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 HOUSEHOLD RESPONSE TO DYNAMIC PRICING OF ELECTRICITY—A SURVEY
OF THE EMPIRICAL EVIDENCE 

Since the energy crisis of 2000-2001 in the western United States, much attention has
been given to boosting demand response in electricity markets.  One of the best ways to let that
happen is to pass through wholesale energy costs to retail customers.  This can be accomplished
by letting retail prices vary dynamically, either entirely or partly.  For the overwhelming majority
of customers, that requires a changeout of the metering infrastructure, which may cost as much
as $40 billion for the US as a whole.  While a good portion of this investment can be covered by
savings in distribution system costs, about 40 percent may remain uncovered.  This investment
gap could  be  covered  by  reductions  in  power  generation  costs  that  could  be  brought  about
through  demand  response.   Thus,  state  regulators  in  many  states  are  investigating  whether
customers will respond to the higher prices by lowering demand and if so, by how much.  

To help inform this assessment, we survey the evidence from the 15 most recent pilots,
experiments and full-scale implementations of dynamic pricing of electricity. We find conclusive
evidence that households (residential customers) respond to higher prices by lowering usage. The
magnitude of  price response depends on several  factors,  such as the magnitude of  the price
increase, the presence of central air conditioning and the availability of enabling technologies
such as two-way programmable communicating thermostats and always-on gateway systems that
allow multiple end-uses to be controlled remotely.  They also vary with the design of the studies,
the tools used to analyze the data and the geography of the assessment. Across the range of
experiments studied, time-of-use rates induce a drop in peak demand that ranges between three
to six percent and critical-peak pricing tariffs induce a drop in peak demand that ranges between
13 to 20 percent.  When accompanied with enabling technologies, the latter set of tariffs lead to a
drop in peak demand in the 27 to 44 percent range.

1.0 INTRODUCTION

Electricity cannot be stored economically in large quantities, and has to be consumed

instantly on demand.  The load duration curve for most utility systems is very peaky, with some

8 to 10 percent of annual peak load concentrated in the top one percent of the hours of the year.

These two factors, taken in conjunction with the variation in marginal energy and capacity costs

that  characterizes  different  generation  technologies,  mean  that  the  optimal  way  for  pricing

electricity would be for regulators to institute time-varying rates for generation service provided

either by vertically-integrated utilities in non-restructured states or by distribution-only utilities

that provide standard offer service in restructured states..2  Nevertheless, for the past century,

electricity pricing has violated this optimality condition and been based on average cost.  This

2  For a survey, see Crew, Fernando and Kleindorfer (1995).  A case for dynamic as opposed to static
time-varying rates was provided by Vickrey (1971).  Chao (1983) introduced uncertainty into the analysis.
Littlechild (2003) made a case for passing through wholesale costs to retail customers.  Borenstein (2005)
compared the efficiency gains of dynamic and static time-varying rates.  
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has had the unfortunate effect of encouraging excessive consumption of electricity during the

expensive  peak-period  hours  and discouraging  consumption  during  the  inexpensive  off-peak

period hours.  Over time, as the penetration of central air conditioning systems has deepened in

most parts of the country, load factors have deteriorated and the peak loads have become more

pronounced.   To  eliminate  the  deadweight  loss  associated  with  average-cost  pricing,  prices

during the off-peak period should be set equal to the marginal cost of energy and prices during

the  peak period should  be  set  equal  to  the  marginal  cost  of  energy and capacity.   There  is

widespread consensus in the economics literature that such a shift in the pricing paradigm would

increase both consumer surplus and producer surplus and raise societal welfare by lowering the

average cost of electricity.  Such a change would also pass most the “standard practice” tests that

are used by state commissions to evaluate demand-side programs.3

So why has practice lagged theory, creating one of the longest-lasting paradoxes in the

field of public utility regulation?  There are several reasons, with the foremost being the cost of

installing the advanced metering infrastructure (AMI) that would allow dynamic pricing to be

implemented.  As shown later in the paper, this is an expensive proposition which may amount to

$40 billion for the nation as a whole.  .

But an equally important reason is political,  which stems from the fear held by state

regulators  and utility  alike  of  a  consumer  backlash  from time-varying  rates.4  Undoubtedly,

prices would rise during the peak period but, consistent with standard regulatory practice; lower

off-peak prices would be implemented concomitantly so that, on average, customer bills will not

change.  In fact, half of the customers who have higher load factors than the class profile would

see lower bills.  But the other half with poorer-than-average load factors would be instant losers

(unless they curtailed peak usage) and may revolt.  The dread of such a prospect has stymied

innovation in rate design.  Needless to say, if the price change being envisioned is not just a

move to time-of-use (TOU) pricing but a move to dynamic pricing, which is likely to maximize

the social surplus, then concerns about price volatility further muddy the waters.  

However, there are signs of change in the policy-setting environment.  These changes are

visible both in restructured states where the utility provides standard offer generation services but
3  Earle and Faruqui (2006).
4  Faruqui (2007) and Wolak (2007).
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customers are free to shop-around for competitive retailers and in fully-regulated states where

the utility is the only provider of generation services.  In most restructured states, the utility

remains  the  dominant  supplier,  often  accounting for  all  but  a  few percent  of  the  residential

customers.  

It is now widely recognized in the regulatory community at both the state and federal

levels that the energy crisis in the Western US that occurred during the years 2000-01 was caused

in part by a failure to engage the demand side of the California power market.  When prices

skyrocketed  in  wholesale  markets,  retail  customers  had  no  incentive  to  reduce  demand.

Governor Gray Davis famously observed that he could have solved the crisis in 20 minutes had

he been able to pass through the rising prices to customers.  By freezing retail prices, Davis

rendered inoperative the automatic stabilizer that could have brought demand and supply back

into balance.5

After the crisis, twenty one economists put forward a manifesto which argued:6  

Any structural model for the industry should include a mechanism for charging consumers for the cost of

the  production  and  delivery  of  electricity  at  the  time  of  its  consumption.  Electricity  at  midnight  in  April  is

completely different from electricity at noon on a hot August day. …Prices to most end users don’t signal when

electricity is cheap or dear for the industry to produce. Nor are consumers offered the true economic benefit of their

conservation efforts at times of peak demand. Customers suffer further when unchecked peak demands grow too

fast, pushing up costs for all. Wholesale electricity markets also become more volatile and subject to manipulation

when rising prices have no impact  on demand.  Indeed,  a  functioning demand side to the electricity market  in

California  would  have  greatly  reduced the  likely  private  benefits,  and consequent  social  cost,  of  any strategic

behavior engaged in during the crisis…Regardless of other reform efforts that are pursued in California, real-time

pricing or other forms of flexible pricing is a key to enhanced conservation, more efficient use of electricity, and the

avoidance  of  both  unnecessary  new power  plants  as  well  as  concerns  about  the  competitiveness  of  wholesale

electricity markets.

