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Product 
Description This report describes the final Phase 2 analysis of the effects on 

residential customers’ energy consumption patterns of 
Commonwealth Edison’s (ComEd’s) Customer Application 
Program (CAP).  

Background 
This report presents the findings of a pilot, implemented by 
Commonwealth Edison, to improve the understanding of how 
advanced metering infrastructure (AMI) can be used to influence 
residential electricity consumption. It is part of a series of Electric 
Power Research Institute (EPRI) studies to help the power industry 
exploit technological advances and induce changes regarding when 
and how consumers use electricity in order to increase reliability, 
reduce costs, and promote sustainable economic growth. 

Objectives 
The final report will interest those concerned with the efficacy with 
which smart grid technologies facilitate DR. AMI-enabled pricing 
structures and technologies can yield system-wide distribution 
benefits when they provide, at lower cost, services comparable to 
those that could otherwise be provided only by supply-side resources. 
These benefits include reduced costs of generation and transmission, 
lower distribution capital and operating costs, and reduced siting and 
environmental costs associated with supply-side technologies. DR 
might also provide flexibility that could help planners ensure reliable 
delivery with limited resources. Smart grid technologies might 
facilitate DR by giving customers information to help them make 
effective consumption decisions and offer automated ways to make 
those decisions. The ComEd project provides data to assess the 
extent to which smart grid technologies actually do induce DR. 

Approach 
This report describes the findings from EPRI’s analysis of ComEd’s 
CAP. It updates and expands on the interim findings from the Phase 
1 analysis by using a full year’s worth of data on electricity usage and 
prices for participants, as well as data collected as part of a survey of 
participants in the pilot. The additional data were used to update 
tests of several hypotheses and to test additional ones that could not 
be addressed using the limited data available for the Phase 1 analysis. 
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Results  
This analysis determines the extent to which residential customers’ 
consumption of electricity is affected by various combinations of 
dynamic rates, enabling technologies, and other inducements. The 
CAP implemented 27 experimental treatments to test for impacts 
singularly and in combination. The Phase 1 analysis (EPRI report 
1022703) was based on data from the first three months of the pilot 
(June through August 2010) and was considered preliminary.  

This Phase 2 report confirms that none of the treatments resulted in 
any significant change in average customer usage, even when 
customers paid an additional $1.74/kWh for electricity. However, an 
important subset of customers facing dynamic rates—about 10%—
responded to elevated event-day prices by reducing usage. These 
event-responders exhibited load reductions in excess of 20% for 
critical peak pricing and around 14% for peak-time rebate and day-
ahead real-time pricing. It also appears that event load reductions 
were undertaken by some customers on the other rates tested, despite 
there being no financial advantage to doing so. This might be the 
result of ComEd’s education and event notification to CAP 
participants that raised awareness of supply cost on certain days of 
the year. 

Applications, Value, and Use 
Utilities recognize the need to provide better information to 
customers about the cost of supply and the time-specific usage levels. 
Customers are becoming aware of new technologies that make 
modifying usage easier to accomplish, reducing electricity costs. 
Many regulators are pressing utilities to fully use a range of DR 
solutions and offer customers choices in how they purchase 
electricity. AMI and smart metering can play an important role in 
meeting these needs, but only if the benefits enabled are well defined 
and widely accepted. The findings described in this report make a 
substantial contribution toward defining the benefits attributable to 
AMI.  

Keywords 
Advanced metering infrastructure  
Demand response–enabling technologies  
Dynamic pricing 
Inclining block and time-of-use rates  
In-home displays  
Opt-in and opt-out program recruitment 
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Abstract 

 

This report presents the findings of a pilot, implemented by 
Commonwealth Edison, to improve the understanding of how AMI 
metering influences residential electricity consumption. The 
Customer Application Program (CAP) is notable for its novel design 
and scale, and its extensive scope. Participants were engaged using 
the first large-scale application to an electricity pilot of automatic, 
opt-out subscription. The CAP involved approximately 8,000 
residences of a population of 130,000 AMI-metered customers in the 
greater Chicago area, randomly assigned to a variety of treatments. 
The treatments span five diverse rate structures and several different 
enabling technologies constructed to test effects individually, and in 
combination. Additional treatments involve alternative levels of 
education and free verses subsidized provision of enabling 
technologies.  

Several analyses were undertaken to identify statistically significant 
impacts attributable to the treatments. Most treatments exhibited no 
statistically significant differences in the overall average usage 
compared to the control group. However, important and significant 
findings emerged from the more comprehensive analyses that were 
undertaken. First, the results present the possibility that event 
notification contributes to reductions in event-hour usage, even in 
the absence of event-based pricing. This raises the prospect that 
customer education and event notification could play a role in 
obtaining customer demand management. This issue merits 
additional research, as the findings from this study were not 
widespread across rate treatments. Second,  a subset of dynamic rate 
(DA-RTP, CPP, PTR) customers, referred to as event-responders 
and which comprise 9-12 percent of all participants, were identified 
that reduced load by 20 percent or more during event hours. The 
largest and most consistent usage reductions, in the dynamic rate 
subset, came from CPP customers. This level of response comports 
with the findings of other pilots that involve similar treatments, but 
was masked by the large number of the treatment non-responders.1 
An opt-out recruitment strategy by itself does not appear to 
encourage a greater treatment response level than opt-in pilots report.  

                                                                 

1 For a summary of the load reduction impacts of rate technology pilots see: Faruqui, 
A., Hledic, R., Sergici, S. Rethinking Prices: January 2010. The Changing 
Architecture of Demand Response in America. Public Utilities Fortnightly.  
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Section 1: Introduction 
This report describes the findings of the Electric Power Research Institute’s 
(EPRI) evaluation of the impacts of the Commonwealth Edison (ComEd) 
Customer Application Program (CAP). EPRI conducted an independent and 
comprehensive assessment of the impacts and implications of the CAP pilot as 
part of its Smart Grid Demonstration project. The evaluation involves 
quantifying how CAP customers modified their electricity usage levels and 
patterns in response to pilot applications (treatments in the experimental sciences 
vernacular), which are comprised of different rate structures, enabling 
technologies, and other influences enacted through the pilot. This Phase 2 report 
extends the analyses conducted in Phase 1, which focused on the CAP impacts 
over the summer months of 2010, using a full year of load data and the results of 
a survey administered to CAP participants.2 For the sake of comprehension, 
CAP design, method, and data requirements presented in the Phase 1 report are 
reproduced herein.   

Description of the CAP Pilot Applications 

The CAP pilot was designed to produce information that would allow analysts to 
quantify the impact of price structures, enabling technologies, pricing plans, and 
educational strategies that are facilitated by advanced metering infrastructure 
(AMI). AMI allows ComEd to record customers’ electricity consumption on an 
hourly basis and provide customers with readily available and timely access to 
information on their electricity usage online. The pilot was designed to reveal the 
extent to which customers change their pattern and level of electricity 
consumption when AMI-enabled pricing and technologies are deployed.  

The CAP pilot involves five rate treatments (or applications) that differ in the 
temporal character of the prices that participating customers pay for electricity, 
and the enabling technology applications that deliver information to customers. 

The rate applications differ structurally from the flat rate that most ComEd 
residential customers pay today, but in different ways. Specifically, the pilot's 
rates change: 

                                                                 

2 The main Phase 1 report (EPRI 1022703) and a separate volume appendix (EPRI 1022761) are 
available at EPRI.com.  The Effect on Electricity Consumption of the Commonwealth Edison Customer 
Application Program Pilot: Phase 1. EPRI, Palo Alto, CA: 2011. 1022703.  The Effect on Electricity 
Consumption of the Commonwealth Edison Customer Application Program Pilot: Phase 1, Appendices. 
EPRI, Palo Alto, CA: 2011. 1022761. 

 
For the CPP, DA-RTP, PTR, 
and TOU rates, the peak 
period is defined as 1:00 - 
5:00 p.m. weekdays. 
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 Hourly and daily, conveyed through a new hourly price schedule issued each 
day (day-ahead real-time pricing (RTP)).  

 By combining DA-RTP with event-specific prices whereby the price of 
electricity increases by $1.74 per kWh (critical peak pricing (CPP)) or the 
customer is eligible for credits of $1.74 per kWh for load reduced during the 
event (peak-time rebate (PTR)) 

 Diurnally, according to a fixed time-of-use (TOU) schedule   
 According to the level of each customer’s monthly consumption (inclining 

block rate, (IBR)).  

A control group of AMI-metered flat-rate customers serves as the basis for 
comparison of usage behavior with the treatment customers who pay the CAP 
rates. Participants in the control group pay the applicable ComEd standard tariff 
rate, which distinguishes according to building type (single or multi-family) and 
electric or non-electric space heating.  

CAP also involves different enabling technology applications to deliver 
information to customers. All participants were invited to sign up for eWeb 
service that provides access to detailed information about the participants billing 
data. Selected participants also have access to basic or advanced in-home displays 
(IHD), to a web-based information system, and to the means for regulating their 
household thermostat at times when load relief is needed. The simple IHD 
continuously displays information, extracted directly from the AMI meter, about 
household electricity usage, including both the current rate of energy usage and a 
historical comparison. Previous pilots that have deployed this technology report a 
wide range of customer responses, from no change to a 5 percent or greater 
overall reduction in electric consumption.3   

The advanced IHD incorporates electricity usage information into a device that 
serves a variety of roles including internet access. The maintained hypothesis is 
that consumers with these devices are more likely to pay attention to usage 
information more often and readily and therefore respond to a greater extent.4 
An additional enabling technology application provides customers with a 
programmable and controllable thermostat to facilitate adjusting load to price 
changes. 

Other treatments the CAP provides include additional applications involving: 
more education; a bill protection guarantee which ensures that participants will 
pay no more under the pilot than they would in the absence of it; and a 
requirement for partial payment for some enabling technologies.   

                                                                 
3 Guidelines for Designing Effective Energy Information Feedback Pilots: Research Protocols. EPRI, Palo 
Alto, CA: 2010. 1020855. 
4 A hypothesis is a concise and specific statement of impact constructed to serve as the basis for 
measuring the level of observed impact. 
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Structure of the Design 

A randomized design was used to select which customers (approximately 8,000 in 
the AMI footprint of about 130,000) would participate in the CAP and to assign 
them to an application, or to the control group. The use of a randomized design 
comports with accepted social science protocols for isolating and attributing 
significant impacts to treatments in experiment settings.5  Furthermore, it defines 
a methodology for estimating the significance of impacts, which are differences 
from those of the control group measured as one of the following: total energy 
consumed during the pilot, peak-period load or maximum demand, particularly 
on event days, and other measures of usage.  

A unique and important feature of the CAP is that it employs an opt-out 
recruitment design whereby customers chosen randomly to participate were 
automatically enrolled in the CAP and informed of their rate, technology, or 
other treatment (or combination thereof) prior to the commencement of the pilot 
(April-May 2010). The customers enrolled remain in the program unless they 
take action to opt out. ComEd adopted a systematic and comprehensive set of 
protocols designed to manage the customer experience in ways that were 
expected to reduce opt-outs and increase satisfaction with the pilot experience.  

ComEd employed the opt-out pilot design for both practical and research 
purposes. ComEd designed the CAP over two years, but implemented it in very 
short order in 2010. The experience from other similarly constructed pilots 
suggested that recruiting volunteers would require several months, result in high 
costs, or both, to achieve the participation level required to produce statistically 
significant results. Conversely, an opt-out deployment could be accomplished in 
relatively short order, and possibly at a lower cost.  

The traditional opt-in recruitment process results in all participants being 
volunteers. Tests can still be conducted to determine application impact 
differences and their significance. However, extending the result to the 
population as a whole is not straightforward, because it requires establishing what 
distinguishes volunteers, identifying them in the general population, and 
forecasting the likely enrollees in a full-scale rollout of the applications. In 
contrast, because CAP opt-out customers are representative of the general 
population, the pilot results can be used to make inferences about the full 
population impacts, as long as the dropout rate is low.  

Objectives of the Analysis 

The primary objective of the Phase 2 evaluation of the CAP is to determine how 
customers’ patterns of energy consumption are affected by rate structures and 
prices, various behavioral factors (e.g., education and interaction with web-based 
information), and various enabling technology applications (e.g., basic and 
advanced in-home displays and programmable controllable thermostats). An 

                                                                 
5 EPRI 1020855. 
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additional objective is to estimate how the entire ComEd residential population 
would respond to similar pricing, behavioral factors, and technologies. 

EPRI has conducted the CAP evaluation in two stages. The first stage, which 
comprised the Phase 1 report, involved evaluating data from June through 
August of 2010.6 The primary goal of that study was to estimate and report the 
2010 summer months’ load changes associated with the various price applications 
or treatments, with special attention paid to Day-Ahead Real-Time Pricing 
(DA-RTP), Critical Peak Pricing (CPP), and Peak-Time Rebate (PTR), all of 
which feature prices that vary each hour.7 The CAP pilot imposed higher PTR 
and CPP payouts and rates, respectively, six times during the period covered by 
the Phase 1 analysis. Analysis of an additional event, which occurred in late 
September 2010, is included in this report. 

The analysis described in this report applies to the entire year’s data, 
supplemented with survey data collected to characterize participants’ household 
and demographic circumstances, as well as their perceptions of various aspects of 
their CAP experience.  

The Approach to the Analysis 

Several analytical and statistical methods were used to conduct the components 
of this comprehensive evaluation of the CAP. Some are appropriate to examine 
differences in behavior among groups of customers (e.g., various treatment and 
control groups). Other methods facilitate an examination of the data at the 
individual customer level.   

Since the experimental design of the pilot embodied a series of treatment and 
control groups, a logical first step is to apply methods of analysis of variance 
(ANOVA) to test for differences in the average electricity consumption of 
various types (e.g. average daily consumption, average hourly peak-period 
consumption, etc.) between treatment and control groups.  

ANOVA tests identify significant aggregate differences in electricity 
consumption among treatment and control groups. Other methods are needed to 
sort out and separately quantify the various ways in which customers in the 
several dynamic pricing treatments (CPP, PTR and DA-RTP), respond to price 
level, differences in peak and off-peak prices, and other price structure effects. 
Several regression models are specified to estimate the effects on peak load 
during event and non-event days. Formal customer demand models are also 
specified to determine the extent to which event-day load impacts and customer 
price responsiveness square with economic theory.  

                                                                 
6 The Effect on Electricity Consumption of the Commonwealth Edison Customer Application 
Program Pilot: Phase 1. EPRI, Palo Alto, CA: 2011. 1022703. 
7  Although CPP events, PTR events, and high RTP prices also occurred in September 2010, 
billing data for that month were not available early enough for the Phase 1 analysis.  
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Finally, several of the hypotheses require the identification of factors that affect 
some specific, discrete customer choices (e.g., decisions to opt-out of the pilot). 
Such issues are investigated by specification and estimation of several logistic 
discrete choice models.
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Section 2: Research Agenda 
This report describes the findings of EPRI’s comprehensive evaluation of 
Commonwealth Edison’s (ComEd) Customer Application Program (CAP) 
pilot. The evaluation involves the characterization and quantification of how 
CAP participants responded to the behavioral influences (applications) that were 
administered under experimental protocols throughout the pilot period from June 
2010 to May 2011. Those applications reflect different rate structures, enabling 
technologies, and educational strategies.  

Imposing rigor on the CAP pilot design, through randomized assignment of 
customers to applications and a control group, facilitates conducting statistical 
tests to establish whether observed differences among applications are significant 
or are instead the result of factors other than the applications. This rigor furthers 
the CAP goal of quantifying to a high degree of credibility how AMI technology 
can be used to further the efficient use of electricity by households.   

Based on the design of the CAP pilot, 46 hypotheses were constructed describing 
the extent to which, or manner in which customers change their pattern and level 
of electricity consumption when they are exposed to the applications. Some 
hypotheses involve comparisons of the relative effects (and significance) of the 
applications themselves. Others seek to verify the effectiveness of processes and 
administrative features that were designed specifically for this pilot. The data 
collected during the pilot are used to perform statistical tests of these hypotheses 
and other analyses. The pilot includes additional characterizations and 
quantifications of load impacts to provide additional insight, as well as the 
estimation of electricity demand models at the aggregate and individual customer 
level.  

Widely Deployed Applications 

The CAP pilot involves five rate applications (i.e., treatments in experimental 
design) that differ in the temporal character of the prices that participating 
customers pay for electricity. These rates differ structurally from the flat rate that 
most ComEd residential customers pay today. Two of the treatments involve rate 
schedules that are set prior to the beginning of the pilot period, as follows: 

 Under the time-of-use (TOU) rate schedule, prices ($/kWh) differ between 
the peak and off-peak periods of weekdays.  
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 Under the inclining block rate (IBR) schedule, prices ($/kWh) during each 
billing month vary according to the cumulative level of the individual 
customer’s energy consumption.  

The TOU and IBR rate schedules and price levels are established in advance and 
are in effect throughout the pilot period (June 2010- May 2011).8 The IBR block 
sizes, which delineate the price changes as consumption increases in a billing 
month, were established individually for each participant based on historical 
consumption to achieve the revenue neutrality feature.9 As a consequence, 
selection of customers in the AMI footprint to participate in IBR was 
conditioned on the availability of five years of billing records for the customer. As 
discussed in Section 5, this resulted in larger than average customers participating 
in the IBR application. 

