129

Selected u:
• Different cap placement
• Increased substation Q

Resulting metrics:
• Voltage spread decreased
• Ploss increased
• Substation PF decreased

1200 kVAr1200 kVAr



Peak Loading Base case No Losses Losses
|V| spread (p.u.) 0.0317 0.0337 0.0337

Substation Q 
(kVAr)

-895.83 -599.73 -599.73

Substation Power
Factor (PF)

0.9879 
leading

0.9945 
leading

0.9945 
leading

Total PLoss (kW) 164.55 160.85 160.85

Selected u:
• Identical cap placement
• Reduced substation Q

Metrics:
• Voltage spread 

increased
• PLoss decreased
• Substation PF increased

900 to 600 kVAr

600 to 300 kVAr

900 to 1200 kVAr

Cap Results: With Q Constraints



Remarks

• Analytically driven applications broaden the scope and scenarios 
under study.

• Practical considerations should be leveraged to reduce problem size 
and complexity (as well as facilitate acceptance of results.)

• Each distribution circuit has its own properties/characterisitcs
– With measurements, this can be quantified; hence, modeled.

• As a result, systematic, repeatable approaches to distribution circuit 
planning and operation  can be realized and used as a guide for 
engineers.



Remarks

• Remaining Challenges
– Access to Power Engineering Education

• Relatively few universities with power programs
• Fewer have formal education in power distribution systems

– We do not have a baseline
• Economically driven investments require an accepted baseline

– Technical challenges
• Impacts of large numbers of new components
• Time and space scaling issues
• Real-time operation with unsynchronized measurements
• Large-scale, mixed-integer optimization problems
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