5  Borenstein (2002) and Faruqui, Chao, Niemeyer, Platt and Stahlkopf (2001a) and (2001b).  
6  Bandt,  Campbell,  Danner,  Demsetz,  Faruqui,  Kleindorfer,  Lawrence,  Levine,  McLeod,  Michaels,

Oren, Ratliff, Riley, Rumelt, Smith, Spiller, Sweeney, Teece, Verleger, Wilk and Williamson (2003). 
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The manifesto left two questions unanswered.  First, whether or not customers would

respond to higher prices by reducing demand.7  And second, whether it would make economic

sense to equip ten million residential and small commercial and industrial customers with the

AMI that would be necessary to transmit such dynamic price signals to them.8  To answer these

questions,  the  California  Public  Utilities  Commission  (CPUC)  initiated  a  proceeding  on

advanced metering, demand response and dynamic pricing.9  

As  part  of  the  proceeding,  the  state  carried  out  one  of  the  most  comprehensive

experiments with dynamic pricing.  It showed conclusively that residential customers responded

to prices that were five times higher than the standard tariff during the top 75 hours of the year

by lowering usage by 13 percent.10  The three investor-owned utilities in the state relied on the

results from the experiment to develop their AMI business cases.  They showed that while AMI

yielded many operational benefits to the distribution system, such benefits only covered about

sixty percent of the total investment.  The remaining forty percent had to be covered through

demand response.     

The CPUC has approved all three business cases.  Over the next five years, California

will deploy 11.8 million smart meters for electricity (and about five million for gas) for a total

investment of $4.564 billion.11  Capitalizing on this transformation of the metering landscape, the

CPUC issued a decision this past summer that calls for placing all customers who have advanced

meters  on  critical-peak  pricing.12  If  dynamic  pricing  becomes  the  default  tariff,  substantial

benefits can accrue to customers.  If it is offered only as an optional tariff, benefits would be

about a quarter to a tenth as large.13

7  This question was answered at least temporarily in San Diego where wholesale prices were allowed to
flow through to retail customers in the summer of 2000.  When prices doubled, customers lowered their
usage by 13 percent.  See Reiss and White (2008).  

8  The question of whether meter changeout is cost-effective does not arise for large commercial and
industrial customers since such a changeout is prima facie cost-effective.  In addition, there is substantial
evidence on the price responsiveness of such customers.  See, for example, Taylor, Schwarz and Cochell
(2005) and the case studies in Faruqui and Eakin (2000) and (2002).  

9  CPUC R. 02-06-001.  http://docs.cpuc.ca.gov/published/proceedings/R0206001.htm.  
10  Faruqui and George (2005), Herter (2007), and Herter, McAuliffe and Rosenfeld (2007).  
11  California Energy Commission (2008). In addition to the electric meters, about 5 million gas meters

are also being upgraded.
12  CPUC, Decision adopting dynamic pricing timetable  and rate  design guidance for  Pacific  Gas &

Electric Company, D. 08-07-045, July 31, 2008.
13  Pfannenstiel and Faruqui (2008).  
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Similar discussions are taking place in many jurisdictions throughout North America,

spurred  in  part  by  two federal  laws.14  As  noted  earlier,  both  restructured  and  traditionally

regulated  states  are  simultaneously  engaged in  this  re-examination  of  metering  and demand

response issues.  A survey of state regulatory activity carried out in August 2008 found that 38

commissions had initiated regulatory consideration of  smart  meters  and demand response in

response to federal legislation and 32 had completed their consideration.15 

Echoing views that were espoused in the 21 Economists Manifesto, Frederick Butler of

the New Jersey Board of Public Utilities Commission, who is also the president of the National

Association of  Regulatory Utility  Commissioners,  reminded EnergyWashington in  December

2008 that  for more than a century “most people have paid for their electricity at the same rate

every day of every year, every hour of every day.” Butler said, “That’s going to have to change,”

noting that “If you’re going to have a smart grid, that allows you to measure and have two-way

communication between the end-use premises, the utility company, the [Regional Transmission

Operator] RTO, and other entities, rates will  have to change to be more time-of-use rates or

critical peak period rates.” 

The  momentum toward  dynamic  pricing  and  demand  response  has  also  extended  to

wholesale markets.  Many regional transmission organizations and independent system operators

around the US including those in California, the Midwest, New England, New York and PJM are

giving serious consideration to introducing demand response in wholesale markets.  A recent

analysis showed that even a five percent reduction in US demand during the top one percent of

the hours of the years would yield a present value of $35 billion in benefits.16  

14  The Energy Policy Act of 2005 and The Energy Independence and Security Act of 2007 ask state
commissions to consider the deployment of smart meters and demand response.  The latter act also asks
the Federal Energy Regulatory Commission to carry out a state-by-state assessment of the potential for
demand response.

15  US Demand Response Coordinating Committee, (2008). 
16  Faruqui,  Hledik,  Newell  and Pfeiffenberger  (2007).   With  updated assumptions about  the cost  of

peaking capacity, the benefit estimate might be closer to $66 billion.
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To effectuate demand response, some type of dynamic pricing will have to be instituted in

retail markets.17  The central question in all of these assessments is: Will customers respond to

higher prices by lowering peak demand and if so, by how much?  The answer will help state

regulators determine whether or not to proceed with authorizing the deployment of AMI in their

jurisdictions.  The question applies a fortiori to residential and small commercial and industrial

customers because only five percent are equipped with smart meters.18  In the U.S., there are a

total of 144 million customers.  Of this number, the overwhelming majority –some 125 million—

are residential.19 They account for a third of over-all energy consumption and for a larger share of

peak demand.

The cost of upgrading all residential meters in the US would be staggering.  Using the

California cost of AMI deployment as a proxy variable, we estimate that the nationwide cost of

AMI would be upwards of $40 billion.   Is it  worthwhile to pursue AMI?  The answer is a

conditional yes.  Two things have to occur to make this a sound decision.  First, AMI should be

accompanied by dynamic pricing to get the most value out of the investment.  As Commissioner

Rick Morgan of the District of Columbia Public Service Commission has noted, what is the point

of  getting  smart  meters  with  dumb rates?20  This  represents  a  major  change  in  the  pricing

paradigm and will  be actively debated by commissions in every state  before a consensus is

arrived at.   Second,  customer response to  dynamic pricing has to  create  savings  in  avoided

capacity and energy costs to overcome the net investment in AMI (i.e., that amount which is not

offset by savings in distribution system costs).   The second condition is largely an empirical

issue and provides the impetus for this paper.  

In Section 2, we provide an overview of 15 recent empirical assessments of dynamic

pricing.  Several were conducted as scientifically designed experiments with balanced control

and treatment groups, a few were designed with treatment groups that were not randomly chosen

and some are full-scale deployments with no experimental controls.   We tabulate the design

characteristics of these 15 assessments and summarize the analytical process through which the

data are analyzed.  In Section 3, we review in detail the design of each individual assessment and
17  Wellinghoff and Morenoff (2007).  
18  FERC (2008).
19  http://www.eia.doe.gov/cneaf/electricity/esr/table5.html. 
20  Morgan (2009).
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present its results.  In Section 4, we compare the results across experiments and also illustrate the

likely effect of dynamic pricing on customer peak loads by relying on the results of one of the

most widely-cited pricing experiments.   In Section 5, we present our conclusions.  

2.0 THE FIFTEEN EXPERIMENTS

In the late 1970s and early 1980s, the first wave of electricity pricing experiments was

carried out under the auspices of the US Federal Energy Administration.  Those experiments

were focused on measuring customer response to simple (static) time-of-day and seasonal rates.21

There was a lot of variation in the experimental results, with the own-price elasticity of peak

period consumption ranging between 0 and -0.4.  A similar variation was observed for the own-

price elasticity of off-peak consumption.   Cross-price elasticities tended to be much smaller.