In each of the other three rate treatments, prices change daily to correspond to 
ComEd’s forecasted supply conditions. A unique feature of the CAP dynamic 
rate treatments is that all customers in those treatment cells pay hourly prices 
patterned after day-ahead real-time prices. For two groups of CAP customers, 
however, the hourly rates differ for the period 1:00 to 5:00 p.m. on event days, 
which are the days when ComEd invokes its option to add a pre-determined and 
very high $1.74/kWh price to the DA-RTP prices during event hours. The 
characteristics of these three dynamic rate treatments are as follows: 

Under the real-time pricing rate with day-ahead notice (DA-RTP), customers 
are charged hourly prices that reflect hourly wholesale market prices.10  

Under the CPP rate, customers are charged higher prices (an additional $1.74 
per kWh) during peak periods on event days (see sidebar). On non-event days, 
CPP customers face DA-RTP prices.11  

Under the PTR treatment, customers are paid high rebates, or credits ($1.74 per 
kWh) for peak-period load reductions on event days.12 Otherwise, PTR 
customers face DA-RTP prices. 

                                                                 

8 The price schedules specify the prices for kWh consumption, which include forecast generation 
costs and established T&D costs. Adjustments to these prices are made monthly to reflect actual 
energy supply costs and other surcharges. These adjustments are not posted in advance; but because 
they are generally less than 5 percent, they do not materially change the prices that customers act 
upon.   

9 Revenue neutrality is a property of a rate that assures that the customer pays the same amount 
under the CAP rate application as it would have under the standard ComEd tariff if the CAP 
energy usage is the same as the historical average. In the case of the IBR, revenue neutrality is 
imposed on a customer-specific basis.  

10 To maintain bill neutrality with the flat rate, the DA-RTP prices are adjusted each day so that 
the average matches the customer’s preexisting flat rate. 

11 To maintain revenue neutrality, CPP prices are actually slightly lower than DA-RTP prices in 
non-event hours, so even if the customer does not reduce load during event hours it should pay no 
more, over the year, than it would have paid under the applicable conventional residential tariff.  

12 Load reductions are measured relative to a baseline load calculated for each PTR customer based 
on usage on prior non-event days. 

 
CAP Events 

The CPP and PTR rates 
employed in the CAP allow 
ComEd to raise prices 
above the prevailing DA-
RTP prices. When ComEd 
foresees supply conditions 
that might jeopardize its 
ability to serve all loads 
reliably, it invokes a price 
overcall, which is referred 
to as an event. The tariff 
stipulates that events must: 

 apply only to weekdays 

 be declared (and all 
CAP customer so 
notified) a day in 
advance 

 be in effect for four 
consecutive hours, 1:00 
p.m. – 5:00 p.m. 

The CAP made provision for 
six events to be invoked 
during June – August 2010, 
with an additional event 
called in September 2010. 
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CPP and PTR are different ways to expose customers to inducements to modify 
their usage behavior, beyond what the prevailing RTP price might have 
produced, during events. PTR offers a payment to reduce usage (a carrot), while 
CPP raises the price for the energy consumer, in effect penalizing usage (the 
stick).13 Testing these pricing structures side-by-side, under rigorous 
experimental protocols, may clarify which produces the largest event-period load 
change.  

A randomly selected control group of AMI-metered customers who pay the 
applicable conventional tariff rate serves as the basis for comparison of usage 
behavior with the treatment customers who face the CAP rates.14  

CAP also involves deploying enabling technology applications that deliver 
current usage information to customers. These applications involve basic or 
advanced in-home displays (IHD), and the means (a programmable 
communicating thermostat (PCT)) for regulating their household thermostat at 
times when load relief is needed.15 In addition, some of these applications were 
bifurcated to impose additional treatments such as requiring that the customer 
pay for part of the cost of the IHD device.  

All customers were provided access to a web-based information system that 
portrays usage data in several ways, so the effect of this system cannot be 
separately established using ANOVA tests. However, the effect of a customer 
establishing an account with this system is evaluated as part of one of the CAP 
hypotheses.    

Limited Applications 

CAP also provides some differences in the level of educational information 
provided to customers regarding the use of the enabling technologies. Another 
treatment involves offering some customers a bill protection guarantee up-front.16 
Like the IHD partial payment requirement, this application was only applied on 
a limited basis.    

A unique and important feature of the CAP is that it employed an opt-out 
recruitment design whereby customers were: a) chosen randomly from the larger 
population of AMI-enabled customers to participate in one of the treatment cells 
or as a control; b) enrolled automatically in the CAP; and c) informed 
                                                                 
13 The very high CPP prices and PTR credits on event days are intended to reflect the capacity cost 
of peaking generation that may be avoided by consumers’ load reductions during event periods.  
14 ComEd has four residential rates that differentiate single-family from multi-family homes and 
distinguish residences with electric space heat from those without electric space heat. Energy prices 
vary among these categories, but only slightly in relative terms. 
15 Some pilots install PCT so that the utility can adjust the temperature during events. The CAP 
just provided the device to the customer and left it to each participant to decide how to use it  
16 The CAP implementation plan provides bill protection to all participants, but the majority of 
customers are not aware of it during the course of the pilot. Two cells are notified of bill protection 
(D1 and L1), and ComEd only notified other customers in attempt to prevent them from opting 
out of the pilot. 
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subsequently of their rate and technology treatments at the commencement of 
the pilot. Customers remained in the pilot unless they took steps to opt-out. An 
opt-out approach was intended to lead to greater participation compared to an 
opt-in design whereby customers are recruited to participate.   

ComEd adopted a systematic and comprehensive set of protocols designed to 
manage the customers’ experience in ways that were expected to reduce opt-outs 
and increase satisfaction with the pilot experience. Many of the hypotheses test 
the extent to which these protocols were successful both in sustaining enrollment 
and in inducing price response.  

A detailed description of the CAP design is available in the EPRI Methods 
report.17  It describes how the CAP was designed, how the sample sizes were 
derived, and details the processes developed to support the implementation of the 
pilot. Section 3 provides more detail on the experimental design and its 
implications for testing application impacts.  

Objectives of the Program Evaluation 

Three primary objectives were established for the evaluation of the CAP pilot:  

1. To determine how the applications influenced the level and pattern of energy 
consumption, particularly:  
- changes in overall energy consumption, 
- reductions in peak demand, and  
- load shifts from peak to off-peak periods  

2. To identify the key drivers of customer attrition over the course of the pilot 
as a function of bill impacts, customer characteristics, and so forth. 

3. To identify the key drivers of customers’ acceptance of technology as a 
function of the price charged for the technology, variations in tariffs, 
customer characteristics, and so forth. 

As established above, the CAP evaluation has been conducted in two phases. In 
Phase 1, the three objectives above were examined, to the extent possible, using 
available data from the three summer months, June through August 2010. 
Special attention was given to identifying load changes associated with DA-
RTP, CPP, and PTR. Each of these price structures features prices that differ 
each day.   

This Phase 2 analysis utilizes the entire year’s data, as well as data obtained from 
a customer survey administered at the end of the pilot term (May 2011) to 
accomplish the evaluation objectives. 

                                                                 
17 The ComEd Customer Applications Program – Objectives, Research Design, and Implementation 
Details. EPRI, Palo Alto, CA: 2010. Product ID: 1022266. 
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The Evaluation Methods 

Several analytical and statistical methods were drawn upon to conduct the 
components of the CAP evaluation. Some are appropriate to examine differences 
in behavior among customers by group. Others facilitate an examination of the 
data at the individual customer level in order to examine changes in electricity 
consumption in greater detail.   

Since the experimental design of the pilot embodies a series of treatment and 
control groups, a logical first step is to apply methods of ANOVA to test 
differences in the average electricity consumption (e.g., average daily 
consumption, average hourly peak-period consumption, etc.) between treatment 
and control groups.  

While these ANOVA tests highlight any aggregate differences in electricity 
consumption among treatment and control groups, other methods are needed to 
understand the various ways in which customers in the several dynamic pricing 
treatments (CPP, PTR and DA-RTP), two of which include large price 
differences on event days, may respond to prices or differences in peak and off-
peak prices. Several regression models are specified to estimate differential effects 
on peak period consumption on event and non-event days. Formal customer 
demand models are also specified to determine the extent to which event-day 
load impacts and customer price responsiveness square with economic theory.  

Finally, several of the hypotheses require the identification of factors that affect 
some specific, discrete customer choices (e.g., the decision to opt-out of the pilot). 
These issues are investigated by specification and estimation of appropriate 
logistic choice models. 

Each of these research methods is summarized below and described in more 
detail in Section 5, which presents results of the analyses. 

Analysis of Variance (ANOVA) 

Many of the hypotheses are addressed using ANOVA or analysis of covariance 
(ANCOVA). These are formal statistical protocols that compare differences 
between the mean values of measured outcomes (e.g., differences in overall 
energy consumption or peak-period usage) associated with the applications. For 
example, ANOVA may be used to assess the significance of the difference in 
average summer peak-period usage between customers receiving an individual 
application (e.g., receiving the CPP treatment) and a control group during the 
pilot period. ANOVA analyses are typically conducted using commercial 
software such as SAS and Stata that provide established routines for conducting 
the analyses and produce summary statistics. In practice, these methods can be 
implemented by means of equivalent regression methods using indicator 
(dummy) variables for the treatment groups, which allow simultaneous testing of 
a number of treatments, as described in Section 5 below.  
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Regression Analysis of Rate Impacts 

The ANOVA analyses were designed to test for the various hypothesized 
treatment effects at an aggregate level by comparing to a control group. A 
separate series of regression analyses were employed to measure the event-day 
load impacts of the various rate treatments. No control group customers were 
used in these latter models. Rather, non-event day usage is used as a control for 
event-day usage, controlling for weather, day of week, and month differences. 
These regression models are applied to panels of customers (e.g., all CPP 
customers, retaining customer-level data), aggregations of customer data (e.g., 
CPP customers who reduced load on event days, adding loads across customers), 
or customer-level data (e.g., estimating a separate model for each customer). For 
example, the customer-level models are used to identify those customers who 
appear to respond to prices (CPP and DA-RTP) or financial incentives (PTR) in 
a statistically significant way.18 Regression analysis is then applied to average-
customer load data for the subsets of responders to estimate hourly load impacts 
and metrics such as the elasticity of substitution, a measure of the degree of peak 
to off-peak load shifting. 

Customer Demand Analysis 

The regression analyses described above rely on models that are largely empirical 
in construction. The estimated relationships reflect the data, but not necessary in 
a way that is consistent with the tenets of consumer behavior as implied by 
economic theory. To impose behavioral structure, theoretically motivated 
electricity demand models were estimated based on data for various groups of 
customers. Two such models often used to measure price responsiveness under 
hourly pricing conditions are the nested constant elasticity of substitution 
(NCES) and the Generalized Leontief (GL) models.   

The most important indicator of demand response that can be derived from these 
estimated models is known as the elasticity of substitution, which is often 
denoted by the symbol σ. In our case, σ is a measure of load shifting and is 
defined as the percentage change in the ratio of peak to off-peak electricity use 
caused by a 1 percent change in the ratio of off-peak to peak electricity prices. 
The theoretical underpinnings of these demand models, as well as the empirical 
specifications, are provided in Appendix A of the Phase 1 report.19  

  

                                                                 
18 Dynamic or event-based rate structures, in which prices vary across days or episodically across a 
season, permit analysis at the individual customer level because the observations on their energy 
usage for many days on which prices are relatively low may be used to establish implicit reference 
loads from which changes in usage on high-price days may be measured. 
19 EPRI. April 2011. The Effect of Electricity Consumption of the Commonwealth Edison 
Customer Applications Program Pilot: Phase 1, Appendices. EPRI 1022761. 
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As is discussed in that appendix, the GL model is flexible in that elasticities of 
substitution for any customer or group of customers can differ by day, which 
allows them to vary by the price level on that day. In contrast, the elasticities of 
substitution for the NCES model are assumed to be constant for any individual 
customer or group of customers, regardless of the nominal level of prices. The 
GL model’s flexibility with regard to elasticities, which comes at the cost of 
increased analytical and estimation complexity, facilitates testing the extent to 
which consumers’ willingness to shift load differs based on the absolute level of 
prices, rather than imposing the same responsiveness on the estimates. In Section 
5 below, where findings are presented, the NCES and GL estimates of 
elasticities of substitution are presented for event-responders under the CPP and 
PTR rate treatments. Event-responders are customers who were identified in 
customer-level regressions as exhibiting consumption behavior during event 
periods that is consistent with reducing load in response to the substantially 
higher price (or availability of PTR credit) during event hours.  

Analysis of the Inclining Block Rate 

Because of sampling issues described in Section 4, it was not possible to compare 
directly IBR customers with other treatment or control cells in order to estimate 
usage changes due to IBR.20 Instead, the analysis of IBR customers is based on 
comparing monthly usage before and after the introduction of the IBR rate. In 
these regressions, the dependent variable is the natural log of monthly usage 
while the independent variables are cooling degree-days (CDDs), heating 
degree-days (HDDs), and a dummy variable that indicates the months in which 
the customer faced the IBR rate rather than a flat rate. 

The Logit Choice Models 

Formal choice models are used to test hypotheses where the feature being 
observed is not measured continuously, such as with energy usage or hourly 
prices, but rather as a state or condition outcome. For example, individual 
customers either opted out of the pilot or they did not, a dichotomous outcome. 
In this study, these models are used to model the customer’s decision to opt-out 
of CAP or to acquire/adopt enabling technology. 

Logit models are regression-based models that are functionally similar to 
commonly used Ordinary Least Squares (OLS) regression models.21 However, 
they differ from other regression models in that they account explicitly for the 
fact that the outcome is the result of a dichotomous choice. For this reason, the 
left-hand-side variable in the model takes on only values of one or zero, 
                                                                 
20 Had these data issues not been apparent, such comparisons would have still been difficult because 
the rates are not comparable. Prices in the IBR rates differ depending on the amount of electricity 
purchased during a particular billing cycle, and not by the time of day as in the CPP, PTR, and 
DA-RTP rate structures. Some of the issues in modeling these different rate structures are 
discussed in Appendix B of the Phase 1 report. 
21 For an excellent and complete discussion of the logit model and other models of discrete choices, 
see W. Greene, Econometric Analysis. 5th edition, Englewood Cliffs, NJ: Prentice Hall, Inc., 2003, 
Chapter 21.  
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depending on whether the customer chooses to take some action or not (e.g., 
yes/no, buy/not buy), and the right-hand-side (or explanatory) variables are 
customer characteristics (e.g., electric space heating vs. non-electric space 
heating) and descriptions of the treatments (i.e., rate type) to which the customer 
has been exposed.  
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Section 3: Structure of the Analysis 
Experimental Design 

The experimental design for the CAP pilot is illustrated in Error! Reference 
ource not found.. This figure shows a matrix of cells for the treatment (or 
applications) and control groups that characterize the structure of the CAP pilot. 
The number of participants in each treatment or control group is given in each 
cell. Participation quotas for each of the treatments (cells) were established based 
upon considerations of statistical significance.22  

Participants for each treatment cell were selected randomly from the AMI 
footprint. This area includes approximately 100,000 residential customers along 
the I-290 corridor region of Chicago (Bellwood, Berwyn, Broadview, Forest 
Park, Hillside, Maywood, Melrose Park, Oak Park, and River Forest) and about 
29,000 customers in the nearby Humboldt Park neighborhood of Chicago. These 
areas were selected for their apparent representativeness of all ComEd residential 
customers. In early 2010, new advanced metering equipment was installed in all 
homes in these two areas. 

The matrix in Figure 3-1 also provides the structure for the construction and 
analysis of the important hypotheses to be tested, many of which suppose that 
there are differences in usage patterns between customers in various treatment 
cells compared with customers in control cells (e.g., reductions in peak demand 
on event days by CPP customers compared with customers who face a flat rate). 
Cells in different rows generally represent alternative rate treatments, while cells 
in different columns represent alternative types of enabling technologies. One set 
of analyses involves statistical tests of differences in the behavior among customer 
groups in specific cells (applications) of this matrix. 

Dual treatments are embedded in some cells or applications: D1, L1, L5, and L6. 
These dual treatments are indicated by the two separate sample counts in these 
cells. For example, cells D1 and L1 are bifurcated to test the effect of offering bill 
protection to customers:  in some cases, customers are aware that they will be 
made whole at the end of the pilot, while in other cases the customers are not 
aware of this provision. Furthermore, cells L5 and L6 involve different levels of 
incentives to adopt the enabling technology: in some cases, the technology is free; 

                                                                 

22 EPRI 1022266.  
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while in other cases the customer is offered the opportunity to purchase the 
technology at less than the full cost.  

Cells F1 (flat rate, existing meter, and no education) and F3 (flat rate, new meter, 
and basic education) are designed as control groups (i.e., base cases) against 
which other applications or treatment groups (i.e., change cases) can be 
compared to determine usage changes due to the treatment.  

In contrast to all of the treatment cells and to control group F3, customers in 
groups F1 and F2 were selected from ComEd’s load research sample, where these 
samples were intended to be representative of residential customers located 
throughout the ComEd service area.23  

 

Figure 3-1 
Applications by Rate Type and Enabling Technology 

                                                                 

23 As explained in Chapter Section 4: below, however, the load research sample does not appear to 
be representative of the residential customers located in the CAP service area. 
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Hypotheses about Impacts 

EPRI and ComEd established a set of working hypotheses to guide the CAP 
analysis. They are described in detail elsewhere.24 The purpose of the hypotheses 
was to construct concise statements of what quantifiable effects might be 
expected from the CAP applications and could be subjected to logical or 
statistical tests of veracity.  

Some of the hypotheses refer specifically to the results of the applications, for 
example:  
 H3a: The basic in-home display (BIHD) will have a higher implementation 

rate than other enabling technology 

 H2e: The CPP rate delivers the best combination of energy efficiency, 
demand response, and load shifting benefits. 

 H2c: The CPP rate causes the greatest reduction in peak load during the 
summer. 

 H3d: The advanced in-home display (AIHD)/PCT solution will achieve 
greater energy efficiency, demand response, and load-shifting benefits than 
other enabling technology. 

Because they refer directly to differences among the average loads of the 
customers facing certain applications, which represent different rates and 
enabling technologies, these hypotheses can be tested using ANOVA tests of 
significance. Statements about the inference can be drawn regarding the 
significance of measured differences, and hence whether the hypothesis can be 
accepted or rejected as being representative of the CAP population’s behavior 
during the pilot.   

Other hypotheses refer to the success or outcome of process and other 
implementation actions that were intended to achieve greater behavioral changes, 
for example: 
 H3f: Customers who received and activated a BIHD will experience greater 

satisfaction than customers who have received and activated other enabling 
technology 

 H7b: An opt-out strategy will result in a higher enrollment percentage than 
an opt-in strategy. 

 H7h: Customers whose rate comparison shows a monthly gain will have a 
drop-out rate that is less than customers who experience a monthly loss. 

 H7r: Customers who contact the customer support center will experience 
greater energy efficiency, demand response, and load-shifting benefits than 
customers who do not. 

                                                                 
24 EPRI 1022266. 
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Testing the verity of statements such as these requires combining data collected 
or measurements calculated as part of the CAP implementation. Such data 
include customer bills, logs of participant access to the eWeb or contacts with the 
customer service assistance center, and information on customer premise 
characteristics, demographics, perceptions, expectations, and opinions. 

The goal of the CAP analyses is to address all of these hypotheses. Figure 3-2 
describes those that were included in both the Phase 1 and Phase 2 analyses. 
They were singled out for preliminary analysis because either they were 
statements about the directly measured effects of the various treatments, or they 
involve other influences that could be measured readily and might have a 
marginal influence on the application effect. All price and major enabling 
technology effects were tested in Phase 1 and are updated in this report. The next 
section describes the methods that were undertaken to test the veracity of these 
statements, the results of which are reported in Section 5.  

Hypotheses Addressed in Phase 1 and Phase 2

• Rate Type: H2a, H2b, H2c, H2d, H2e

• Enabling Technology: H3a, H3d, H3e

• Enabling Technology Acquisition: H4a, H4b, H4d

• Bill Protection: H5a, H5b

• Customer Education: H6a, H6b, H6c

• Customer Experience-Notifications: H7n, H7o

• Customer Experience-Customer Support: H7r, H7s, H7t, 
H7u, H7v

 

Figure 3-2 
Hypotheses Tested in Phase 1 and Phase 2 

Figure 3-3 lists hypotheses that could not be evaluated in Phase 1 because they 
required customer information not collected until the end of the CAP, but are 
included in the Phase 2 analysis. Also appearing in Figure 3-3 are hypotheses 
that will be evaluated in a supplemental addendum to this Phase 2 report in 
January 2012. 
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Hypotheses Addressed in Phase 2 Only

• Rate Type: H2f

• Enabling Technology: H3b, H3c, H3f

• Bill Protection: H5c

• Customer Experience-Observable Steps: H7a

Hypotheses Addressed in Phase 2 Appendix

• Customer Experience-Opt-Out Enrollment: H7b, H7c, 
H7d, H7e

• Customer Experience-Comparisons: H7f, H7g, H7h, H7i, 
H7j, H7k, H7l, H7m

 

Figure 3-3 
Hypotheses Tested in Phase 2 and Phase 2 Addendum 

Figure 3-4 lists hypotheses that will not be evaluated for various reasons that are 
described in Section 5. 

 

Hypotheses that can not be Evaluated due to 
Design Issues

• Meter Type: H1 (Meter type has no effect on electricity usage 
behaviors.)
– Sample design issues

• Enabling Technology Acquisition: H4c (The adoption rate of purchased 
enabling technology will exceed free enabling technology.)
– Insufficient treatment participation

• Customer Experience-Comparisons: H7l, H7m (Customers receiving 
normative comparisons and whose normative comparisons show them 
having higher electricity consumption than their neighbors will 
experience greater effects.)
– Insufficient OPower data

• Customer Experience-Notifications: H7p, H7q (Customers who view 
hourly prices online or who sign up multiple family members to receive 
notifications will experience greater effects.)
– Insufficient data

• Customer Experience-Customer Support: H7w (Customer satisfaction 
with customer support center will exceed satisfaction levels of ComEd’s
customer care center.)
– Satisfaction with the customer support and care centers unknown

 

Figure 3-4 
Hypotheses Slated for Testing, but not Addressed in Phase 1 or Phase 2 

Hypotheses Addressed in Phase 2 Addendum 

Hypotheses that cannot be Evaluated due to 
Design Issues 

Hypotheses Addressed in Phase 2 Only 
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Section 4: Data Collection 
The data to support the Phase 2 analyses undertaken in this evaluation came 
from several sources, as described below. In collecting and examining the 
requisite date, EPRI discovered that the customer composition for a few of the 
applications did not comport with that of the general population of ComEd 
customers, raising challenges to testing hypotheses using such data.25 

The Data 

The data available for this Phase 2 analysis includes the following: 

 Hourly interval load data for each treatment and control participant; 

 Monthly billing data (kWh, per unit energy prices, total cost, rebates paid) 
for each participating customer; 

 Initial and post-pilot survey data for those participants who responded; 

 Hourly prices faced by the CPP, PTR and DA-RTP customers; 

 Days on which CPP and PTR events were declared; 

 Enabling technology device installation and usage information; and 

 Customer interaction data on all touch-point contacts from ComEd to the 
sample participants; and by the participants to the program website or 
ComEd customer support center. 

This Phase 2 report uses data for the entire study year ending May 2011.26 As 
conveyed in Section 3, tests for some hypotheses and the results of an extended 
evaluation will appear in a supplementary EPRI report to be published in January 
2012.  

  

                                                                 

25 See Appendix C of the Phase 1 report in EPRI 1022761 for additional details about data and 
data issues. 

26 CAP participants were enrolled starting late April through early June 2010 based on their billing 
cycle change. Each experienced 12 monthly billing periods on the pilot application(s), ending with 
the twelfth billing month, either April or May 2011. Due to reduced availability of load data for 
May, the Phase 2 analyses generally used data through April 2011. 
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Some Issues with the Data 

A study of this complexity presents challenges in implementation. The 
compromises needed to implement the study into the field can affect the way the 
data can be used. A careful examination of the data often reveals some issues that 
need to be resolved (for example, missing data or design specification issues) 
prior to conducting the analysis, generally in a way that does not affect the 
veracity of the analysis' findings. In some instances, however, program 
implementation can cause data shortcomings that complicate analysis, and 
thereby render inappropriate the use of the conventional statistical models. In 
some cases, the shortcomings are such that some elements of the hypothesis 
testing must be abandoned altogether.  

A few anomalies or incongruencies in the CAP data have affected the way in 
which the analyses have been conducted. As is evident in the discussion below, 
strategies have been developed to restructure some hypothesis tests to mitigate 
the effects of these data issues. In a couple of cases, tests of hypotheses had to be 
abandoned. Because these abandoned hypotheses involved impacts that were of 
secondary interest, there is little consequence for the overall value of the 
evaluation.    

The first data issue is the specification of the time periods for which participant-
specific data are available. The date at which a customer’s CAP hourly load data 
first becomes available in the data set depends on the customer’s monthly billing 
cycle. Some customers began service in late April 2010 while the last commenced 
service in early June 2010. As a result, fully time-corresponding data for all 
customers were not available until June 11, 2010. For many analyses, especially 
statistical tests involving ANOVA, all customers should have data for the full 
time period to which the analysis is applied.  

Customers also completed participation in the program on different dates 
depending on the customer’s monthly billing cycles. Incomplete data also 
resulted from participant’s decisions to opt-out (only about 2%) and customers 
who closed their accounts. In many cases, enabling devices were installed and/or 
activated on dates different from when the customer was enrolled in CAP. There 
are also some interruptions in usable data for several hundred participating 
customers as a result of two major service outages during the summer and one in 
the non-summer months.  

The differences among customers in the time periods of their data are of some 
concern in conducting ANOVA, since in these types of statistical analyses it is 
generally assumed that the data from each customer used to construct the 
application average are from exactly the same time period. If the time periods 
differ, the ANOVA-style comparisons of average usage between two cells remain 
valid as long as differences in the data available for customers are randomly 
distributed across the applications and hence do not affect the comparisons of 
means. In other words, if there is no systematic correspondence between when a 
customer was enrolled in CAP and the application to which it was assigned, the 
ANOVA-style comparisons can be valid.  
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Fortunately, it is reasonable to presume that the differences in data availability 
among customers are randomly distributed across the applications. The method 
by which ComEd selected participants and assigned them to applications was 
random over customers located in the entire AMI footprint and independent of 
the customer’s monthly bill cycle. Therefore, there is no reason to suspect 
systematic bias. The outages occurred after the sample was composed and were 
geographically concentrated, but were not related to the customer’s monthly 
billing cycle or the application to which an affected CAP participant was 
enrolled. Hence, ANOVA analyses are appropriate using customers with data for 
all days from June 11 through September 30, 2010 in the summer; and October 
2, 2010 through April 27, 2011 for the non-summer analyses.27 To avoid extreme 
value bias, customers for which 2 percent or more of the observations were zero 
for the relevant summer or non-summer time period were excluded from the 
Phase 2 ANOVA analysis.28 

Other design and data characteristic issues are more problematic. Five 
circumstances limited the extent to which some of the pre-specified analyses 
could be undertaken.  

The first had to do with the composition of the two control groups (F1 and F2). 
They were constructed to represent the ComEd’s entire customer population to 
facilitate making system-wide residential customer population inferences from 
the CAP findings. Participants in cells F1 and F2 were created by selecting 
customers at random from customers currently included in ComEd’s load 
research sample. That sample combines two different samples, constructed at 
different times, each drawn to be representative of the entire residential 
population. The earlier sample employed stratification by usage level and premise 
characteristics (single/multi-family, premises with and without electric space 
heat), while the later sample stratified only by premise characteristics.  

Stratification by size is often used in load research where the objective is to 
estimate the class peak load or a representative load profile. However, in 
combining the two samples, the resulting sample of customers is not suitably 
representative of the population in general for the purpose of comparing load to 
the CAP customers. That is, it appears that high-usage customers are over-

                                                                 
27 One exception is August 3, 2010, where the data indicate an outage for customers in only some 
of the rate treatments, and as such, this date is omitted from the ANOVA analysis. This was likely 
due to a technical error in data collection rather than an actual outage. 
28 About 1,100 of the approximate 8,000 enrolled customers were excluded through this process. 
The data available at the time of the Phase 1 report were less complete and therefore resulted in 
approximately 1,500 exclusions. The ANOVA analysis uses the most restrictive set of customers, 
whereas other methods discussed in this report use a broader sample that retains customers with 
incomplete data. The alternative to making these assumptions is to employ a much more complex 
regression model. For example, we could have used monthly customer data, so the dependent 
variable would have been the average usage for each customer in each month. The independent 
variables would control for the share of the month in which the customer was enrolled, had 
equipment installed, or experienced a service outage. Such a model may also benefit from the 
introduction of customer fixed effects that control for customer-specific characteristics that do not 
change during the sample timeframe. This modeling structure is capable of accounting for the data 
issues described above, but it complicates the analysis and the interpretation of the models results.  
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represented, relative to what would be expected in the population, both in the 
load research sample, and in the CAP delivery class segments (e.g., single- or 
multi-family premises with or without and electric space heat) that comprise F1 
and F2.  

This outcome can be seen in Figure 4-1, which shows the average hourly kWh 
usage for the F1 and F2 control groups and the rate application customers. The 
average hourly electricity usage for the F1 and F2 control groups (the first bar in 
the left-most graph) is nearly double that of the rate treatments (the other six 
bars). This distinction is not due to customer response to prices, but rather, it is 
an artifact of the systematically different characteristics of the F1 and F2 control 
group customers relative to customers in any of the rate treatment groups.  

The control groups, F1 and F2, also have higher peak and all-event hour usage 
than customers in the five rate treatments (the middle and right-most graphs in 
Figure 4-1, respectively), providing further indication that the control groups 
constructed from the load research sample are not representative of customers in 
the CAP, based on average usage.  

The differences are evident, but somewhat less pronounced, when comparing the 
ratio of peak to off-peak usage as portrayed in Figure 4-2. The figure shows that 
customers facing TOU rates have relatively lower peak usage shares compared to 
the other rate treatment groups, although the difference from the flat rate, as 
described in Section 5 below, is not statistically significant. 

 



 

 4-5  

 All Hours    Peak Hours    Event Hours 

 

 

Figure 4-1 
Average Usage by Rate Structure, for Various Periods 
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Figure 4-2 
Average Peak to Off-Peak Usage Ratio, by Rate 

The control groups F1 and F2 were intended to represent customers who did not 
receive AMI metering, specifically to test whether there was any influence on 
customer usage solely attributable to installing AMI, as opposed to the AMI-
enabled treatments. The bias inherent in the composition of the two control 
groups precludes testing this hypothesis because the sampling error assumptions 
that support ANOVA are not met. The result of such a comparison would 
portray the non-application (control) case as having higher load, and as a result 
differences between it and the application loads, which would appear as load 
reductions, would be exaggerated.  

The second issue with the data affects the analysis of IBR customers. Selection of 
customers to be on the IBR rate was restricted to those with at least five years of 
billing history to create long-term average usage levels from which the break 
points in the IBR were constructed for each customer. As a result of this 
restriction, customers in the IBR cells appear to over-represent high usage and 
under-represent low-usage customers. The likely explanation is that low-usage 
customers live in multi-family units and in smaller homes and tend to move more 
frequently than the average ComEd customer. Therefore, those premises are not 
as likely to have the required five years of billing history and are under-
represented in the sampling process. 
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Figures 4-1 and 4-2 above illustrate this condition. The average hourly kW usage 
is 10 to 15 percent higher for customers in the IBR treatment than for those in 
other rate treatments (excluding the F1 and F2 control groups). The presence of 
obvious bias precludes any direct tests (using ANOVA) of differences in 
customer energy usage due to the IBR treatment relative to usage by customers in 
other rate treatments. To provide some indication of the extent to which IBR 
affected customer usage, we separately analyzed changes in electricity 
consumption for IBR customers through comparisons of the available monthly 
billing-level usage data from mid-2009 and mid-2011, before and after the IBR 
treatment.  

A third data issue is that the application cells involving in-home display 
technology (IHD) applications tend to also under-represent low-usage customers 
because they exclude customers in multi-family residences above the first floor of 
a residential building. This exclusion is due to technical limitations on the ability 
of IHDs to function properly for customers residing above the first floor.29 The 
IHD treatment cells therefore include fewer multi-family residences than would 
be expected through random selection because multi-family residences tend to 
have relatively low average hourly kW usage, as is evident from Figure 4-3.  

The BIHD treatment application cells have average hourly kW usage that is 
about 3 percent higher (and even higher for AIHD customers) than it is for 
eWeb customers without IHD.30 This characteristic of the data in these cells may 
compromise our efforts to test for the effects of IHDs on customers’ electricity 
use. However, as discussed below, the very low uptake of IHDs in these 
applications makes detecting any influence, biased or not, difficult using 
ANOVA, at least at the aggregate level.  