Some  of  the  variation  in  results  was  caused  by  differences  in  customer  demographics  and

weather conditions.  Some of the residual variation was undoubtedly caused by variations in

experimental design and the levels of prices that were offered in the experiments.  The data from

the top five experiments, located in California, Connecticut, North Carolina and Wisconsin, were

analyzed in a major study carried out for the Electric Power Research Institute (EPRI).22  

The constant elasticity of substitution (CES) model was used in the EPRI study.  This

model merits some discussion since it has also been used in several subsequent studies.  Data in

electricity pricing studies that involve individual customers, whether experimental or otherwise,

is limited to repeated observations of electricity consumption and prices by period.  Thus, if the

analyst  wishes  to  estimate  demand  functions  that  are  consistent  with  the  theory  of  utility

maximization, he or she is forced to assume a two-stage budgeting process on the consumer’s

part.   Often,  this  means  invoking  the  assumption  of  homothetic  separability  in  consumer

preferences which posits inter alia that the ratio of peak to off-peak consumption does not depend

on the amount being spent on electricity.  The CES model allows the elasticity of substitution to

take on any value and it  has been found to be well-suited to TOU pricing studies involving

electricity since there is strong prior evidence suggesting that these elasticities are going to be

small.  
21  Faruqui and Malko (1983).  
22  Caves, Christensen, and Herriges (1984). 
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The  CES  model  is  superior  to  the  Cobb-Douglas  model  which  imposes  a  unitary

elasticity of substitution.  The Cobb-Douglas model is estimated, for example, by regressing the

log of peak-period consumption on the log of peak and off-peak prices.  To be consistent with

theory of utility maximization, cross-equation restrictions have to be imposed on the cross-price

terms.  In addition, the model forces the underlying elasticity of substitution to be one, which has

not  been  observed  empirically.   Often,  the  cross-equation  restrictions  are  not  imposed,  the

equations are estimated by ordinary least squares (OLS) and the result is an unappealing ad hoc

specification.  

The CES model is estimated by regressing the ratio of peak consumption to off-peak

consumption  on  the  corresponding  price  ratio.   Often,  daily  observations  are  used  in  the

regressions.   Thus it  becomes to introduce weather  terms in the specification.   Finally,  it  is

customary to introduce fixed effects in the specification, allowing each customer to have their

unique intercept terms that reflect their lifestyles.  A separate equation is used to model changes

in daily use (the sum of peak and off-peak period use) on daily price.  To improve the efficiency

of the estimators, the substitution and daily equations can be estimated jointly using Zellner’s

seemingly unrelated estimation procedure.       

In order to apply the CES specification across the five experiments, the analysts had to

account for the fact that each experiment had its own unique weather conditions and unique

consumer appliance holdings.  Thus, in the final specification, the elasticity of substitution was

allowed  to  vary  with  both  weather  conditions  and  appliance  holdings.   The  results  were

conclusive: customers responded to higher prices during the peak period by reducing peak period

usage and/or shifting it to less expensive off-peak periods.  The results were consistent around

the  country  once  weather  conditions  and appliance  holdings  were  held  constant.   Customer

response was higher in warmer climates and for customers with all electric homes.  The elasticity

of substitution for the average customer was 0.14, indicating that a one percent rise in the ratio of

peak-to-off peak prices would result in a 0.14 percent drop in the peak-to-off-peak quantity ratio.

Over the entire set of customers, it ranged between 0.07 and 0.21.  The bottom end of the range

was found in mild climate regions and was associated with customers that  had few electric

9



appliances.  The top end of the range was found in extreme climate regions and was associated

with customers that had all-electric homes.

However, despite the conclusive findings from the EPRI study, time-varying rates were

not widely accepted across the country.  There were three reasons for this.  First, the high cost of

time-of-use metering.   Second, the peak periods in the TOU rate designs were too broad to

garner customer acceptance.  And third, for reasons that are not entirely clear, the utilities failed

to market the programs effectively.  Most customers did not even know such rates existed.

California’s energy crisis rekindled interest in time-varying rates but with a noticeable

difference.  A variety of academics, researchers and consultants called for the institution of rates

that  would be  dynamically  dispatchable  during critical-price  periods.   These  occur  typically

during the top one percent of the hours of the year where, as noted earlier, somewhere between

9-17 percent of the annual peak demand is concentrated.  It is very expensive to serve power

during these critical periods and even a modest reduction in demand can be very cost-effective.

In addition, the introduction of digital technology in meters has brought with it the availability of

AMI, making dynamic pricing a cost-effective option in most situations. 

The study designs are shown in Table 1.  Most of them are based on panel data, involving

repeated measurements on a cross-section of customers.  Some of the customers are placed on

the dynamic pricing rate (or rates) and fall into the treatment group.  Others stay on existing rates

and fall into the control group.  To be a true experiment, the treatment and control groups should

be randomly chosen.  Otherwise, the design becomes a quasi experiment.23  The better designs

feature measurement during the pre-treatment period which allows any potential self-selection

bias in the treatment group to be detected.  It also allows for the application of the “difference-in-

differences” estimator, obtained by subtracting (any) pre-existing difference in the usage of the

control  group between treatment  and pre-treatment  periods from that  of  the treatment  group

between the treatment and pre-treatment periods.  Finally, the superior designs feature multiple

price points, allowing for the estimation of demand models and price and substitution elasticities

which can be used to predict not only the impact of the specific rates tested in the study but also

23  Shadish, Cook and Campbell (2002).
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other rates.  The simpler designs had a single time-varying rate and only allowed a comparison

of means to be carried out using either analysis of variance (ANOVA) or covariance (ANCOVA).

The results in such cases are limited to the time-varying rates tested in the study and cannot be

used to assess alternative values of peak and off-peak prices.

As  mentioned  earlier,  one  of  the  more  popular  and  theoretically  appealing  model

specifications is the constant elasticity of substitution (CES) demand system.  Its application to

electricity pricing centers on the substitution equation (1).  The equation expresses the peak to

off-peak  quantity  ratio  as  a  function  of  the  peak  to  off-peak  price  ratio24,  a  weather  term

representing the difference in cooling degree hours between the peak and off peak periods25 and

fixed effects variable for each customer.  

1
ln ln ( )

N
p p

p op i i
iop op

Q P
CDH CDH D

Q P
α σ δ θ ε



   
           

   


where

pQ = average energy use per hour in the peak period for the average day

opQ = average energy use per hour in the off-peak period for the average day

σ =  the  elasticity  of  substitution  between  peak  and  off-peak  energy  use  (following

convention, this is taken to be a positive number for substitutes and a negative number for

complements)

pP = average price during the peak pricing period

opP = average price during the off-peak pricing period

δ = measure of weather sensitivity  

pCDH = cooling degree hours per hour during the peak pricing period

opCDH = cooling degree hours per hour during the off-peak pricing period

24  It  is  important  to  note  that  this  specification  can  be  estimated  without  any  concerns  about
simultaneous equation bias since prices are set ex ante in just about all of the experiments reviewed in the
paper and in a few of the full-scale deployments noted below, the number of participants was not large
enough to create demand response of such magnitude that it would influence prices in retail markets.

25  The difference in cooling degree hours per hour between peak and off-peak periods is used rather than
the ratio because on some days, there are zero cooling degree hours in the off-peak period and using the
ratio would result in division by zero on these days.
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iθ = fixed effect coefficient for customer i   

iD = a binary variable equal to 1 for the thi customer, 0 otherwise, where there are a total

of N customers.
ε  = random error term

  

Equation (2) expresses daily energy use as a function of daily average price, daily cooling

degree hours and the fixed effects variables. 

   
1

ln ln ( )
N

d d d d i i
i

Q P CDH Dα η δ θ ε


    

where

dQ = average daily energy use per hour

ηd = the price elasticity of demand for daily energy (defined below)

dP = average daily price (e.g., a usage weighted average of the peak and off-peak prices

for the day)

dCDH = cooling degree hours per hour during the day

ε = regression error term 

The two summary measures of price responsiveness in the CES demand system are the

elasticity of substitution (σ) and the daily price elasticity of consumption (η).  

  

It is plausible that the elasticity of substitution and/or the daily price elasticity would

differ  across  customers  who  have  different  socio-economic  characteristics  (e.g.,  different

appliance ownership, different income levels, etc.).  The elasticity may also vary between hot

and cool days.  The CES model can be modified to allow the elasticities to vary with weather and

socio-economic  factors,  such  as  central  air  conditioning  (CAC)  ownership.   Equation  (3)

provides an example of the substitution equation that allows price responsiveness to vary with

CAC ownership and weather.  Equation (4) shows how the elasticity of substitution would be

calculated from this model specification.  Equations (5) and (6) show the demand models for

daily energy use and the corresponding equation for the daily price elasticity as a function of

weather and CAC ownership.
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1
ln ln ( ) ( ) ln

( ) ln

N
p p p

i i p op p op
iop op op

p

op

Q P P
D CDH CDH CDH CDH

Q P P

P
CAC

P

α θ σ δ λ

ϕ ε



     
                

     

 
   

 


 

The elasticity of substitution (ES) in this model is a function of three terms, as shown

below:

ES= ( ) ( )p opCDH CDH CACσ λ ϕ  

Other customer characteristics, such as income, household size, and number of people in

the household, may also influence the elasticities in the CES model.  They can be included in the

specification by introducing additional price interaction terms in a similar manner to the CAC

and weather terms shown above.    

     

 
1

ln ln ( ) ( ) ln

( ) ln

N

D i i D D D D
i

D

Q D P CDH CDH P

CAC P

α θ η ρ χ

ξ ε


    

 


(5)

where

DQ = average daily energy use per hour  

η = the daily price elasticity

DP = average daily price

ρ = measure of weather sensitivity  
χ = the change in daily price elasticity due to weather sensitivity

DCDH = average daily cooling degree hours per hour (base 72 degrees)

ξ = the change in daily price elasticity due to the presence of central air conditioning

CAC = 1 if a household owns a central air conditioner, 0 otherwise 
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iθ = fixed effect for customer i   

iD = a binary variable equal to 1 for the thi customer, 0 otherwise, where there are a total

of N customers.
ε  = error term. 

The composite daily price elasticity in this model is a function of three terms, as shown

below:

Daily= ( ) ( )DCDH CACη χ ξ  (6)
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3.0 STUDY-BY-STUDY ASSESSMENT

This section profiles the 15 studies by presenting their salient design features, estimated

impacts and, wherever they were provided, the price and substitution elasticities.  The quality of

information  varies  considerably  across  the  studies  and  this  sometimes  gets  in  the  way  of

providing a consistent perspective.  

3.1 CALIFORNIA- ANAHEIM CRITICAL PEAK PRICING EXPERIMENT 

The City of Anaheim Public Utilities  (APU) conducted a residential  dynamic pricing

experiment between June 2005 and October 2005.26  A total of 123 customers participated in the

experiment:  52  in  the  control  group  and  71  in  the  treatment  group.  Despite  its  name,  this

experiment did not feature a critical peak pricing rate.  Instead, it provided participants a rebate

for each kWh reduction during critical hours.  The magnitude of the peak time rebate (PTR) was

$0.35 for each kWh reduction below the reference level peak-period consumption on non-CPP

days (i.e., the baseline consumption).  The rate design is presented in Table 2.

Table 2- Anaheim PTR Rate Design

Group Charge Applicable Period

Control
Standard increasing-block residential tariff:                     

$0.0675/kWh if  consumption <=240kWh per month 
$0.1102/kWh if consumption >240kWh per month

All hours

Treatment Standard increasing-block residential tariff All hours except except  peak hours               
(12 a.m. - 6 p.m.) on CPP days

Treatment $0.35 rebate for each kWh reduction relative to their 
typical peak consumption on non-CPP days. Peak hours (12 a.m. - 6 p.m.) on CPP days

Statistical  comparisons during the pre-treatment period between treatment and control

group customers were not statistically significant indicating that the two groups were balanced

and there was no self-selection bias.   

The data showed that the treatment group used 12 percent less electricity on average

during the peak hours of the CPP days than the control group. Demand response by treatment

customers was greater on higher temperature CPP days than on lower temperature CPP days. 

26    Wolak (2006).  
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3.2 CALIFORNIA- AUTOMATED DEMAND RESPONSE SYSTEM PILOT27 

California’s Advanced Demand Response System (ADRS) pilot program was carried out

on a subset of the customers who were included in the Statewide Pricing Pilot which is discussed

in the next sub-section.  All the ADRS participants were located in the upper portion of the

Central Valley. The experiment was initiated in 2004 and extended through the end of 2005.

ADRS operated under a critical peak pricing tariff that was identical to that in the SPP which was

supported with a residential-scale, automated demand response technology. Participants of the

pilot installed the GoodWatts system, an advanced home climate control system that allowed

users to web-program their preferences for the control of home appliances. Under the CPP tariff,

prices were higher during the peak period (2 p.m. to 7 p.m. on weekdays).  All  other hours,

weekends, and holidays were subject to the base rate. When the “super peak events” were called,

the peak price was three times higher than the regular peak price.  

Program  participants  achieved  substantial  load  reductions  in  both  2004  and  2005

compared to the control  group. Load reductions on super peak event days were consistently

about  twice  the  size  of  load  reductions  during  the  peak  periods  on  non-event  days.  Peak

reductions were as high as 51 percent on event days, when participants faced a critical-peak

pricing  (CPP)  rate  and  32  percent  on  non-event  days  when  participants  faced  a  TOU rate.

Enabling technology emerged as the main driver of the load reductions especially on super peak

event  days  and for  the  high  consumption  customers.  Overall,  load  reductions  of  the  ADRS

participants  were  consistently  larger  than  those  of  the  other  demand  response  program

participants without the technology.

Table 3 presents the impact estimates from the ADRS for high consumption customers on

CPP event days and non-event days.  