                                                                 
29 The BIHD and AIHD technologies rely on a radio-based signal from the meter to provide 
energy usage data for display on the device. These radio waves do not radiate much upward past the 
second floor of many building.  
30 ComEd offers all CAP customer access, through an internet connection, to its eWeb portal.  
This portal displays billing data and compares customers’ usage to that of other customers that are 
deemed to be comparable in life and premise circumstances. Since all customers have access, the 
eWeb is not a treatment but a general condition that must be incorporated into the construction of 
the control reference load for ANOVA analyses. 
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Figure 4-3 
Average Hourly Usage, by Technology31 

Fourth, customer acceptance of PCTs is low; less than 10 percent of those 
offered the device installed it. As a result, tests of the effects of the PCT enabling 
technology on customers’ response to time-based rates such as CPP and PTR, if 
they exist at all, are likely obscured. To circumvent this problem we adopt an 
intention-to-treat design for analysis of energy usage effects of PCTs.32  

Finally, as shown in Table 4-1, very few customers purchased IHDs (as opposed 
to those that were offered IHDs at no cost). This precludes comprehensive tests 
of the effects of the partial payment applications of IHDs. As in the case above, 
the analysis of the effects of customer purchases was instead analyzed based on an 
assumption of intention to treat, with the caution that ANOVA may reject the 
hypotheses that the IHD application is different from those without that device, 
when in fact that is not true of all customers.  

  

                                                                 
31 Data for IBR, F1, and F2 customers are excluded from this figure. 
32 Intention to treat is used in cases wherein a treatment was offered to a particular set of customers 
who largely (or entirely) declined to accept the treatment. Because they were offered a treatment, 
customers in such a treatment group cannot be considered as completely untreated, nor can they be 
treated like another untreated group. The intention-to-treat design in effect equates the response of 
customers that took the treatment but did not use it with those that did not take the treatment: in 
both cases, the treatment effect is nil. When the treatment uptake is low, as is the case with the 
PCT application, it is all but assured that there will be no observed treatment effect.  
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Table 4-1 
Acquisition and Implementation of Free and Purchased Technology 

  

Numbers Rates 

Offer Acquire Implement Acquire Implement 

For Free 

L5a 525 525 171 100% 33% 

L6a 225 Unavailable 27 Unavailable 12% 

For Purchase 

L5b 225 5 4 2% 80% 

L6b 225 4 4 2% 100% 
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Section 5: Findings 
This section, divided into four sub-sections, presents the findings from the 
various analyses of the participant responses to the CAP rate and technology 
treatments in the pilot. The section begins with a presentation of the ANOVA 
analysis of the aggregate average electricity usage impacts due to the various rates 
and other treatments. That is followed by the results of regression-based analyses 
designed to directly estimate the impacts of the CAP rate treatments on 
participants’ load profiles, with particular focus on the peak-period impacts of the 
dynamic pricing applications of CPP, DA-RTP and PTR. The regression 
analyses use data at a variety of levels of aggregation, or averaging, including: 1) 
average load by rate treatment, 2) pooled (fixed-effects) analysis of customer-level 
loads within rate treatment, 3) individual customer-level analysis to identify 
“event-responders” for each rate treatment, and 4) average load of event-
responders, by rate treatment.  

The third sub-section describes the application of formal customer demand 
models to analyze data for the CPP and PTR event-responders to estimate 
elasticity of substitution parameters that characterize customers’ degree of load 
shifting between peak and off-peak electricity consumption. Finally, a separate 
analysis examines the effect of IBR on those customers’ overall electricity usage.  

Analysis of Variance (ANOVA) 

As described in Section 2, the ANOVA analysis was conducted using ordinary 
least squares (OLS) regressions with indicator variables for each treatment. That 
is, if a given customer is in a particular treatment group, the indicator variable for 
that treatment is assigned a value of unity for that customer; the indicator 
variable is assigned a value of zero otherwise. This approach facilitates 
simultaneous comparisons across many treatments. The primary OLS regression 
model used in the ANOVA analysis is as follows: 

iBIHDiTOUiPTRiRTPiCPP BIHD x   TOU x   PTR x   RTP x   CPP x  iUsage
 

iPurchiBill_protiPCTiAIHD Purch x   Bill_prot x   PCT x   AIHD x   
 

iiMFSHiMFNSiSFSHiEduc e  MFSH x   MFNS x   SFSH x   Educ_Not x   
 

Equation 5-1 
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where: i indexes customers, α is the constant term (the effect associated with the 
specified control group), the βs are estimated parameters (the revealed treatment 
effects), and ei is the error term. SFSH denotes single-family residences with 
space heat, MFNS denotes multi-family residences with no space heat, and 
MFSH denotes multi-family residences with space heat.33 

To assess customers’ responses to CAP program design and incentives, the 
ANOVA or ANCOVA analysis focuses on evaluating the 46 hypotheses that 
were discussed in Chapter 3.34 In some cases, hypotheses are addressed using 
metered usage data such as monthly energy consumption or average hourly 
consumption in peak periods. In other cases, conducting significance tests 
requires that ordinal or cardinal metrics be generated from information in the 
CAP system process, measurement, and validation databases (MVDB). For 
example, the number of times that a customer accessed the CAP website was 
derived in that way to ascertain if doing so affected the main treatment effect. 

ANOVA quantifies the relative effects of different factors on customers’ usage of 
electricity, and indicates their significance. For analytical purposes, customers’ 
usage of electricity is measured in three distinct ways: 

 Average overall usage, a reduction in which serves as a measure of electricity 
conservation 

 Average peak-period usage, a reduction in which serves as a measure of 
demand response, which can be further distinguished by whether the 
response applies to all days or to event days only  

 Peak-to-off-peak usage ratio, a reduction in which serves as a measure of 
load shifting 

Hourly billing data are used to construct the application metrics described above, 
which are then evaluated using a regression-based test of significance. No 
weather adjustments are required for ANOVA because all customers experienced 
the same weather conditions and we evaluate all customers using a consistent 
period of time (e.g., average usage during the summer months). Subsequent 
models that examine variations in customer usage across time (either for 
individual customers or aggregations of customers) include weather adjustment 
variables.   

The different factors that are hypothesized to affect one or more of these 
measures of electricity usage can be grouped into four major categories, as 
follows: 

 rate structure - CPP, PTR, TOU, DA-RTP, and IBR 
 enabling technology - basic and advanced in-home display and PCT 
                                                                 
33 Single-family residences with no space heat do not appear in the equation because such 
residences are indicated by zero values on all three of the residence types that are included in the 
equation. 
34 The hypotheses themselves will be described in detail in a supplemental addendum to this report 
to be published in January 2012, as are the model specifications and results of the formal tests. 
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 other limited deployment applications – education, event notification,35 bill 
protection, technology cost sharing 

 housing type - included to control for sample selection issues 

Housing type variables were added to account for differences in premises due to: 
whether it is a single-family or multi-family building; and whether the building 
has electric space heating. These are characteristics used to distinguish residential 
premises under the conventional ComEd tariff because they are believed to 
represent differences in electricity usage levels and/or profiles. Adding them as 
conditioning variables accounts for the effect of these factors, and thereby 
improves the ability to detect application effects in the regression models. 

ANOVA regression results are structured so that the primary application effects 
can be quantified and their statistical significance ascertained. This is 
accomplished by measuring treatment effects relative to a baseline, or control 
group. The model estimates allow us to determine whether the measured 
difference between the treatment and control group is statistically significant. 
The statistical significance threshold is the 95 percent confidence level.  

Because treatment effects may differ seasonally, separate models are estimated for 
the summer (June through September) and non-summer (October through 
April) time periods. Summer results are presented first. 

Summer Months ANOVA Results 

Table 5-1 contains the estimated coefficients from the summer ANOVA 
regression models for dependent variables based on four separate measures of 
electricity usage. The first column lists the CAP treatments. The next four 
columns correspond to alternative impact measurements:  for all summer hours 
(conservation effect); during summer peak hours (peak usage effect); for summer 
event hours (event-specific effects); and on the summer peak to off-peak usage 
ratio (the load shape impact).  

The estimated coefficients listed for each impact measure indicate the difference 
in average hourly use relative to that of control group customers that: 1) pay the 
conventional ComEd residential rate applicable to a single-family residence 
without electric space heat, 2) receive only the eWeb application, 3) were 
provided only basic education, 4) were not notified of events, and 5) received no 
notification of bill protection. Given this control construct (that establishes 
baseline usage), the average effects of the individual applications can be 
quantified and deemed as being statistically significant or not.  

To interpret the coefficients, it is convenient to focus initially on the coefficients 
for multi-family residences (multi-family non-electric space heating (MFNS) and 
multi-family electric space heating (MFSH)), beginning with the all summer 
hours impact measure. These variables are included in the equations to control 
                                                                 
35 Full customer education always accompanies event notification in the program design, so the 
effects of these treatments can only be tested jointly. 
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for differences in electricity use due to type of residence, and the coefficients on 
these variables are easy to interpret as conditioning factors.  

The coefficients associated with (MFNS) and (MFSH) in the second column of 
Table 5-1, both of which are negative, indicate that average summer hourly use is 
lower by 0.682 and 0.695 kWh for multi-family residences with non-electric 
space heating and electric space heating respectively, compared to the single-
family residences without electric space heating. These negative signs are to be 
expected given that multi-family residences are generally smaller than single-
family residences. In all but one case, the MFNS and MFSH coefficients are 
significantly different, as indicated by the bold type in Table 5-1 

Comparing the estimated impact across the four impact measures adds context to 
the importance of housing type. For multi-family residences (with and without 
electric space heating), negative signs associated with the other three ANOVA 
models are expected as well. These table coefficients are in bold, indicating that 
the effects are statistically different from zero at the 95 percent level of statistical 
significance. In contrast, none of the impact measure coefficients for single family 
residences with electric space heat (SFSH) are statistically different from zero at 
the 95 percent level.  

The coefficients associated with the CAP treatments indicate the effect on 
electricity price structures and prices, technology, bill protection, technology 
purchase incentive, level of education, and event notification. For example, the 
value of 0.044 in the first row of the all summer hours impact  indicates that in 
the regression for all hours, CPP customers were found to use an average of 
0.044 kWh per hour more than do flat-rate customers. However, because the 
0.044 is not in bold, this difference is not statistically significant from zero at the 
95 percent level of significance, and therefore the effect should be interpreted as 
zero. This is the case with most of the treatments.  

The rate and technology application differences are not statistically significantly 
different from zero, with three exceptions. The significant but positive 
coefficients for DA-RTP, summer peak hours (0.101) and summer peak to off-
peak ratio (0.037) are counterintuitive because the positive signs on the 
coefficients indicate that despite the generally high DA-RTP peak-period prices 
compared to prices in other hours, customers on DA-RTP have higher peak-
period consumption than do customers who pay a flat rate.  

The full education and event notification impact for event hours exception is 
potentially more interesting: The estimated impact is negative and statistically 
different from zero (-0.223). The implication is that educating customers and 
notifying them of events can lead to usage reductions during event hours, 
independent of rate structures and enabling technologies.  
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Table 5-1 
Estimated Coefficients from the Summer ANOVA Models36 

  Dependent variable = average usage across…. 

Variable 
All 

Summer 
Hours 

Summer 
Peak 
Hours 

Event Hours Summer 
P/O Ratio 

CPP 0.044 0.059 0.002 0.003 

DA-RTP 0.063 0.101 0.102 0.037 

PTR 0.061 0.082 0.080 0.007 

TOU 0.069 0.063 0.071 -0.016 

BIHD -0.007 0.005 0.016 0.012 

AIHD 0.037 0.059 0.087 0.019 

AIHD/PCT 0.014 0.001 0.012 0.003 

Bill Protection 0.024 0.041 0.077 0.030 

Purchase Tech. -0.055 -0.056 -0.081 0.001 

Educ. / Notif. -0.077 -0.107 -0.223 -0.009 

SFSH 0.061 0.083 -0.086 0.032 

MFNS -0.682 -0.870 -1.232 -0.153 

MFSH -0.695 -0.846 -1.202 -0.058 

Constant 1.377 1.563 2.232 1.119 

We investigated this finding further using an alternative model with cell-level 
indicator variables in place of treatment-level indicator variables.37 The results 
indicated that the education / event notification impact is most strongly 
associated with three cells: 
 D2: CPP rate structure with BIHD and full education / event notification; 

                                                                 
36 Each model contains 5,778 observations, with one observation per customer. Customers are 
excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are 
screened due to incomplete data. The control group consists of customers in treatment cell F3 
residing in single-family homes with non-electric space heating. Additional details will be provided 
in an addendum to this report to be published in January 2012. 
37 This model specification replaces the treatment-specific indicator variables (e.g., a CPP 
regardless of the presence of other treatments indicator variable) with cell-specific indicator 
variables (e.g., a cell D3 indicator variable that isolates a specific treatment). The cell F3 indicator 
variable (flat-rate customers with an AMI meter, basic customer education, and eWeb access) is 
omitted so that these customers serve as the control group. Because each analysis cell contains a 
bundle of treatments (e.g., cell D2 contains customers who were on the CPP rate, were offered a 
BIHD, received full education / event notification, and had access to eWeb), the cell-specific 
version of the ANOVA model tests for the effects of all available interactions of treatments. For 
example, one may hypothesize that BIHD or AIHD may be more effective when combined with a 
dynamic rate such as CPP or PTR. The cell-level model allows for such effects to be isolated, 
whereas the treatment-level model would require the analyst to test a variety of variable interactions 
(e.g., by interacting the CPP and BIHD indicator variables). 
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 D4: CPP rate structure with AIHD/PCT and full education / event 
notification; and 

 F5: Flat rate structure with eWeb only and full education / event notification. 

The coefficients for all but one cell (D7, which is the PTR rate structure with 
AIHD and full education) are negative, but only the three listed above are 
statistically significantly different from zero. While this provides some indication 
that education and event notification are associated with event-day load 
reductions, that conclusion is not fully confirmed. The fact that the load impacts 
are not statistically significant for other cells where full education and event 
notification are present (all cells except the control group, F3) requires 
explanation. The findings of the impact of education and event notification from 
the treatment-level model suggest that more research is warranted. 

Non-summer Months ANOVA Results 

The results for the non-summer ANOVA model are shown in Table 5-2. The 
event-hours impact measurement is left out since CPP and PTR events were 
confined to the summer months. 

The housing-type variables provide the expected results, in that both of the 
electric space heating housing types use more energy in non-summer months 
than their non-electric space heating counterparts (as indicated by the 1.399 
coefficient for the SFSH variable and the 0.493 coefficient for the MFSH 
variable). However, with the exception of one counter-intuitive result (indicating 
higher non-summer peak-hour usage for CPP customers38), no other variables 
exhibited a statistically significant coefficient.   

Summary of ANOVA Findings 

Overall, the regression-based ANOVA findings from the summer and non-
summer seasons show little evidence that any of the CAP treatments resulted in 
statistically significant differences in average electricity usage. The only 
statistically significant treatment effect, disregarding the counter-intuitive 
findings, is that full education and event notification are associated with lower 
summer event-hour usage.  

The ANOVA model findings for summer and non-summer months provide the 
basis for conducting the majority of the hypothesis tests contained in the analysis 
plan. The Appendix to this report provides a summary of the results of each test 
and a supplementary appendix that provides details for each test will be provided 
in January 2012. The present document focuses on the most notable findings 
from those tests. 

                                                                 
38 The CPP rate during non-summer peak hours is higher than the flat rate, so one would expect 
CPP customer usage during peak hours to be lower than flat-rate customer usage if customers are 
responding to the price difference. 
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Table 5-2 
Estimated Coefficients from the Non-summer ANOVA Models39 

Variable 

Dependent variable = average usage 
across…. 

All Non-
summer 
Hours 

Non-
summer 

Peak 
Hours 

Non-
summer 

P/O Ratio 

CPP 0.037 0.054 0.016 

DA-RTP 0.024 0.036 0.017 

PTR 0.035 0.050 0.022 

TOU 0.025 0.017 -0.018 

BIHD 0.003 0.005 0.006 

AIHD 0.014 0.016 0.010 

AIHD/PCT -0.016 -0.025 -0.000 

Bill Protection 0.043 0.040 0.005 

Purchase Tech. -0.048 -0.043 -0.006 

Educ. / Notif. -0.046 -0.031 0.022 

SFSH 1.399 1.380 0.053 

MFNS -0.441 -0.414 -0.001 

MFSH 0.493 0.435 -0.014 

Constant 0.934 0.845 0.904 

The lack of statistically significant impacts associated with CAP treatments is at 
odds with the findings of many recent pilots that employed similar rate structures 
and enabling technologies. However, this outcome may not be as contradictory as 
it appears. The difference in the average treatment impacts may be the result of 
the opt-out design of the pilot. If automatically enrolling customers in the CAP is 
not itself an inducement to respond to treatments, then we would expect 
responses only from those who were already inclined to respond. Based on past 
pilots, that may be 10 percent or less of the total residential customer 
population.40 Those pilots found differences in rate applications and IHD 
impacts that were significant, but the participation was restricted to volunteers 
who might be expected a priori to be inclined to be responsive. The CAP 
includes a random sample of customers who were not recruited to join, but 
enrolled in the treatment without their explicit consent  As a result, the responses 

                                                                 
39 Each model contains 5,471 observations, with one observation per customer. Customers are 
excluded if they are in treatment cells F1 or F2, are in any of the IBR treatment cells, or are 
screened due to incomplete data. The control group consists of customers in treatment cell F3 
residing in single-family homes with non-electric space heating. Additional details will be provided 
in a supplementary addendum to this report to be published in January 2012. 
40 Based on a review of pilot reports of subscription rates.  
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by those predisposed to respond may be masked by the much larger collective 
load of those not inclined to respond, and did not respond to, the applications. 
Detecting the responses of a small minority of customers would require much 
larger sample sizes than the CAP used.41  

To explore further the nature of CAP effects, we focus on CPP and PTR event-
hour responses. Because of the high event-hour prices (incentives, in the case of 
PTR), this seems the most likely time period in which participants altered their 
usage based on the treatment. We proceed in three steps. First, we examine 
observed load data in an attempt to discern whether event-day usage patterns 
differ from usage patterns on non-event days with similar weather conditions. 
Second, we estimate fixed-effects models that attempt to explain variations in 
customer daily average peak-period usage. A fixed-effects model is another 
method of determining whether there was an aggregate (i.e., rate-level) response 
to event-day price signals. Third, we estimate the same model separately for each 
CAP customer in an attempt to determine whether a subset of customers reduced 
peak-period usage on event days.  