Table 3- Peak Period Load Reductions for High Consumption Customers

27  Rocky Mountain Institute (2006).  

17



Program Year Average Reduction 
(kW) % Reduction Average Reduction 

(kW) % Reduction

2004 1.84 51% 0.86 32%
2005 1.42 43% 0.73 27%

Event Days Non-Event Days

3.3 CALIFORNIA- STATEWIDE PRICING PILOT28 

California’s  three  investor-owned  utilities, Pacific  Gas  & Electric  (PG&E),  Southern

California  Edison  (SCE),  and  San  Diego  Gas  &  Electric  (SDG&E),  together  with  the  two

regulatory commissions conducted the Statewide Pricing Pilot (SPP) that ran from July 2003 to

December 2004 to test the impact of several time-varying rates. The SPP included about 2,500

participants  including  residential  and  small-to-medium  commercial  and  industrial  (C&I)

customers. SPP tested several rate structures.  The first one was a TOU-only rate where the peak

price was twice the value of the off-peak price.  The second one was a CPP rate where the peak

price during 15 “critical” days was roughly five times greater than the off-peak price; on non-

critical days, a TOU rate applied.  The SPP tested two variations of the CPP rates, CPP-F and

CPP-V.  The CPP-F rate had a fixed period of critical peak and day-ahead notification.   CPP-F

customers did not have an enabling technology.  The CPP-V rate had a variable-length critical

peak period and this was activated on a day-of basis.  CPP-V customers were provided enabling

technologies such as a two-way communicating smart thermostat. 

The SPP data were analyzed with the CES demand model described in Section 2.0.  In

this paper, we cover only the residential customer impacts for three rate structures: CPP-F, TOU,

and CPP-V.  

CPP-F Impacts

The average price for customers on the standard rate was about $0.13 per kWh.  Under

the CPP-F rate, the average peak-period price on critical days was roughly $0.59 per kWh, the

peak price on non-critical days was $0.22 per kWh, and the average off-peak price was $0.09 per

kWh.   CPP-F rate impacts are as follows: 

 On critical days, statewide average reduction in peak-period energy use

was estimated to be 13.1 percent. Impacts varied across the four climate zones which

28  Charles  River  Associates  (2005),  Faruqui  and  George  (2005),  Herter  (2007)  and  Herter,
McAuliffe and Rosenfeld (2007).  
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spanned a climate as diverse as that of San Francisco and Palm Springs ranged from a

low of 7.6 percent to a high of 15.8 percent.

 The average peak-period impact on critical days during the inner summer

months (July-September) was estimated to be 14.4 percent while the same impact was 8.1

percent during the outer summer months (May, June, and October).

 On normal weekdays, when just the TOU rate was in effect, the average

impact was 4.7 percent, with a range across climate zones from 2.2 percent to 6.5 percent.

 No change in total energy use across the entire year was found based on

the average SPP prices.

 The impact  of  different  customer characteristics  on energy use  by rate

period was also examined. Central air conditioning ownership and college education are

the two customer characteristics that were associated with the largest reduction in energy

use on critical days.

Table 4- Residential CPP-F Rate Impacts on Critical Days for Inner Summer

Months (July, August, September)     

Year Start Value 
(kWh/hr)

Impact 
(kWh/hr)

Elasticity 
Estimate T-stat Impact (%)

Peak 1.28 -0.163 - -20.94 -12.71
Off-peak 0.8 0.021 - 7.8 2.57
Daily 0.9 -0.018 - -6.88 -1.95
Substitution - - 0.086 -20.51 -
Daily - - -0.032 -6.8 -

Peak 1.28 -0.178 - -18.49 -13.93
Off-peak 0.8 0.01 - 2.95 1.25
Daily 0.9 -0.029 - -8.7 -3.24

Substitution - - 0.087 -16.84 -
Daily - - -0.054 -8.55 -

20
03

20
04

Rate Period

Elasticity

Elasticity

Rate Period

Notes:

[1] Estimations are based on the average customer approach. The average customer approach involves using the
input values (e.g., weather, central AC saturations and starting energy use values by rate period) for the average
customer across all climate zones.
[2] All the numbers are based on average critical day weather in 2003/2004.
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TOU Impacts

The average price for customers on the standard rate was about $0.13 per kWh.  Under

the TOU rate, the average peak-period price was roughly $0.22 per kWh and the average off-

peak price was $ 0.09 per kWh.

 The reduction in peak period energy use during the inner summer months

of 2003 was estimated to be 5.9 percent. However, this impact completely disappeared in

2004.

 Due to small sample problems in the estimation of TOU impacts, normal

weekday elasticities  from the  CPP-F treatment may serve  as  better  predictors  of the

impact of TOU rates on energy demand than the TOU price elasticity estimates.

CPP-V Impacts

These customers were located in the San Diego metropolitan area.  The  average price for

customers on the standard rate was about $0.14 per kWh.  Under the CPP-V rate,  the average

peak-period price on critical days was roughly $0.65 per kWh and the average off-peak price was

$0.10  per  kWh. This  rate  schedule  was  tested  on  two  different  treatment  groups.  Track  A

customers were drawn from a population with energy use greater than 600 kWh per month. In

this  group,  average  income  and  central  AC  saturation  was  much  higher  than  the  general

population. Track A customers were given a choice of installing an enabling technology and

about two thirds of them opted for the enabling technology. The Track C group was formed from

customers who previously volunteered for a smart thermostat pilot. All Track C customers had

central AC and smart thermostats.  Hence, two-thirds of Track A customers and all Track C

customers had enabling technologies.

As shown in Table 5, Track A customers reduced their peak-period energy use on critical

days  by  about  16 percent  (about  25  percent higher  than  the  CPP-F rate  impact).   Track  C

customers reduced their peak-period use on critical days by about 27 percent.

A comparison  of  the  CPP-F  and  the  CPP-V  results  shows  that  usage  impacts  are

significantly larger with an enabling technology than without it. 
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Table 5- Residential CPP-V Rate Impacts for Summer for All Customers  
Start Value 
(kWh/hr)

Impact 
(kWh/hr)

Elasticity 
Estimate t-stat Impact (%)

Peak 2.14 -0.3374 - -10.89 -15.76
Off-peak 1.33 0.0445 - 4.26 3.34
Daily 1.46 -0.0187 - -1.71 -1.28
Weekend Daily 1.3 0.0173 - 2.72 1.33

Substitution - - -0.111 -11.76 -
Daily - - -0.027 -1.7 -
Weekend Daily - - -0.043 -2.74 -

Peak 2.33 -0.635 - -35.03 -27.23
Off-peak 1.26 0.044 - 3.19 3.52
Daily 1.43 -0.059 - -9.85 -4.17
Weekend Daily 1.34 0.016 - 4.1 1.2

Substitution - - -0.077 -10.61 -

Technology Impact-Substitution - - -0.214 -24.04 -

Daily - - -0.044 -3.49 -
Technology Impact-Daily - - -0.019 -3.49 -
Weekend Daily - - -0.041 -4.12 -

Rate Period

Elasticity

Tr
ac

k 
C

Rate Period

Tr
ac

k 
A

Elasticity

Notes:

[1] Estimations are based on average customer approach.
[2] Track A analysis was conducted for summer 2004.
[3] Track C analysis pools summers 2003 and 2004 and estimates a single model.

3.4 COLORADO- XCEL ENERGY TOU PILOT29

In the summer of 2006, Xcel Energy initiated a pilot program that tested the impact of

TOU  and  CPP  rates,  as  well  as  enabling  technologies,  on  consumption  in  the  Denver

metropolitan  area.   The  effective  treatment  period  lasted  about  a  year,  from July  15,  2006

through July 15, 2007.  Approximately 3,700 residential customers initially volunteered into the

pilot program.  Approximately 26 percent of those customers left the pilot by the end, leaving a

final sample of about 2,900 participants.30 All customers had interval meters installed prior to the

pilot program which could wirelessly transmit consumption to mobile vehicles collecting the

household data. Some customers were offered enabling technologies—AC cycling switches and

Programmable  Communicating  Thermostats  (PCT)—in addition  to  the  tested  rate  structures.

Customers were subject to one of the three rate options:

 Time-of-use (RTOU): Higher price during on-peak periods and a lower

price during off-peak periods

29  Based on Energy Insights, Inc, (2008a) and (2008b).  
30  The report notes that, because customers who want to participate are included in the pilot, there is an

inherent self selection bias involved.
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 Critical peak (RCPP): Critical peak prices up to 10 summer days; lower

off-peak prices at all other times and notification of critical peak days by 4 pm the day

before.

 Time-of-use+ critical peak (RCTOU): Higher on-peak price (lower than

the  RTOU on-peak  prices),  lower  off-peak  prices,  and  critical  peak  prices  up  to  10

summer days

Table 6 illustrates the demand response impacts from the treatment groups during critical

peak, on-peak, and off-peak hours in the summer months of pilot period.31  All results presented

below were determined to be statistically significant.  Participants subject to critical peak pricing

reduced demand during peak hours substantially more so than customers not subject to CPP.

Nevertheless, all groups experienced some reduction in demand.  It is important to note that the

results of the experiment may be subject to self-selection bias given the nature of the process

through which they were recruited.  Thus, the results may not generalize to the population at

large.  

Table 6- Demand Response Impacts

Rate
Enabling 

Technology Central AC Critical Peak On Peak Off Peak

TOU None No - -10.63% -2.95%
TOU None Yes - -5.19% -0.27%
CPP None No -31.91% - -0.08%
CPP None Yes -38.42% - 0.59%
CPP AC Cycling Switch Yes -44.81% - 1.34%

CTOU None No -15.12% -2.51% 8.69%
CTOU None Yes -28.75% -8.21% 3.56%
CTOU AC Cycling Switch Yes -46.86% -10.63% 4.00%
CTOU PCT Yes -54.22% -10.29% 2.96%

Xcel Energy notes in the conclusion to its report that the pilot was conducted as a proof

of concept rather than a technology test.32  While the demand reduction was significant,  the

meters implemented in the pilot were too expensive to make the offerings cost-effective.  

31  As defined above, the summer months of the pilot included June, July, August, and September.  As the
pilot started in July of 2006 and ended in July of 2007, impacts were not measured for the months of June
of 2006, and August and September of 2007.

32     Energy Insights, Inc. (2008b).  
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3.5 FLORIDA- THE GULF POWER SELECT PROGRAM33 

In 2000, Gulf Power, a subsidiary of the Southern Company, started a unique demand response

program that  provides  customers  with  three  different  service  options.   The  first  option  is  a

standard residential service (RS) pricing option which involved a standard flat rate with no time

varying rates.  The second optional is a conventional TOU pricing option (RST) with two pricing

periods.  The third option is the Residential Service Variable Price (RSVP) pricing option which

is a three-period CPP tariff.

Under the RSVP option, Gulf Power provides the price signals and customers modify

their  usage  patterns  through a  combination  of  the  price  signals  and  advanced metering  and

appliance control. Gulf Power markets the RSVP option under the GoodCents Select program

and charges the participants a monthly participation fee.  By the end of 2001, approximately

2,300 homes were served by the RSVP.

Table 7 shows the rates under the Gulf Power demand response program.

Table 7- Residential Tariffs for Summer Months 
Program Period Charge Applicable

RS Base $0.057/kWh All hours

RST Off-peak $0.027/kWh 12 a.m.-12 p.m. and 9 p.m.-12 a.m.
RST Peak $0.104/kWh 12 p.m.- 9 p.m.

RSVP Off-peak $0.035/kWh 12 a.m.-6 a.m. and 11 p.m.-12 a.m.
RSVP Mid-peak $0.046 /kWh 6 a.m.-11 a.m. and 8 p.m.-11 p.m.
RSVP Peak $0.093/kWh 11 a.m.-8 p.m.
RSVP CPP $0.29/kWh When called

Gulf Power reports the base coincident peak demand as 6.1 KW per household (hh).

RSVP program performance results presented in Table 8 show that program participants reduce

their demand by 2.75 KW per household during the critical peak period or a 41 percent reduction

in energy usage during the critical peak period.

Table 8- RSVP Program Performance by Period

33  See Appendix B of Borenstein, Jaske, and Rosenfeld (2002), which is adapted from Levy, Abbott and
Hadden (2002).  
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Impact Type Period Impact

Peak 2.1 kW/hh
Critical Peak 2.75 kW/hh

Peak 22%
Critical Peak 41%

Average Demand Reduction 

Average Energy Reduction

3.6 FRANCE- ÉLECTRICITÉ DE FRANCE (EDF) TEMPO PROGRAM34

Électricité de France (EDF) initiated the Tempo program in 1996.  This is a full-scale

voluntary  program and is  not  a  controlled  experiment.   The  rate  design  entails  two pricing

periods, peak and off-peak and three day types. The peak period is 16 hours long, from 6 am to

10 pm, and the off-peak period is 8 hours long.  Under the program, the year is divided into three

day-types:

 Blue days are the least expensive 300 days. 

 White days are moderately priced 43 days.

 Red days are the most expensive 22 days.

The prices per kWh, expressed in Euro cents, are shown below:

Blue Days White Days Red Days

Off-Peak Period 4.64 9.48 17.62
Peak Period 5.77 11.25 49.29

  

Customers learn which day would be in effect the next day through the use of several

resources including the web, call-centers, subscription to e-mail alerts and by plugging in an

electrical device.

EDF implemented a pilot program before launching the Tempo rate on a full-scale basis.

The  pilot  program set  prices  that  were  much higher  than  the  Tempo prices.  The  own-price

elasticity for peak demand was estimated at -0.79, much higher than any of the estimates for U.S.

pilots, and the own-price elasticity for off-peak usage was estimated to be -0.18.35

34  For a recent presentation, see Giraud (2004).  For earlier analysis, see Giraud and Aubin (1994) and
Aubin,  Fougere,  Husson  and  Ivaldi  (1995).   For  the  current  tariff,  consult  http://www.edf-
bleuciel.fr/accueil/mon-quotidien-avec-bleu-ciel-d-edf/option-tempo-41090.html&onglet=5.  

35  Matsukawa (2001) found similarly high price elasticities using data on 279 households in Japan.  For
households with electric water heaters, he estimated an own-price elasticity of -0.768 for the peak period -
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3.7 IDAHO- IDAHO RESIDENTIAL PILOT PROGRAM36 

Idaho Power Company initiated two residential pilot programs in the Emmett area of

Idaho in the summer of 2005 and the summer of 2006:  Time-of-day (TOD) and Energy Watch

(EW).  

Time-of-Day Pilot

The TOD pilot was designed as a conventional TOU program where the participants were

charged different rates by time of the day as shown in Table 9. The TOD pilot included 85

treatment and 420 control group customers as of August 2006. 