Direct Estimation of Event-Day Load Impacts 

The absence of significant rate treatment effects for the average customer in the 
ANOVA analysis motivates employing other analytical techniques to determine 
if more detailed analysis identifies price-induced load impacts. We begin this 
sub-section by displaying a series of graphs of average customer loads by rate 
treatments on event days and other days with weather conditions similar to event 
days. These portrayals serve to confirm the results from the ANOVA tests that 
on average there is no detectable rate application treatment response. We then 
turn to a quantitative analysis that pools daily peak-period data for each customer 
within the dynamic rate treatments in a fixed-effects model to formally test for 
load impacts on event days. These results again indicate that any event-day load 
impacts are small.  

Additional analyses are warranted because it may be the case that a few customers 
within each rate treatment group respond to prices or events, but their response is 
dominated by the random actions (noise) of the much larger number of non-
responders, and hence their impact is masked. To explore this possibility, we 
apply regression analysis at the individual customer level to identify subsets of 
CAP customers who appear to reduce load significantly during event periods. 
We label these customers event-responders, and proceed to conduct additional 
graphical and regression analysis to confirm and quantify the nature of their load 
responses. Finally, we apply formal customer demand models to the load data for 
the event-responders in the CPP and PTR rate treatments to estimate elasticity 
of substitution parameters that characterize their degree of price responsiveness. 

                                                                 
41 EPRI 1010855 
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Graphical Assessment of Average Rate-Treatment Loads 

Several graphic depictions of treatment customer loads were constructed to 
illustrate average load profiles for various treatment and control groups on event 
days and other similar (with respect to weather) weekdays. The two vertical lines 
on each figure mark the hours (1:00 p.m. to 5:00 p.m., or hours-ending 14 to 17) 
which are those when CPP and PTR events were called; this is the period when 
one would expect CPP and PTR customers to reduce consumption relative to 
their usage on non-event days. These hours are also those when the highest 
TOU rates are in effect, and when DA-RTP prices are highest. 

To provide context, Figure 5-1 plots hourly usage patterns for the F3 control 
group (which includes customers paying the conventional ComEd residential rate 
that has no hourly price variation) on an average weekday, an average event day 
(when temperatures were elevated), and the average day for the week of August 
9-13, which by virtue of its relatively high temperatures serves as basis for sorting 
out weather effects from event day treatment effects. Because the control group 
receives no price changes when weather changes, loads on the average hot 
weekdays and on event days are essentially identical during event hours (since 
events tend to be called on hot days). Control group loads on average weekdays, 
as indicated by the distinctly lower load profile in Figure 5-1, are lower than on 
hot days, primarily because less air conditioning is needed.  

 

Figure 5-1 
F3 Control Group Average Usage, by Day Type 

Somewhat in contrast, Figure 5-2 illustrates average hourly usage patterns for 
CPP customers (combined groups D1-D4) during typical non-event days and on 
three event days in July (the left-hand illustration) and three events days in 
August (the right-had illustration)  
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 July August 

Figure 5-2 
CPP Average Usage in July and August for Average Non-Event Days vs. Three Event Days 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

kW

CPP July 6,7,21,22

CPP July 14

CPP July 23

CPP July 27

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

kW

CPP Aug 10,11

CPP Aug 19

CPP Aug 20

CPP Aug 31



 

 5-11  

The solid green line in each figure represents average usage over non-event 
weekdays with temperature conditions similar to those on event days.42 The 
dashed lines are average CPP loads on the three event days in July (left panel) 
and in August (right panel). At this aggregate level, the only apparent differences 
in usage are the nearly parallel shifts upward or downward in hourly usage 
patterns on event days relative to non-event days due to differences in ambient 
temperatures and possibly other unexplained factors. In particular, usage during 
peak hours on event days barely appears to drop relative to usage on non-event 
days. There is no distinct notch in the load profile during the event period. Thus, 
at this aggregate level there appears to be no visibly discernable effect of high 
CPP prices on customer behavior. 

Figure 5-3 illustrates average hourly usage patterns for real-time pricing (DA-
RTP) customers (groups L1-L3) for several types of days in July and August: 
event days, high-priced days (when prices during the four peak hours average 
more than $0.10/kWh), and moderately-priced days (when peak prices average 
less than $0.10/kWh). These curves indicate (paradoxically) that DA-RTP loads 
are higher at higher prices. However, the correlation likely reflects the fact that 
loads and prices both move together with temperature, and not that loads 
increase when DA-RTP prices increase.  

 

Figure 5-3 
DA-RTP Average Usage, by Day Type 

  

                                                                 
42 The average non-event loads are intended to be illustrative. Since temperatures and day of week 
differ for each event, no single average non-event load can serve as an indicator of the load profile 
that would be expected on each event. 
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A visual inspection of average 24-hour load shapes reinforces the ANOVA 
results, which failed to reveal any significant application-level effects of rate 
structure on average customer usage behavior. If customers in the CPP 
applications, who have a very large incentive to reduce load during event hours, 
were responding during events, we would expect to see the average load deviate 
from the normal progression (with a low around 6:00 a.m. to an evening high 
between 8:00-9:00 p.m.) to a load profile that drops off around noon or 1:00 
p.m. when the event commences and then returns to normal levels after 5:00 
p.m. when the event terminates, creating a visible notch in the load shape. The 
graphic portrayal of average CPP loads offers no evidence of this iconic notch. 
Likewise, the high PTR payment incentive to reduce load and elevated DA-RTP 
prices show no significant impact. 

Fixed-Effects Regression Analysis 

The ANOVA analyses described in Section 5.1 simultaneously test a variety of 
treatments, including rate structures and technology types. However, this breadth 
of analysis requires a somewhat restrictive customer characterization. That is, all 
treatment participants are represented by a single data point defined by the 
average value across the analysis timeframe (e.g., the summer months).   

In this section, we explore event-day load impacts for CPP and PTR customers 
to enable the use of more extensive customer-level data. We use daily 
observations on average hourly peak-period consumption for each customer to 
estimate fixed-effects models of event-day load response. Separate models are run 
for CPP and PTR customers. CPP customers face high event-hour prices, while 
PTR customers face a high event-hour incentive to reduce load. The other rate 
types either provide no financial incentive (flat rate, IBR) or a lesser and not 
event-specific financial incentive (TOU) to reduce loads during event hours.43 A 
separate model is estimated for flat-rate (FLR) customers for comparison 
purposes.  

The fixed-effects model utilizes average hourly peak-period load for all customers 
on CPP, and separately for PTR. The model includes customer-specific intercept 
terms to account for differences in average usage across customers. The 
dependent variable is the natural logarithm of daily average electricity usage 
during the peak hours (1:00 to 5:00 p.m. on non-holiday weekdays). The 
explanatory variables in the model, in addition to the customer-specific intercept 
terms, account for weather conditions, day type, and month. The regression 
model is as follows:  

                                                                 
43 While only CPP and PTR customers had a financial incentive to reduce load on event days, all 
CAP treatment customers were notified of event days, raising the possibility that some customers 
on the non-event based rate structures (i.e., not CPP or PTR) may have reduced their consumption 
on event days in response to the notification alone. In the analysis of individual customer data 
below, we attempt to identify any such customers. 
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Equation 5-2 

where:  

Qc,t  represents the average usage from 1:00 to 5:00 p.m. for customer c on 
day t;  
the β’s are estimated parameters;   

Eventt is an indicator variable that equals one if day t is an event day44;  
Event7t is an indicator variable that equals one if day t is September 21; 
THIt is the temperature-humidity index, which is calculated across four 
different time periods45; 
PKTHIt is the average temperature-humidity index from 1:00 to 5:00 p.m. 
on the current day; 

PREPKTHIt is the average temperature-humidity index from 10:00 a.m. to 
1:00 p.m. on the current day; 
MORTHIt is the average temperature-humidity index from 12:00 a.m. to 
10:00 a.m. on the current day; 
LAGTHIt is the average temperature-humidity index for the entire previous 
day; 

DTYPEi,t is a series of dummy variables for each day of the week;  
MONTHi,t is a series of dummy variables for each month;  
vc is the customer-specific fixed effect for customer c; and  

et is the error term. 

The weather variables control for current-day weather (through the peak THI, 
pre-peak THI, and morning THI variables), weather on the previous day 
(through the lagged THI variable), and for the possibility that the weather effect 
is not linear (through the squared terms for each weather variable). The day type 
and month indicator variables account for typical patterns in customer usage. The 
model is estimated using a method that accounts for first-order autocorrelation of 

                                                                 
44 The event days were July 14, July 23, July 27, August 19, August 20, August 31, and September 
21. 
45 THI is calculated as: THI = 0.55 x Td + 0.2 x Tdp + 17.5, where Td is the dry-bulb temperature in 
degrees Fahrenheit and Tdp is the dew point temperature in degrees Fahrenheit. 
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the data (i.e., the regression error term is correlated across observations), which is 
a common trait of time-series data.46   

Table 5-3 contains the estimated event-day load impacts that result from 
estimating this model for CPP, PTR, and FLR (the baseline of comparison) 
customers using data from June 1 through September 30, 2010.47 Because the 
dependent variable is specified in logarithms, the estimated coefficient on the 
event-day indicator variable for each rate structure  is interpreted as the average 
percentage load reduction on event days relative to non-event days, adjusted for 
weather conditions, month, and day type. For reasons explained below, an 
additional load-impact coefficient is estimated for the seventh event in late 
September. 

 

Table 5-3 
Event-Day Load Impact Estimates by Rate Type 

Model Description 
Event Day Coefficient 

(p-value) 
Event 7 Coefficient 

(p-value) 

CPP 
0.002 
(0.749) 

-0.174 
(0.000) 

PTR 0.046 
(0.000) 

-0.182 
(0.000) 

FLR 0.060 
(0.000) 

-0.191 
(0.000) 

The estimated coefficient on the event-day indicator in the CPP model is not 
statistically significantly different from zero, indicating that, on average, CPP 
customers did not change their peak usage level on event days. For PTR, the 
estimated coefficient on the event-day indicator is positive and significant, 
paradoxically suggesting an estimated load increase of 4.6 percent on event days. 
This counter-intuitive result is likely due to unobserved factors or imperfectly 
measured weather effects. Flat-rate customers, who had no financial incentive to 
reduce load, display a similar positive coefficient as was found for the PTR 
customers, with an estimated 6 percent increase in usage on event days, which is 
likely due to imperfectly measured weather effects. 

A separate indicator variable is included for the last event ("Event 7"), which 
occurred on September 21. The estimated coefficients on this variable are 
negative and significant in both the CPP and PTR models, suggesting an 
incremental usage reduction for the September event of 17.4 percent and 18.2 
percent for CPP and PTR customers, respectively. The large magnitude of this 
                                                                 
46 Baltagi, B. H., and P. X. Wu. 1999. Unequally spaced panel data regressions with AR(1) 
disturbances. Econometric Theory 15: 814–823. This method is implemented using the "xtregar" 
command in Stata. 
47 August 3rd is removed from the flat-rate customer model, as it contains an unusually large 
amount of zero-load observations during the peak hours. This is not the case in the CPP or PTR 
data. 
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estimated load impact is very different from the estimates for the average of the 
other event days, raising two possibilities. First, customers may have learned over 
time and were better positioned to respond to event-day incentives by the last 
event. Second, the regression model does not adequately account for atypical 
conditions on the last event day, leading to a false conclusion that customers 
reduced load substantially on that day.  

Several factors lead us to believe that the more likely explanation is that the large 
estimated load reductions for the last event day reflect anomalous factors rather 
than actual event-related customer behavior. First, our estimate of the Event 7 
load impact for flat rate (FLR) customers (a 19.7 percent load reduction, which is 
statistically significant) is very similar to that for CPP and PTR, despite the fact 
that the FLR customers have no direct financial incentive to reduce load on event 
days. Why would those customers reduce to the same extent? 

Second, the weather on this day was unusually hot for late September, which may 
affect the ability of the statistical model to indicate properly how customers 
change their behavior on hot days at that time of year. To illustrate that 
likelihood, Figure 5-4 contains a scatter plot of daily observations on average 
peak-hour usage and temperatures for CPP customers. Data for September are 
shown as larger black squares, while data for the other months (June through 
August) are shown as smaller black diamonds. Overall, usage tends to increase as 
temperatures rise above 70 degrees Fahrenheit throughout the summer and into 
early September.  

In early September, customers appear to respond to hot weather in the same way 
that they had during the summer months. For example, usage levels on 
September 1st and 2nd, which were moderately hot days that followed hot days at 
the end of August, fall well within the range of observations for June through 
August.  

There appears to be a change in the temperature/load relationship starting in 
mid-September. The next similarly hot day does not occur until September 13th. 
After a spell of mild weather, it appears that customers used air conditioning less 
intensively on September 13th than they did earlier in the summer, as their peak 
usage level is well below the levels observed on September 1st and 2nd. On the 
seventh and last event day (September 21st), peak-period temperatures reached a 
level not observed since the end of August – the temperature had not reached 75 
degrees during the preceding week. Two days later (September 23rd), a similarly 
hot day occurred, but that was not an event day.  
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Figure 5-4 
CPP Average Usage versus Temperatures, June through September Peak Hours 
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Peak-period usage levels for both of these late-September days are much lower 
than were observed at similar temperatures during June through August. This 
suggests that customers behave differently toward hot temperatures in late 
September than they do in July and August. One explanation is that customers 
are less likely to turn on air conditioning on a hot day in late September relative 
to a similar day in the core summer months. A cooler morning abates some of 
the impact of the hotter temperature in the afternoon, reducing the need to use 
air conditioning to be comfortable. There may be fewer people at home due to 
the resumption of school and regular working hours, compared to summer days.  

This change in behavior is very difficult for the statistical model to account for 
because of the predominant  influence of the summer when there is such a close 
relationship between temperature and load; there are only a few days that 
resemble the last event day (i.e., hot days in late September following a week or 
more of mild weather). Because September 21st has such a low usage level given 
the temperatures that occurred, the statistical models impute the low load relative 
to temperature to the CPP and PTR treatment effect on this event day. The fact 
that the same effect is observed for flat-rate customers supports the contention 
that the high CPP and PTR impact associated with Septembers 21st is an 
anomaly; it is the result of a seasonal change in customer behavior regarding air 
conditioning that is not captured in the statistical model. 

The third reason to doubt elevated CPP and PTR impacts on event 7 is that the 
impact estimates are highly sensitive to the model specification regarding weather 
variables. That is, small changes in how weather variables are constructed lead to 
large changes in the estimated load impact. Table 5-4 shows estimated CPP load 
impacts for the average event day and for event 7 across a variety of model 
specifications. Row 1 contains the base model results contained in Table 5-3. 
While the event 7 estimates in rows 2 and 4 are similar to the base model results, 
the results in row 3 show that the estimated event 7 load impact is no longer 
statistically significantly different from zero if the quadratic weather terms are 
removed from the specification. The results in row 5 show that the estimated 
event 7 load impact is positive 21 percent if the model is estimated using only 
September data. This wide range of results (including negative and statistically 
significant, not statistically significant, and positive and statistically significant) 
across reasonable alternate model specifications further calls into doubt a 
conclusion that CPP load impacts were large and significant in September, when 
there is no discernable effect during the prior six events.   

Table 5-4 further illustrates the lack of robustness of the average event-day load 
impact estimate that applies to events 1 through 6. The results change 
dramatically across models with different sets of weather variables. For example, 
the base model described in equation 5-2 above produces an estimate that is not 
statistically significant (shown in row 1). But, if the model is estimated using 
average peak-hour cooling degree hours (CDH)48 in place of THI, the estimate 
                                                                 
48 CDH is defined as MAX(0, temperature in degrees Fahrenheit – 65), where a separate value is 
calculated for each hour and averaged across hours as appropriate (e.g., across 1:00 p.m. to 5:00 
p.m. for peak hours). 
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indicates a statistically significant 5.1 percent load reduction during event hours 
(shown in row 2). Alternatively, if the quadratic weather variables are removed 
from either the THI- or CDH-based models (shown in rows 3 and 4), the 
estimated event-hour load impact is positive and statistically significant. 