Table 9- Rate Design for the Time-of-Day Pilot

Period Charge Applicable

On-Peak $0.083/kWh Weekdays from 1pm to 9pm

Mid-Peak $0.061/kWh Weekdays from 7am to 1pm

Off-Peak $0.045/kWh Weekdays from 9pm to 7am and all 
hours on weekends and holidays

As shown in Table 10, the results from the TOD pilot for the summer of 2006 show that,

on average, the peak period percentage of total summer usage was the same for the treatment and

control groups – about 22 percent.  In fact, the percentage of usage during the mid-peak and off-

peak periods was also the same between the two groups.  This indicates that the TOD rates had

no effect on shifting usage.  However, in light of the very low ratio of on-peak to off-peak rates

(about 1.84), this result is not so surprising.  It suggests that a higher ratio of peak to off-peak

rates is needed to induce customers to shift usage from peak to off peak periods.

0.561 for the off-peak period.   Similar  estimates  were obtained for households without electric  water
heaters and for households on standard rates.  Filippini (1995) also found price elasticities in this range
using Swiss data.

36  Idaho Power Company (2006).
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Table 10- Summer 2006 (June-August) Usage under the TOD Pilot

Period Treatment Control Treatment Control Difference                        
(Control- Treatment) T-stat

On-Peak 800 763 22% 22% -36.46 0.66

Mid-Peak 591 568 16% 16% -22.43 0.52

Off-Peak 2307 2162 62% 62% -145.78 0.99

Summer 06 Usage 3698 3493 100% 100% -204.67 0.87

% of Total Summer Use Program ImpactAverage Use (kWh)

Energy Watch Pilot

The Idaho Power Company Energy Watch (EW) pilot was designed as a CPP pilot where

the participants were notified of the CPP event on a day-ahead basis. A total of 10 EW days were

called during the summer of 2006.  EW featured CPP hours from 5 p.m. to 9 p.m., day-ahead

notification, a CPP energy price of $0.20/kWh and a non-CPP energy price of $0.054/kWh.  The

EW pilot included 68 treatment and 355 control group customers as of August 2006. 

Table 11 shows the reduction in load (kW) on CPP days for each of the event days.

Average hourly demand reduction ranged from 0.64 kW (on June 29) to 1.70 kW (on July 27).

Average hourly load reduction for  all  ten event  days was 1.26 kW.  The average total  load

reduction for a 4-hour event was 5.03 kW.  

Table 11- Energy Watch Day:  Load Reductions (kW) On Each of the Ten Event

Days
Hour 

Beginning
Hour 

Ending 29-Jun 11-Jul 14-Jul 18-Jul 19-Jul 25-Jul 27-Jul 3-Aug 9-Aug 15-Aug Average

5pm 6pm 0.64 1.31 1.09 1.39 1.2 1.33 1.58 1.14 0.83 1.02 1.17
6pm 7pm 0.69 1.5 1.17 1.43 1.32 1.45 1.62 1.27 1.14 1.15 1.29
7pm 8pm 0.77 1.58 1.16 1.57 1.41 1.55 1.7 1.24 1.02 0.96 1.33
8pm 9pm 0.8 1.48 1.11 1.47 1.27 1.4 1.6 1.13 0.95 0.89 1.25

2.89 5.87 4.53 5.85 5.2 5.74 6.5 4.77 3.94 4.02 5.03
0.72 1.47 1.13 1.46 1.3 1.43 1.62 1.19 0.99 1.01 1.26
68 65 65 61 62 75 68 59 62 67 65
85 100 98 94 98 99 104 92 85 92 95
75 84 83 79 80 87 87 76 73 80 80Avg Temp

4-Hour Total
Average Hourly
Min Temp
Max Temp
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3.8 ILLINOIS- ENERGY SMART PRICING PLAN

The Community Energy Cooperative’s (“CEC”) Energy-Smart Pricing Plan (ESPP) was

the first large-scale residential real-time pricing (RTP) program in the US.  It took place in the

service territory of Commonwealth Edison in northern Illinois and ran between 2003 and 2006.

ESPP initially included 750 participants and expanded to nearly 1,500 customers in 2005.  The

same number of participants was maintained for the 2006 program year.  ESPP focused on low

cost technology and tested the hypothesis that major benefits may result from RTP without the

adoption of expensive technology.  

The ESPP design included day-ahead announcement of the hourly electricity prices for

the next day (on the day of the event, customers were charged the hourly prices that had been

posted  the  day  before),  high-price  day  notification  via  phone  or  email  when  the  price  of

electricity climbed over $0.10 per kWh (in 2006, the notification threshold was set to above

$0.13 per kWh), and a price cap of $0.50 per kWh for participants meaning that the maximum

hourly  price  is  set  at  $0.50  per  kWh  during  their  participation  in  the  program.   In  2005

(continued in 2006), cycling switches for central air conditioners were installed at participants

homes, which effectively reduced energy consumption by AC units during high price periods.  In

2006, the Energy PriceLight, a glass orb similar in design to the Energy Orb used by several

utilities,  was  distributed.   The  Energy PriceLight  is  a  glass  orb  that  receives  wireless  price

information and relays this information, i.e. high or low electricity prices, by glowing in different

colors.  

Pilot Program Results for 200537

The main goals of the pilot were to determine the price elasticity of demand and the

overall  impact  on  energy  consumption.  A  regression  analysis  using  a  simple  double-log

specification with hourly usage as the dependent variable and hourly price and weather as the

independent  variables  was  used  to  estimate  the  price  elasticity  of  demand  for  the  summer

months. Overall, the price elasticity during the summer of 2005 was estimated to be -0.047.  

37  Summit Blue Consulting (2006).
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With enabling technology, i.e. automatic cycling of the central-air conditioners during

high-price periods, the overall price elasticity increased to -0.069.  The largest response occurred

on high-price notification days.   For instance,  on the day with the highest  prices during the

summer of 2005, participants reduced their peak hour consumption by 15 percent compared to

what they would have consumed under the flat ComEd residential rate.  Price responsiveness

varied over the course of a day.   Own price elasticities by time of day are presented in Table 12.

Table 12- Elasticity Estimates from ESPP

Time of the Day Elasticity Estimate

Daytime (8 a.m. to 4 p.m.) -0.02
Late afternoon/evening hours (4 p.m. to midnight) -0.03
Daytime+ High-Price Notification -0.02
Late Daytime/Evening+High-Price Notification -0.05

The impact analysis indicated that ESPP participants consumed 35.2 kWh less per month

during the summer months compared to what they would have consumed without the ESPP.

These savings represented roughly three to four percent of summer electricity usage. Statistically

significant savings were not found for winter usage which is not surprising since most high price

days occur  in  the  summer months  in  this  area.  Overall,  ESPP resulted in  a  net  decrease  in

monthly energy consumption.

Pilot Program Results for 200638

Results  from the  analysis  of  the  ESPP in  2006  supported  the  findings  of  program’s

previous years.  The price elasticity during the summer of 2006, for hours when the price of

electricity was equal to or below $0.13 per kWh, was estimated to be -0.047.  The price elasticity

for the same period, but for hours when the price of electricity was above $0.13 per kWh, was

estimated to be -0.082.  The Energy PriceLight improved customer responsiveness resulting in an

elasticity of -0.067 across all hours.  For customers with A/C cycling, the price elasticity for high

price periods was estimated at -0.098.