Table 5-4 
Comparison of Event-Day Load Impact Estimates for Alternative Specifications, CPP 
Customers 

Model Description 
Event Day 
Coefficient 
(p-value) 

Event 7 
Coefficient 
(p-value) 

(1) THI, full model (eq. 5-2) 
0.002 
(0.749) 

-0.174 
(0.000) 

(2) CDH, full model 
-0.051 
(0.000) 

-0.167 
(0.000) 

(3) THI, no quadratic weather variables 
0.075 
(0.000) 

-0.011 
(0.407) 

(4) CDH, no quadratic weather 
variables 

0.019 
(0.000) 

-0.166 
(0.000) 

(5) THI, no quadratic weather variables,  
      September only 

n/a 
0.212 
(0.000) 

 

Neither the fixed-effects models nor the predecessor ANOVA analyses provide 
consistent evidence of event-day average usage reductions for CPP or PTR 
treatments. The earlier graphs of observed load data on event and non-event days 
provide additional support for the conclusion that CPP and PTR customers on 
average did not substantially reduce loads during event hours. However, there 
may have been a substantial and significant response by a few of the customers in 
the treatments that is obscured by the non-response by the overwhelming 
majority of treatment participants.   

In the next section, we report the results of changing our approach from a fixed-
effects analysis across all rate treatment customers to one in which we estimate 
customer-specific regression models for each individual customer to determine 
whether a subset of customers can be found who reduced usage on event days, 
but whose response is masked in aggregated or pooled models due to the "noise" 
in the data for non-responders. 

Identification of Event-Responder Customers 

In this sub-section, we estimate customer-specific regression models to identify 
subsets of customers who did respond to event-day prices or notifications. We 
use "event-responders" as the term for these customers that exhibit a measurable 
response to event-day signals. Identification of these customers is accomplished 
by estimating regression equations for each individual customer using daily 
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observations on average hourly peak-period consumption for all non-holiday 
weekdays in June through September. The regression model specification is the 
same as the fixed-effects model described in the previous sub-section (equation 
5-2), except that that the customer-level fixed effect variables are removed and 
instead the estimated model uses average hourly peak period usage data for each 
customer.  

Despite the fact that only CPP and PTR customers faced a direct financial 
incentive to reduce usage during event hours, we estimate models for all CAP 
customers. While the DA-RTP, FLR, TOU, and IBR customers faced no 
additional price incentive (over that which the rate treatment provides for any 
peak period hour) to reduce consumption during event hours, they were notified 
when events were called (notification was provided a day in advance to the event). 
Thus, some of those customers might have responded out of altruism.  

Based on the regression results, customers were classified as event-responders if 
the estimated coefficient on the event-day variable is negative (indicating event-
day peak-period usage reductions) and the estimate is statistically significant at 
the 80 percent level.49  

Table 5-5 shows the number and percentage of customers on each rate who are 
classified as event-responders by these criteria. We are not surprised to find that 
there are event-responders in the CPP, DA-RTP, and PTR treatments (9.5 to 
11.6 percent) since other pilots report such a finding.50 Identifying so many 
event-responders in the other rate structures (as high as 8 percent for TOU) is 
surprising.51  

There are a couple of plausible explanations for why customers on those other 
rate structures were characterized as event-responders. First, they could have 
responded to the event notification by reducing load for the good of the system, 
despite the absence of a direct financial incentive to do so. Utilities often make 
public appeals to their customers to reduce load when they anticipate the 
possibility of a capacity shortfall. The CAP notice of an event day may have 
served that role. Alternatively, customers might have had usage that was 
unusually low on event days for reasons unrelated to the declaration of the event. 
For example, some customers may have been on vacation during one or more 
events, resulting in lower than average electricity use.  

We expect that some customers that are offered a large inducement to change 
load are price responsive. As shown in the table, 11.6 percent and 9.9 percent of 
CPP and PTR customers, respectively, were found to respond to high price 

                                                                 
49 In the Phase 1 report, responders were identified using a different econometric specification that, 
for CPP, PTR, and DA-RTP customers, used a price variable in place of the event variable 
employed in this study. 
50 Based on a review of pilot reports of subscription rates.  
51 While DA-RTP customers did not face the high CPP prices, the RTP prices tended to be 
somewhat higher than average on event days, and the event notices may have reminded some of 
them of the price variability. 
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signals (CPP) or bill credits (PTR). Similar percentages of TOU and DA-RTP 
event-responders were found, along with smaller percentages of IBR and FLR 
customers. Note that event-responders account for a slightly smaller share of the 
usage by rate type, indicating that event responders tend to use less during the 
peak period (on non-event days) than do non-responders. It is impossible to 
know how many of the event responders may have been misclassified due to 
factors that could not be accounted for in the regression models. However, the 
graphical depictions below lend strong credibility to the assertion that there are 
indeed some event-responders in the CAP rate treatment samples. 

Table 5-5 
Numbers and Percentages of Event-Responders, by Rate Treatment 

Rate 
Treatment 

Event-
Responders Total Customers  

Responder 
Share of 

Customers 

Responder 
Share of 
Usage 

CPP 219 1,896 11.6% 10.2% 

DA-RTP 94 991 9.5% 8.1% 

Flat Rate (FLR) 45 791 5.7% 4.8% 

IBR 42 621 6.8% 5.0% 

PTR 97 984 9.9% 8.1% 

TOU 111 1,180 9.4% 8.0% 

Average Event-Day Load Impacts of Event-Responder 
Customers 

To illustrate the load response of customers that were deemed to be event-
responders, we averaged those customers’ loads by rate group and estimated a 
new regression model based on hourly observations for each weekday. The new 
model, which includes event-hour indicator variables to isolate and quantify load 
reductions during event periods, allows us to examine the hourly pattern of 
event-day load changes. Doing so may help discern whether customers reduced 
load during only event hours, during non-event hours of the event day because 
customers increased their thermostat setting in the morning before leaving the 
house and then turned it back down after returning home in the evening, or 
during all hours of the event day. Any of these behaviors would indicate that the 
method of identifying event responders incorrectly includes customers whose 
usage level would have been low anyway (e.g., the customer was away on 
vacation). 
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The hourly regression model is as follows: 
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Equation 5-3 

where:  
Qt represents average event-responder customer usage in hour t;  

the β’s are estimated parameters;   
hi,t is a dummy variable for hour i;  
EVTt is an indicator variable for event days;  

THIt is the temperature-humidity index;  
THI_SQt is the temperature-humidity index squared;  
LAG_THIt is the temperature-humidity index from the same hour on the 
previous day;   
MONt is a dummy variable for Monday;  
FRIt is a dummy variable for Friday;  

DTYPEi,t is a series of dummy variables for each day of the week;  
MONTHi,t is a series of dummy variables for each month; and  
et is the error term.52   

The specification estimates distinct event-day usage changes for each hour of the 
day, allowing us to illustrate the hourly patterns of event-day demand response 
for these customers. Figures 5-5 through 5-7 show the estimated hourly load 
impacts for each rate group, organized in pairs. Figure 5-5 contains CPP and 
PTR customers, who had a distinct financial incentive to reduce usage during 
event hours. Figure 5-6 contains DA-RTP and TOU customers, whose rates 
vary by time of day, but are not different on event days (except that the DA-RTP 
prices were slightly higher than usual during peak hours). Figure 5-7 contains 
FLR and IBR customers, whose rate does not change by time of day nor during 
event hours. 

  

                                                                 
52 The model is estimated using the Prais-Winsten procedure to account for serial correlation in the 
data. 
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The figures show that event-responders on average reduce consumption 
considerably during the event hours, with a tendency toward increasing usage 
somewhat in non-event hours. CPP event responders display the largest event-
hour usage reductions (e.g., 20 to 25 percent). The pre-event usage increases are 
generally not statistically significantly different from zero (with the exception of 
hours ending 3 and 4, or 2:00 to 4:00 a.m.). In contrast, the post-event usage 
increases beginning in the hour ending 19 (6:00 p.m.) are all statistically 
significant for all rate structures. 

Figure 5-6 shows that DA-RTP and TOU event-responders have a clear notch 
(trend-deviating reduction) in the load profile during the event hours, though the 
magnitude of the usage reduction is smaller than it is for the CPP event 
responders. Figure 5-7 shows somewhat less distinct notches for FLR and IBR 
event-responders. However, Figures 5-6 and 5-7 provide evidence that a subset 
of the customers responded to event notifications by reducing peak-period usage 
without a direct financial incentive to do so.
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Figure 5-5 
Event-Day Load Response Estimates, CPP and PTR Event Responders 
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Figure 5-6 
Event-Day Load Response Estimates, DA-RTP and TOU Event Responders 
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Figure 5-7 
Event-Day Load Response Estimates, FLR and IBR Event Responders 
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Table 5-6 summarizes the average event-hour load impacts shown in the figures 
above. The last column in the table expands these estimated average load impacts 
to an approximation of the aggregate percentage reduction in the total CAP load, 
by combining the event-responders’ load impacts with their share of load. This 
construction assumes that non-event responders in aggregate do not change their 
usage level during event hours. For CPP, the estimated aggregate load impact is -
2.2 percent. The relatively small magnitude of these aggregate usage reductions 
helps to explain the difficulty in identifying the usage reductions of event-
responders when their usage is combined with the other (unobserved) factors 
driving non-event responder behavior. Therefore, we believe that the findings of 
no aggregate event-day usage reductions (through the ANOVA and fixed-effects 
models) are consistent with our findings of significant usage reductions from a 
subset of customers (through the customer-level models).  

Table 5-6 
Average Load Impacts of Responders and Implied Total Load Impacts, by Rate 

Rate 

Event-
Responder 

Share of Load 

Average 
Estimated Load 

Impact for 
Responders 

Implied Total 
Load Impact 

CPP 10.2% -21.8% -2.2% 

DA-RTP 8.1% -14.4% -1.2% 

FLR 4.8% -7.2% -0.3% 

IBR 5.0% -5.6% -0.3% 

PTR 8.1% -14.7% -1.2% 

TOU 8.0% -11.3% -0.9% 

To illustrate that the load impacts of event-responders on event-days can be 
observed in the raw load data, Figure 5-8 shows average hourly usage patterns for 
CPP event-responders for each event day. The solid line represents their hourly 
usage pattern averaged across non-event weekdays in July and August. The 
dashed lines represent usage on the six event days in those months. On all of the 
event days, there is a clearly defined notch (drop) in usage when the event begins. 
Also apparent is that load moves back up to, or beyond, the typical load after the 
event, and may also move up somewhat in the hour or two prior to the event 
period. (Customers are notified of events the day before, so customers have time 
to pre-cool or undertake other load shifting strategies). Customers’ increased 
usage after the event may reflect making up for some electricity services, such as 
air conditioning, foregone during the event. 
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Figure 5-8 
CPP Responder Usage Patterns, Average Non-Event Weekday vs. Event Days 

 

Figure 5-9 
FLR Responder Usage Patterns, Average Non-Event Weekday vs. Event Days 
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reduction at all. Figures 5-8 and 5-9 reinforce our prior expectation that event-
day pricing will lead to usage reductions that are larger and more reliable than a 
utility could obtain through event-notification only. 

In summary, regression models were applied to data for individual customers to 
identify those that exhibit statistically significant event-day behaviors consistent 
with responding to higher event prices or event notifications. Finding some 
event-responders in the CPP and PTR applications comports with what other 
pilots have found; some customers are price responsive, especially to very large 
price inducements.  

We also found event responders in the FLR, DA-RTP, IBR, and TOU rate 
applications that seem counterintuitive since prices for those rates did not change 
during event hours. This result may stem from one of several possible factors. It 
might reflect customer response to the notification of an event day, particularly 
given that the information material provided to pilot participants noted the value 
of reducing peak-period usage on event days, and that notice was provided a day 
in advance. The result may simply reflect unaccounted for factors that are 
unrelated to the occurrence of events. Alternatively, as discussed in the next 
section, some customers may have mistakenly thought that they were subject to 
event day prices when they were in fact not.  

In any case, the nature of the usage changes for CPP and PTR event-responders 
indicates a stronger and more reliable response than occurred for event-
responders in other rate types. 

In the next sub-section, we estimate formal demand models using event-
responder loads for CPP and PTR customers. This allows us to estimate relative 
measures of their price responsiveness (i.e., elasticities of substitution), which can 
be compared to results from other studies.    

Estimation of Elasticities of Substitution for Event-Responders 

To characterize how event-responders shift loads among hours in response to 
price changes, we estimated two alternative formal customer demand models. As 
explained in Chapter 2, the models chosen are the Nested Constant Elasticity of 
Substitution (NCES) and Generalized Leontief (GL) models. These models 
characterize load-shifting behavior through a characteristic known as the 
elasticity of substitution.53 The advantage of the NCES model is its relative 
simplicity and ease of estimation. Its limitation is that its two elasticities – a 
within-day and a between-day elasticity of substitution – are assumed to remain 
constant across price levels. The advantage of the GL model is its flexibility in 
allowing the elasticities of substitution to differ by day, depending on the daily 
peak and off-peak prices.  

                                                                 
53 A customer’s “elasticity of substitution” between peak and off-peak electricity use is defined as 
the percentage change in the ratio of peak to off-peak electricity use caused by a 1 percent change 
in the ratio of off-peak to peak electricity prices. 
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Nested CES Model 

The nested CES model is derived from a cost function that allocates a customer’s 
electricity costs separately within a day and between days. That is, overall cost is a 
function of daily price indexes, which in turn are functions of the hourly prices (or 
average prices for daily sub-periods) on each day. The typical specification, which 
has been applied to analysis of hourly real-time pricing, allows two types of 
customer response to changing electricity prices. One level allows customers to 
shift load between hours (or block of hours) within a day; the other level allows 
shifting load between days in response to changes in the overall price level 
between different days.   

Certain aspects of the CAP dynamic price structures suggest a modification to 
the standard NCES model. CPP and PTR customers pay the same prices as 
DA-RTP customers, except on event days, when CPP customers pay a much 
higher price (additional $1.74/kWh) and PTR customers have an equal 
inducement (as a rebate) to reduce load. So while these customers routinely faced 
day-ahead hourly pricing, there was relatively little hour-to-hour variation in 
prices during the summer of 2010. Due to a daily revenue-neutrality condition, 
the price variation was most prominent not among hours of the day, but between 
peak and off-peak hours. In addition, on event days, the CPP prices and PTR 
credits took on essentially the same value for each hour of the four-hour event 
period, again resulting in the large source of price variation being between event 
and non-event hours of those days.  

These conditions call for grouping the hours of the day into time periods for 
purposes of estimating responsiveness. Four time periods were defined: 
Overnight (hours-ending 1-10 and 23-24); Pre-peak (11-13); Peak (14-17); and 
Post-peak (18-22). 

Under these conditions, the customer’s demand for electricity may be expressed 
relative to a base, or average reference load, in logarithm form as shown in the 
following: 

ln ln ln ln lndh d dh m d
w bm m m m m

h h

E D P M D

E D P M D
σ σ

           
= − + −           

              . 

Equation 5-4 

Edh represents electricity usage in hour (or time period) h on day d, Pdh is the price 
in that time period on day d, Dd and Mm represent daily and monthly price 
indexes of a CES form, and σw and σb are the between-day elasticity of 
substitution and within-day elasticity of substitution parameters, respectively. 
The variables with the bars above the capital letter in the denominator of each 



 

 5-30  

term are averages of the variable for the comparable time period in the reference 
period (e.g., the average load in time period h on weekdays in a given month).54  

The daily and monthly price indexes are constructed as weighted averages of 
relevant rate structure prices, where the weights are load shape parameters (αhd 
and βd), which characterize the inherent shape of the customer’s load pattern. In 
estimation, a series of indicator variables for the different time periods and 
months are also added, as well as a weather variable (daily THI) of the same log-
ratio form relative to the reference period as the other variables. 

Given the general lack of hourly price variability except on event days, and the 
fact that only CPP and PTR event-responders had price-related incentives to 
respond, separate models were estimated for only those two rate treatments, 
using load data averaged over those customers classified as event-responders.55 

Table 5-7 presents the estimated elasticity parameters for the time period of June 
through August, which included six event days. The magnitude of the elasticity 
of substitution values for CPP and PTR are generally consistent with previous 
studies.56 The within-day value for CPP is larger than for PTR (0.095 for CPP 
and 0.066 for PTR), indicating larger event-period reductions. In the NCES 
structure, the between-day parameter is important primarily to the extent that its 
value differs from that of the within-day parameter. If the two parameters take on 
the same value, then the effect of a price change in a particular time period on a 
given day will be largely confined to load in that time period. In this case, both 
between-day parameters are larger than the corresponding within-day parameters. 
This presumably reflects the fact that daily usage on event days is lower than on 
non-event days due to the event-period load reductions, which the model 
interprets as shifting load away from event days. 

Table 5-7 
NCES Estimated Elasticities of Substitution, by Rate 

 NCES Elasticities of Substitution 

 Within-Day Between-Day 

CPP 0.095 0.149 

PTR 0.066 0.124 

                                                                 
54 The reference period is an average of several days of mild weather and low prices for the relevant 
rate treatment group.   
55 Models were also estimated for the overall average customer (including non-event responders) for 
both rate treatments. However, the estimated elasticity of substitution parameters were small, 
sometimes wrong signed (negative), and never statistically significant. As a result, only results for 
the event-responders are reported.  
56 Price Elasticity of Demand for Electricity: A Primer and Synthesis. EPRI, Palo Alto, CA: 2007, 
1016264. 
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Generalized Leontief Model 

For the purposes of the CAP project, the GL model has been simplified to 
analyze how customers shift load between peak hours (1:00 p.m. to 5:00 p.m.) 
and off-peak hours (all other hours). The elasticity of substitution is defined as 
the percent change in the ratio of peak to off-peak consumption that 
accompanies a given percentage change in the ratio of off-peak to peak prices. In 
addition to providing a degree of response metric, the elasticity of substitution 
can be used to simulate the response in customer load to alternative prices. 

The estimation equation for this demand model is given by: 

]P P  PHLn[ - ]P P  PHLn[  CDD x   
ES

ES
Ln odpdpoodoodoodpdpopdppdpd

od

pd γγγγβ +++++=







hh

Equation 5-5 

Where: 
 ESpd and ESod are peak and off-peak electricity expenditure shares, 

respectively, on day d,  

 β is a parameter that controls for daily differences in cooling degree days 
(CDDd),  

 Ppd and Pod are peak and off-peak prices, respectively, on day d,  

 Hd is a variable that is set to be equal to unity on days where the temperature 
exceeded 85 degrees F, and was zero otherwise; and  

 γij are estimated parameters57.  

As explained in Appendix A of the Phase 1 report, once the parameters of this 
model are estimated, one can calculate predicted expenditure shares and 
corresponding elasticities of substitution. An elasticity of substitution is 
calculated for each day as a function of prices and the estimated γij coefficients. 
For reporting purposes, as in Table 5-8, they are then averaged across day-types 
(e.g., high-price and low-price days). 

Separate models were estimated for the CPP and PTR rate treatments using load 
data averaged over those customers classified as event-responders. Table 5-8 
shows estimated average elasticities of substitution for those rate treatments, 
differentiated by event-day vs. non-event day. The values in the table indicate, 
for example, that for CPP responders a doubling (i.e., a 100 percent increase) in 
the ratio of peak to off-peak real-time price would, all other things equal, 
correspond to a 12.7 percent reduction in the ratio of peak to off-peak 
consumption on event days.  

                                                                 
57 As estimated, the equation contains an additional variable indicating the occurrence of a hotter 
than normal day, along with its associated coefficient.  For simplicity, that variable is not shown in 
the above equation. 
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Table 5-8 
GL Estimated Elasticity of Substitution for Event-responders, by Rate and Day Type58 

  GL Elasticity of Substitution 

  Average Event Day 
Average Non-Event 

Day 

CPP 0.127 0.105 

PTR 0.062 0.055 

For CPP and PTR event-responders, the values in the table indicate that 
estimated elasticities of substitution are on average somewhat higher on event 
days than on non-event days. Note also that the general magnitude of the values, 
as well as the relationship between CPP and PTR values are similar to those for 
the NCES model.  

Analysis of the Inclining Block Rate 

Because of the sampling issues described in Chapter 4, comparison of electricity 
consumption by customers in the IBR treatment with customers in the other rate 
treatments could not be accomplished using ANOVA. As an alternative, the 
electricity usage for IBR customers was compared for the CAP and pre-pilot 
time periods, covering 22 months of data in total. In the regressions employed for 
this analysis, the dependent variable is the natural log of monthly usage. The 
independent variables are: the total cooling degree days (CDDs) during the 
billing month; total heating degree days (HDDs) during the billing month; and a 
dummy variable which equals unity for the months that the customer is on the 
IBR rate (the CAP pilot period), and zero otherwise (before the CAP pilot when 
they were on the conventional ComEd tariff). 

Table 5-9 shows the result of the regression; coefficients that are significant at 
the 95 percent level (all but for IBR) are in bold. As expected, the coefficient for 
CDDs indicates that hotter weather (and therefore greater cooling needs) leads 
to a significant 7.3 percent higher usage, which lends support to the 
reasonableness of the model specification. Analogously, the coefficient for HDDs 
indicates a significant, though smaller, effect of cold temperatures on monthly 
usage. The fact that the estimated coefficient for the IBR indicator variable is not 
statistically significant suggests that customers on the IBR rate showed no 
significant change in monthly usage during the CAP pilot.  

  

                                                                 
58 Additional details will be provided in the addendum to this report to be published in January 
2012. 



 

 5-33  

Table 5-9  
Dependence of the Natural Log of Monthly Usage on IBR Status59 

Variable Coefficient 

IBR -0.040 

CDDs 0.073 

HDDs 0.011 

Constant 6.116 

                                                                 
59 Additional details will be provided in an addendum to this report to be published in January 2012 
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Section 6: Survey Findings 
Two surveys were conducted over the course of the CAP. The first survey, 
distributed in March 2010 (during the enrollment process), contained questions 
related to customer attitudes towards energy conservation, usage behaviors, and 
customer demographics. Survey participants received a $15 credit on their 
ComEd bill in exchange for their response. A second survey was conducted from 
late April through mid July 2011, as customers were returned to the standard 
ComEd tariff. The latter survey included 50 questions covering topics addressed 
in the initial survey as well as questions regarding various elements of the CAP. 
Customers who also completed the final survey received a total of $50 in credits 
to their ComEd bill.  

This section examines responses to several questions in the final survey, 
particularly those related to the rate treatments. Specifically, we summarize 
customer satisfaction with the CAP and with ComEd, respondents’ 
understanding of their CAP rate treatment, and the extent to which those 
customers identified as event-responders in Section 5 are distinguishable from 
others (non-responders) in terms of perceived behavioral changes and 
demographics. Where applicable, we apply the survey results to address specific 
hypotheses about the CAP impacts. 

Survey Response Rate 

ComEd received 2,423 responses to the final survey representing approximately 
one-third of eligible CAP customers.60  Table 6-1 below summarizes response 
rates by rate treatment. The response rate did not differ substantially across rate 
types.  

Table 6-2 summarizes the survey response rates from event-responders in each 
rate treatment group. The response rate for event-responders was slightly higher 
than that for the general population. 

  

                                                                 

60 "Eligible CAP customers are defined as customers who were enrolled in the CAP as of April 27, 
2011. 
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Table 6-1 
Survey response rate by rate type 

Rate # Surveys 
# Eligible CAP 

Customers 
Survey Response 

Rate 

CPP 627 1,865 34% 

DA-RTP 305 965 32% 

FLR 543 1,474 37% 

IBR 229 664 34% 

PTR 323 1,012 32% 

TOU 396 1,194 33% 

Total 2,423 7,174 34% 

 

Table 6-2 
Survey response rate for event responders, by rate type 

Rate 
Total # Event-
Responders 

# Surveys from 
Event 

Responders 

Event-Responder 
Survey 

Response Rate 

CPP 219 85 39% 

DA-RTP 94 27 29% 

FLR 45 16 36% 

IBR 42 13 31% 

PTR 97 34 35% 

TOU 111 41 37% 

Total 608 216 36% 

Customer Satisfaction 

Question #22 in the final survey asks customers to rate their satisfaction with 
their pricing plan on a scale from 0 to 10, where 0 represents “extremely 
dissatisfied” and 10 represents “extremely satisfied”.61 As displayed in Figure 6-3, 
the overall average score is 5.6, with IBR and DA-RTP customers ranking their 
pricing plans the highest (average score of 5.9) and FLR customers giving the 
lowest score (average score of 5.1). Satisfaction with FLR is statistically 
significantly lower than satisfaction with all other rate types, but there are no 
statistically significant differences between the other rates. Thus, we reject 
hypothesis H2f, which posits that IBR customers will experience greater 
                                                                 
61 The question reads “Thinking about your experiences with ComEd’s electricity pricing plan, how 
satisfied are you with this pricing plan?” 
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satisfaction. The low score given by FLR customers is counterintuitive to those 
that postulate that simpler rates result in higher customer satisfaction.   

Question #23 in the final survey asks customers to rate their satisfaction with 
ComEd on a scale from 0 to 10, where 0 represents “extremely dissatisfied” and 
10 represents “extremely satisfied”.62  The overall average score is 6.3, with DA-
RTP customers expressing the highest level of satisfaction with ComEd (average 
score of 6.5) and FLR customers giving the lowest score (average score of 6.1). 
While the difference between these two scores (DA-RTP versus FLR) is 
statistically significant, there are no other statistically significant differences in 
satisfaction across rate types. The lower satisfaction score given by FLR 
customers may reflect a pre-existing bias rather than sentiment toward the CAP 
Program. It is also notable that customers have a higher level of satisfaction with 
ComEd than they do with their CAP pricing plan. Table 6-3 presents the 
average scores for Questions 22 and 23 by rate treatment.   

Table 6-3 
Average satisfaction scores by rate type 

Rate 
Satisfaction with 

CAP 
Satisfaction with 

ComEd 

CPP 5.6 6.3 

DA-RTP 5.9 6.5 

FLR 5.1 6.1 

IBR 5.9 6.3 

PTR 5.8 6.3 

TOU 5.7 6.2 

Overall 5.6 6.3 

Customer Understanding of their Rate Treatment 

A series of questions in the final survey (questions 2a through 2i) ask customers 
to indicate if they agree, disagree, or are uncertain about statements describing 
the basic structure of their pricing plan. Questions 2b through 2f are targeted 
towards specific rate treatments, while the remaining questions address customer 
understanding of certain elements of the CAP Program. Responses to these 
questions provide an indication of the participants’ degree of understanding of 
their rate plan, and perhaps the effectiveness of ComEd's efforts to educate 
customers regarding the prices that they faced during the pilot. In Figures 6-1 
and 6-2, the questions are represented along the X-axis, with responses shown 
for each rate treatment. The Y-axis measures the percentage of respondents from 
each rate type who agreed to each question. Responses to each question are 
summarized below, in the order shown in the figures.
                                                                 
62 The question reads “Thinking about your experiences with ComEd as your electric utility, how 
satisfied are you with ComEd?” 
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Figure 6-1 
Degree of agreement with CAP pricing characteristics, by rate type 
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Figure 6-2 
Degree of agreement with rate-treatment characteristics, by rate type 
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Question 2a: I was previously aware that a new pricing plan went into effect.  

As expected, FLR customers agreed with this statement less often than other 
rates, with F1 and F2 customers (who did not receive a new pricing plan) 
agreeing only 28 percent of the time and 43 percent of all other FLR customers 
agreeing. IBR customers agreed 45 percent of the time, while 55 to 60 percent of 
all other customers indicated that they were aware of the new pricing plan. 

Question 2g: During the summer, ComEd asks customers to reduce electricity 
usage between 1 pm and 5 pm. 

This question seeks to determine whether customers are aware of peak-period 
hours, which also constitute the event window on event days. The average rate of 
agreement is about 70 percent. Flat-rate customers in cells F1, F2, and F3 score 
the lowest on this question, which is reasonable given that these customers were 
not notified of event days (unlike the flat-rate customers in cells F5-F7, who 
were notified of event days). 

Question 2h: During the summer, ComEd asks customers to reduce electricity 
usage between 5 pm and 9 pm. 

This question asks about an alternative definition of peak-period, but for an 
incorrect window of time. Therefore, a low level of agreement indicates a correct 
understanding of the timing of the peak period. Reassuringly, the rate of 
agreement is much lower for this question than it is for question 2g, which refers 
to the correct peak-period and event window.  

Question 2i: My pricing plan includes a rate guarantee. 

This question could be interpreted in one of two ways: a reference to the bill 
protection program (which ensures that CAP participants will pay no more under 
the pilot than they would have in the absence of it); or a reference to a fixed rate 
or schedule of rates, which would apply to FLR, TOU, and IBR. In either case, 
the rate of agreement is uniformly low, with a mean of 10 percent. 

Question 2b: The price I pay for electricity (per kWh) is the same all day, every 
day.  

As one would expect, flat-rate customers are the most likely to agree with this 
statement, though the rate of agreement for them is quite low at 17 percent. This 
reflects either a lack of understanding of their rate, or an awareness of the fact 
that it changes seasonally.   

Question 2c: The price I pay for electricity (per kWh) changes based upon the 
total amount of electricity I use per month. 

As expected, IBR customers are the most likely to agree with this statement. 
While the difference between the IBR response relative to all other rates is 
statistically significant, the magnitude of the difference is not especially large, 
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with 59 percent of IBR customers agreeing versus 47 percent of non-IBR 
customers agreeing. 

Question 2d: The price I pay for electricity (per kWh) changes based upon the 
time of day. 

As expected, customers with the CPP, PTR, DA-RTP, and TOU rates were 
more likely to agree with this statement, averaging 70 percent across rates. It is 
not clear why IBR customers (whose rate changes with the total amount of usage, 
but not by time of day) agreed with the statement at a higher rate than the flat-
rate customers. Also, the fact that 30 percent of the respondents who faced a 
time-varying rate did not agree with this statement appears to indicate some lack 
of understanding of their rate treatment.  

Question 2e: On certain days and times during the summer, the price I pay for 
electricity can increase significantly. 

Though this question primarily relates to a characteristic of CPP, the rate of 
agreement is uniformly high across all but the flat rates. The rate of agreement 
for the three hourly priced rates (CPP, PTR, and DA-RTP) was higher by a 
statistically significant margin than the rate of agreement for TOU and IBR. 
Given that the hourly prices for DA-RTP customers can change somewhat on 
event days (though the average of the hourly prices is always equal to the flat 
rate), this is a reasonable response on the part of those customers. The high rate 
of agreement for PTR respondents seems to validate the use of the value of the 
PTR rebate as a proxy price in our analysis of PTR price response. It also 
suggests that customers do not make a distinction between paying a higher price 
(CPP) and being offered an equivalent rebate (PTR) for load reductions. 

Question 2f: On certain days and times during the summer, I can earn a rebate if 
I reduce my usage. 

As expected, PTR customers had the highest rate of agreement with this 
statement. However, it is somewhat troubling that only 43 percent of the 
respondents were aware of this central distinguishing feature of their rate plan. In 
addition, 21 percent of the non-PTR customers agreed that they can earn a 
rebate on certain days of the summer, which is not the case. 

Overall, responses to these questions tend to be in the expected directions, in that 
customers on particular rate types are more likely to identify a characteristic of 
their own rate than that of another rate. However, the responses to some of the 
questions indicate a potentially low overall level of awareness and understanding 
of the rates.    
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Responders vs. Non-responders in the Survey 

In this section, we use the survey data to determine whether event-responders (as 
identified in Section 5) differ in observable ways from non-responders; and 
whether event-responders report that they took actions in a manner consistent 
with the findings in Section 5. Specifically, we examine demographic differences 
and survey questions that describe behavioral changes as a result of the CAP.   

Several survey questions ask customers to disagree or agree on a (scale of 0 to 10) 
that various elements of the CAP Program helped them to reduce their electric 
bills. While answers to these questions are not directly related to event response, 
they may be indicative of attitudes toward treatment elements or willingness to 
adjust behavior in response to treatments.  

We did not find substantial mean differences between event-responders and non-
responders, but there is some variation in the distributions of scores. For 
example, Figure 6-3 shows the answers to four questions for which the 
distributions of scores, especially for the extreme value scores (0 and 10), for 
event-responders and non-responders appear to differ despite having similar 
mean values.  

The first chart shows the distribution of answers to question 5a that asks 
customers to disagree or agree (on a scale of 0 to 10) that the in-home device 
helped reduce electric bills. A higher percentage of event-responders (represented 
by the yellow bars) “strongly agree” with the statement and a higher percentage 
of the non-responders “strongly disagree.” Similarly, but less striking, differences 
in distributions are apparent in questions pertaining to the effectiveness of the 
rate notification letter (question 8a), the Smart Tools website (question 15a), and 
the Smart Tools call center (question 19a).   
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Figure 6-3 
Distributions of responses to behavioral questions for event responders and non-responders 
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Because event-responders are identified as customers who reduce electricity usage 
during peak hours on event days, we might expect responders to self-report 
higher levels of load-shifting behavior. Survey question 21a most directly inquires 
about load-shifting by asking customers if they used appliances during non-peak 
times to reduce their energy costs.63 The proportion of event responders and 
non-responders, by rate treatment, who answered "true" to that question can be 
found in Figure 6-4. The difference for CPP customers is large and statistically 
significant, with more event-responders than non-responders reporting off-peak 
appliance use. None of the other differences shown in the chart are statistically 
significant.   

 

Figure 6-4  
Share of customers who report using appliances in off-peak hours by rate type 

Table 6-4 contains a comparison of a variety of demographic traits. None of the 
differences between event responders and non-responders are statistically 
significant. This suggests that event-responders differ from non-responders in 
unobservable ways, rather than by differences in demographic characteristics. 
This may make it difficult to target event-responders when enrolling customers 
in an opt-in program. 

  

                                                                 
63 The question reads “21. As a direct result of your participation in ComEd’s electricity pricing 
program, what actions, if any, did you take to reduce your energy cost? (Please check all that apply.) 
a. Used appliances at a non-peak time, b….” 
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Table 6-4 
Customer characteristics by event-responders and non-responders 

  

Frequency 
(%) Across 
All Surveys 

Frequency 
(%) Across 
Responder 

Surveys 

Frequency 
(%) Across 

Non-
Responder 

Surveys 

Education Level 

  HS Grad 25.6% 26.1% 25.6% 

  Some College 24.3% 22.8% 24.5% 

  College Grad 50.1% 51.2% 50.0% 

Age 

  Age <=35 12.0% 12.7% 12.0% 

  36<=Age<=50 25.9% 27.3% 25.8% 

  51<=Age<=65 38.3% 39.5% 38.2% 

  Age > 65 23.8% 20.5% 24.2% 

Race 

  White 57.8% 55.6% 58.0% 

  Non-White 42.3% 44.4% 42.0% 

Income Level 

  Low Income 41.3% 40.4% 41.4% 

  Middle Income 30.1% 31.3% 30.0% 

  High Income 28.6% 28.4% 28.6% 

Household Size 

  Small HH 57.5% 57.8% 57.4% 

  Large HH 42.5% 42.2% 42.6% 

Household Size Less than 18 years 

  Small HH 67.0% 68.0% 66.9% 

  Large HH 33.0% 32.0% 33.1% 
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Section 7: Summary and Conclusions 
ComEd implemented the CAP pilot to create a better understanding of how 
AMI technology (including pricing structures and in-home technologies) might 
influence how consumers use and value electricity. An ambitious and expansive 
experimental design was implemented, following rigorous statistical protocols, for 
one year. Realizing the full value of this pilot requires distilling the large amount 
of data that was generated, conducting a variety of analyses to explore several 
perspectives, and synthesizing the results so that they are understandable and 
actionable. This was accomplished by conducting an analysis of load and 
customer data in two phases; an initial Phase 1 study that examined the load data 
for the summer of 2010, and a second study was conducted using a full year of 
load data augmented by customer information and perceptions gathered through 
a post-pilot survey. This report contains the result of the Phase 2 analyses, 
extending the descriptions and analyses presented in two prior CAP publications; 
EPRI 1022266, which describes the structure and initial implementation of the 
pilot, and 10222703, which discusses the Phase 1 analysis.    

The Phase 2 CAP analysis sought to quantify the impact of a variety of 
influences that were hypothesized to result in changes in level or profile, or both, 
of electricity consumption on residential customer behavior. It used customer 
consumption and price data from the pilot period (June 2010 - May 2011). In 
addition, a survey of CAP participants was conducted at the end of the pilot 
period that provided information regarding customer satisfaction, customer 
understanding of CAP rates, customer behaviors under the CAP, and 
demographic characteristics.   

Dynamic Pricing Applications 

The most important finding is that statistically significant responses were 
exhibited by some of the customers served under each of the rate types, but these 
responding customers constitute only about 10 percent of all CAP participants 
enrolled in a dynamic rate. The strongest and most consistent responses were 
observed for CPP customers. EPRI’s analysis of individual customer effects 
found that 11.6 percent of CPP participants reduced their event-period load by 
an average of 21.8 percent, which amounts to 2.2 percent of the usage of all 
CPP-enrolled participants.  The event-period usage reductions for other rate 
types were lower, ranging from approximately 14 percent for PTR and DA-RTP 
event responders to 5.6 percent for IBR event responders. The fact that 
reductions were observed for customers in non-event based rates (IBR, and to a 
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lesser extent TOU and the flat rate) suggests that event notification itself appears 
to produce a small amount of demand response from some customers. 

While significant load impacts were found for subsets of CAP participants, 
analysis of aggregate load data was unable to detect measureable event-day load 
reductions at that level. This absence of aggregate-level event-day load impacts 
for CPP and PTR customers may seem inconsistent with results from other 
recent dynamic pricing pilots.64 However, the results are more consistent after 
accounting for the structural differences in the design of CAP and other recent 
dynamic pricing pilots.  

Specifically, CAP used an opt-out enrollment method, whereas other recent pilots 
used an opt-in enrollment that populated the treatments by recruiting volunteer 
participants. Opt-in recruitment typically experiences relatively low participation 
rates. One would rightly expect that volunteers are predisposed to respond to the 
inducement offered with the expectation of benefits. Generalizing, these pilots 
report CPP and PTR load reductions of 13 to 30 percent during event hours, and 
even larger (25 to 40 percent) load reductions when price and enabling 
technology treatments are combined. A common finding when individual 
customer responses were analyzed in pilots employing comparable CPP and PTR 
applications is that only a quarter to half of participants show any indication of 
price response. One might then expect 5 to 10 percent of customers in an opt-out 
program to exhibit price responsiveness to these rates, unless the opt-out design 
itself serves as an inducement for a larger response rate or level.  

The ComEd opt-out process enrolled customers without their prior and informed 
consent specifically to test whether that method would result in a higher level of 
response from the population as a whole. One of the constructed hypotheses 
proposed that the opt-out design employed by ComEd, which included several 
provisions to make participants aware of the potential benefits from adjusting 
usage and how those benefits could be realized, would result in greater price 
response than has been reported for opt-in pilots. The CAP findings for CPP 
and PTR event days suggest that the opt-out design itself does not appear to have 
resulted in greater price response in terms of the number of responders or the 
level of individual responses.  

Other Price, Enabling Technology, and Education/Incentive 
Applications 

A comparison of the load impacts across price and enabling technology 
applications, (separately for summer and non-summer months), was conducted 
using a variation on analysis of variance (ANOVA) statistical tests. They revealed 
no statistically significant effects attributable to rate types or to any of the 
enabling technology applications coupled with the pricing applications. 
Furthermore, neither the bill protection nor enabling technology partial payment 
                                                                 
64 For a summary of the load reduction impacts of rate technology pilots see: Faruqui, A., Hledic, 
R., Sergici, S. Rethinking Prices: January 2010. The Changing Architecture of Demand Response 
in America. Public Utilities Fortnightly.  
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applications were found to have a significant effect on the level or profile of 
electricity consumption. The implication is that none of the applications 
exhibited statistically significant differences in usage from that of the control 
group when comparing average use across applications.  

One potentially interesting result that emerged from the ANOVA analyses was 
the fact that customer education and event notification (which must be tested 
jointly due to the experimental design) were associated with lower event-hour 
usage. If true, the implication is that customer education and event notification 
can play a role in encouraging demand response, even in the absence of rate 
structures that provide direct economic incentives to reduce usage during event 
hours. However, we suggest that caution should be exercised in interpreting this 
result, as it is only statistically significant for three of the twenty-four cells with 
full customer education and event notification. 

An additional caution is warranted regarding the finding that enabling 
technology has no statistically significant impact. The installation rate for IHDs 
was low: approximately 12 percent for the advanced IHD (AIHD). As a result, 
statistical tests based on the average load change for each application may not 
identify application influences that are there but are associated with only a small 
percentage of the participants. Even if a high proportion of those that adopted 
the AIHD respond in some manner, the number that receive the application 
(installed the device) was relatively small given the level of the effect being 
measured; other pilots suggest that information may result in 1 to 2 percent 
reduction is usage.65  Consequently, it is difficult to detect changes in the average 
usage of CAP application treatments that involved only about 250 customers. 
Implementation rates for the BIHD are somewhat higher (approximately 17 
percent) but still so small that they constitute a low percentage of the participants 
that were intended to receive that application. This may make identifying an 
effect difficult at the aggregate-level analysis (ANOVA).  

For the dynamic pricing structures (DA-RTP, CPP, and PTR), rates change 
each day, and CPP and PTR event days impose much higher rate differences ( 
$1.74/kWh) than non-event days. This degree of price variation allows for price 
responsiveness to be estimated using a customer’s own data -- lower DA-RTP 
priced day loads serve as a control for event day and high DA-RTP price day 
loads. In contrast, estimating the effect of the other treatments, such as time-of-
use rates or IHDs, involves a single change in the customer situation, each is a 
one-time treatment. A control is required to isolate those effects, which the pilot 
design provided. 

Because of pilot design complications, EPRI could not estimate the impact of the 
inclining block rate (IBR) directly using ANOVA or through the individual 
customer analyses used for the dynamic rates.  EPRI endeavored to quantify IBR 
impacts by comparing participants’ usage before and after the introduction of 
IBR to ascertain if the differences that were observed were significant, controlling 
                                                                 
65  EPRI. April 2010. Guidelines for Designing Effective Energy Information Feedback Pilots. 
EPRI 1020855 
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for differences in weather conditions in the pilot and pre-pilot time periods. The 
finding was that the IBR application had no significant effect on customers’ 
monthly usage  

Next Steps 

ComEd’s CAP is an ambitious undertaking because of what was required to 
implement and support the complex design that involved 27 different 
applications. The analyses reported herein sought to isolate and quantify 
separately the impacts of those applications. This detailed Phase 2 analysis 
completes the objectives of the study. In a supplementary addendum to this 
report, to be published in January 2012, the results of additional analyses of the 
survey responses and full documentation of the methods and results associated 
with tests of all the pre-specified hypotheses will be reported. This will include a 
more complete discussion of the differences between the findings for pilot 
programs using opt-out and opt-in enrollment methods (i.e., hypotheses H7b 
through H7e). 

The CAP produced a rich trove of information about how prices, information, 
technology, and other factors influence how residences use electricity. Subsequent 
researchers may unlock additional findings and insights, especially when the 
CAP data are compared and contrasted to the result of other pilots.  
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Section 8: Abbreviations 
AIHD   advanced in-home display technology 

AMI  advanced metering infrastructure 

ANCOVA  analysis of covariance 

ANOVA  analysis of variance  

BIHD   basic in-home display technology 

CAP  Customer Application Program 

CDD   cooling degree days  

ComEd Commonwealth Edison 

CPP   critical-peak pricing rate 

EPRI  Electric Power Research Institute, Inc. 

GL   Generalized Leontief  

HDD   heating degree days  

IBR  increasing block rate 

IHD  in-home display technology 

MVDB  Measurement and Validation Database 

OLS  Ordinary Least Squares regression 

PCT  programmable controllable thermostat technology 

PTR   peak-time rebate rate 

DA-RTP real-time pricing with day-ahead notice  

TOU  time of use or time-of-use rate 
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Appendix A: Design Hypotheses 
Variable Hypotheses Accept Reject

Not 
Tested

Meter Type H1: Meter type has no effect on electricity 
usage behaviors.    X 

Rate Type H2a: The IBR rate is most easily adopted by 
customers. X   

H2b: The IBR rate causes the greatest 
reduction in overall electricity usage during 
the year. 

 X  

H2c: The CPP rate causes the greatest 
reduction in peak load during the summer.  X  

H2d: The CPP rate causes flatter load shapes 
at all times during the year.  X  

H2e: The CPP rate delivers the best 
combination of energy efficiency, demand 
response, and load shifting benefits. 

 X  

H2f: Customers on the IBR rate will 
experience greater satisfaction than customers 
on the other rates. 

 X  

Enabling 
Technology 

H3a: The BIHD will have a higher 
implementation rate than other enabling 
technology. 

X   

H3b: The BIHD will have a higher adoption 
rate than other enabling technology.  X  

H3c: A combination of direct and indirect 
feedback solutions will achieve greater 
energy efficiency, demand response, and 
load shifting benefits than indirect feedback 
solutions alone. 

 X  

H3d: The AIHD/PCT solution will achieve 
greater energy efficiency, demand response, 
and load shifting benefits than other enabling 
technology. 

 X  
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Variable Hypotheses Accept Reject Not 
Tested 

Enabling 
Technology 
(continued) 

H3e: The AIHD/PCT solution in combination 
with the CPP rate will achieve greater energy 
efficiency, demand response, and load 
shifting benefits than other enabling 
technology and pricing plan combinations. 

 X  

H3f: Customers activating a BIHD will 
experience greater satisfaction than customers 
who have received and activated other 
enabling technology. 

 X  

Enabling 
Technology 
Acquisition 

H4a: The acquisition rate of free enabling 
technology will exceed purchased enabling 
technology. 

X   

H4b: The implementation rate of purchased 
enabling technology will exceed free 
enabling technology. 

X   

H4c: The adoption rate of purchased 
enabling technology will exceed free 
enabling technology. 

  X 

H4d: Purchased enabling technology will 
achieve greater energy efficiency, demand 
response, and load shifting benefits than free 
enabling technology. 

 X  

Bill Protection H5a: The adoption rate of a dynamic pricing 
plan will be greater when bill protection is 
offered than when it is not offered. 

 X  

H5b: Customers without bill protection will 
achieve greater energy efficiency, demand 
response, and load shifting benefits than 
customers with bill protection. 

 X  

H5c: Customers with bill protection will 
experience greater satisfaction than customers 
without bill protection. 

 X  
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Variable Hypotheses Accept Reject Not 
Tested 

Customer 
Education 

H6a: Customers receiving customer 
education will achieve greater energy 
efficiency, demand response, and load 
shifting benefits than customers who do not 
receive customer education. 

 X  

H6b: Customers who receive customer 
education along with an AMI-enabled, non-
flat rate and enabling technology will achieve 
greater energy efficiency, demand response, 
and load shifting benefits than customers who 
are not offered customer education. 

 X  

H6c: Customers who receive customer 
education along with an AMI-enabled, non-
flat rate and enabling technology will achieve 
greater energy efficiency, demand response, 
and load shifting benefits than customers who 
receive customer education, a flat rate, and 
enabling technology. 

 X  

H6d: Customers who receive customer 
education will experience greater satisfaction 
than customers without customer education. 

 X  

Customer 
Experience – 
Observable 
Steps 

H7a: Customers who engage in small, 
observable steps will achieve greater energy 
efficiency, demand response, and load 
shifting benefits than customers who do not 
engage in those steps. 

 X  

Customer 
Experience – 
Opt-Out 
Enrollment 

H7b: An opt-out strategy will result in a 
higher enrollment percentage than an opt-in 
strategy. 

  X 

H7c: An opt-out strategy will result in greater 
adoption of new pricing plans and enabling 
technology than an opt-in strategy. 

  X 

H7d: An opt-out strategy will result in greater 
energy efficiency, demand response, and 
load-shifting benefits than an opt-in strategy. 

  X 

H7e: Customer satisfaction with an opt-out 
strategy will not be significantly different than 
satisfaction with an opt-in strategy. 

  X 
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Variable Hypotheses Accept Reject Not 
Tested 

Customer 
Experience – 
Comparisons 

H7f: Customers who are saving money will 
have a drop-out rate that is less than 
customers who are not saving money. 

  X 

H7g: Customers whose rate comparison 
shows a monthly loss will change their 
behavior in subsequent months to minimize 
that loss.  

  X 

H7h: Customers whose rate comparison 
shows a cumulative loss will change their 
behavior in subsequent months to minimize 
that loss.  

  X 

H7i: Customers whose rate comparison 
shows a monthly gain will have a drop-out 
rate that is less than customers who 
experience a monthly loss. 

  X 

H7j: Customers whose rate comparison 
shows a cumulative gain will have a drop-out 
rate that is less than customers who 
experience a cumulative loss. 

  X 

H7k: Customers who experience sequential 
monthly losses will have a drop-out rate that is 
higher than customers who do not experience 
sequential monthly losses. 

  X 

H7l: Customers receiving normative 
comparisons will experience greater energy 
efficiency, demand response, and load-
shifting benefits than customers not receiving 
normative comparisons. 

  X 

H7m: Customers whose normative 
comparisons show them having higher 
electricity consumption than their neighbors 
will lower their electricity consumption.  

  X 

Customer 
Experience – 
Notifications 

H7n: Customers who are notified of events 
will experience greater energy efficiency, 
demand response, and load-shifting benefits 
than customers who are not notified. 

 X  

H7o: Customers who choose more than one 
notification media will experience greater 
energy efficiency, demand response, and 
load-shifting benefits than customers who do 
not. 

 X  
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Variable Hypotheses Accept Reject Not 
Tested 

Customer 
Experience – 
Notifications 
(continued) 

H7p: Customers who view hourly pricing 
information online will experience greater 
energy efficiency, demand response, and 
load-shifting benefits than customers who do 
not. 

  X 

H7q: Customers who sign up one or more 
family members for notification will 
experience greater energy efficiency, 
demand response, and load-shifting benefits 
than customers who do not. 

  X 

Customer 
Experience – 
Customer 
Support 

H7r: Customers who contact the customer 
support center will experience greater energy 
efficiency, demand response, and load-
shifting benefits than customers who do not. 

 X  

H7s: Customers on the CPP rate will contact 
the customer support center more frequently 
than customers on other rates. 

 X  

H7t: Customers on the CPP rate will have call 
durations that are longer than the durations 
for customers on other rates. 

X   

H7u: Customers who are eligible to receive 
the BIHD will contact the customer support 
center more frequently than customers eligible 
to receive other enabling technology. 

 X  

H7v: Customers who are eligible to receive 
the BIHD will have call durations that are 
longer than durations for customers eligible to 
receive other enabling technology. 

 X  

H7w: Customer satisfaction with customer 
support center will exceed satisfaction levels 
of ComEd’s customer care center.  

  X 
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