Results of the energy impact analysis indicated that ESPP participants consumed 16.7

kWh less  per  month,  year  round,  relative  to  individuals  not  on the  ESPP rate.   During the

summer months, participants consumed an additional 10.0 kWh less per month, or equivalently

38  Summit Blue Consulting, (2007). 

28



26.7  kWh less  per  month  total.   This  translates  to  approximately  three  percent  of  summer

electricity usage, similar to the savings results of the 2005 program year.  Again, on the whole,

ESPP resulted in a decrease in monthly energy consumption.

3.9 MISSOURI- AMERENUE CRITICAL PEAK PRICING PILOT

First Year of the Pilot Program (2004)39

AmerenUE in association with the Missouri Collaborative formed by the Office of Public

Counsel (OPC), the Missouri Public Service Commission (MPSC), the Department of Natural

Resources (DNR) and two industrial intervener groups initiated a residential TOU pilot study in

Missouri  during  the  spring  of  2004.   Program impacts  associated  with  three  different  TOU

programs were evaluated: TOU with peak, mid-peak and off-peak periods; TOU with a CPP

component; and TOU with a CPP component and an enabling technology (smart thermostat).

Table 13 shows the pilot rates.  .

Table 13- Residential TOU Experiment Summer Rate Design
Program Time Charge Applicable

TOU Off Peak $0.048/kWh Weekday 10pm–10am, weekends, holidays

TOU Mid Peak $0.075/kWh Weekdays 10am– 3pm and 7pm-10pm
TOU Peak $0.183/kWh Weekdays 3pm – 7pm

TOU-CPP Off Peak $0.048/kWh Weekdays 10pm–10am, weekends, holidays

TOU-CPP Mid Peak $0.075/kWh Weekdays 10am– 3pm and 7pm-10pm

TOU-CPP Peak $0.168/kWh Weekdays 3pm – 7pm

TOU-CPP CPP $0.30/kWh Weekdays 3pm – 7pm, 10 times per summer

Table 14 shows the number of participants in the treatment and control groups by type of

rate.

Table 14- Experiment Sample Allocation

Treatment Treatment Sample Size Control Sample Size

TOU 88 89
TOU-CPP 85 89
TOU-CPP-Tech 77 117
Total 250 295

39  RLW Analytics, (2004).  
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The following results are based on the data compiled from the pilot between June 1, 2004

and September 30, 2004.  Table 15 shows that the participants in the TOU and TOU-CPP

groups did not shift a statistically significant amount of load from the on-peak to off-peak

or mid-peak periods. Off-peak consumption increased and peak consumption decreased

only slightly for the treatment groups compared to the control groups for both TOU and

TOU-CPP programs. However,  none of these differences in consumption between the

treatment and control groups are statistically significant.  Table 16 shows that the TOU-

CPP-Tech group reduced their average CPP period demand by 35 percent compared to

the control group on the event days. TOU-CPP group reduced their demand by 12 percent

during the same period. Both impacts are statistically significant at the five percent level. 

Table 15- Average Participant Use by Program and Time Period- 2004  

Program
June 1- 

September 30 
Period 

Control 
Group (kWh)

Treatment 
Group (kWh)

Difference       
(Control-

Treatment)
T-test Pr> |t| Statistical Significance 

of the Difference

TOU Off Peak 33.63 34.87 -1.24 -0.71 0.479 Not Significant.
TOU Mid Peak 23.59 22.78 0.81 0.71 0.476 Not Significant.
TOU On Peak 13.81 13.36 0.45 0.67 0.505 Not Significant.
TOU Seasonal 60.00 60.34 -0.34 -0.12 0.905 Not Significant.

TOU-CPP Off Peak 35.84 38.36 -2.52 -1.19 0.235 Not Significant.
TOU-CPP Mid Peak 24.11 24.54 -0.43 -0.34 0.733 Not Significant.
TOU-CPP On Peak 13.82 13.29 0.53 0.73 0.466 Not Significant.
TOU-CPP CPP 19.8 18.85 0.95 0.86 0.390 Not Significant.
TOU-CPP Daily 62.87 65.3 -2.43 -0.72 0.473 Not Significant.

TOU-CPP-Tech Off Peak 37.61 33.31 4.3 2.44 0.002 Significant.
TOU-CPP-Tech Mid Peak 25.86 22.47 3.39 3 0.003 Significant.
TOU-CPP-Tech On Peak 14.86 12.77 2.09 3.09 0.002 Significant.
TOU-CPP-Tech CPP 21.39 15.48 5.91 6.5 0.000 Significant.
TOU-CPP-Tech Daily 66.63 58.28 8.35 2.88 0.000 Significant.

Table 16- Average CPP Period Demand on the 6 Event Days in Summer 2004

Program Control 
Group (kW)

Treatment 
Group (kW)

Difference  
(Control-

Treatment)
% Difference T-test Pr> |t| Statistical Significance 

of the Difference

TOU-CPP 4.98 4.37 0.61 12% 2.09 0.038 Significant.

TOU-CPP-Tech 5.36 3.49 1.87 35% 8.09 0.000 Significant.
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Second Year of the Pilot Program (2005)40

During the second year, the first year rate design was maintained.  Table 17 provides

average participant usage by time period and program while Table 18 summarizes the average

demand in the peak periods of eight CPP days in the summer of 2005.  In 2005, the TOU-CPP

and  TOU-CPP-Tech  customers  reduced  their  usage  during  CPP  periods  by  statistically

significant amounts. However, seasonal usage reductions are not statistically significant at five

percent level.  Average CPP period demand reduction during eight event days is 13 percent for

TOU-CPP  customers  and  24  percent  for  TOU-CPP-Tech  customers.  Both  impacts  are

statistically significant at five percent.

Table 17- Average Participant Use by Program and Time Period – 2005

Program Jun 1- Aug 
31 Period

Control 
Group (kWh)

Treatment 
Group (kWh)

Difference  
(Control-

Treatment)
T-test Pr> |t| Statistical Significance 

of the Difference

TOU-CPP Off Peak 4495 4450 45 0.28 0.78 Not Significant.
TOU-CPP Mid Peak 2054 2019 35 0.54 0.59 Not Significant.
TOU-CPP On Peak 927 896 31 0.96 0.34 Not Significant.
TOU-CPP CPP 252 219 33 3.92 0.00 Significant.
TOU-CPP Seasonal 7,729 7,584 145 0.58 0.56 Not Significant.

TOU-CPP-Tech Off Peak 4147 4017 130 0.91 0.37 Not Significant.
TOU-CPP-Tech Mid Peak 1934 1901 33 0.46 0.65 Not Significant.
TOU-CPP-Tech On Peak 884 863 21 0.64 0.52 Not Significant.
TOU-CPP-Tech CPP 240 182 58 5.99 0.00 Significant.
TOU-CPP-Tech Seasonal 7,205 6,963 242 0.98 0.33 Not Significant.

Table 18- Average CPP Period Demand on Eight Event Days in Summer 2005

Program Control 
Group (kW)

Treatment 
Group (kW)

Difference  
(Control-

Treatment)
% Difference T-test Pr> |t| Statistical Significance 

of the Difference

TOU-CPP 5.56 4.84 0.72 13% 3.9 0.0001 Significant.

TOU-CPP-Tech 5.29 4.05 1.14 24% 6.05 0.0001 Significant.

40  Voytas (2006).  
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3.10 NEW JERSEY- GPU PILOT41

GPU offered a residential TOU pilot program with a critical peak price and enabling

technology component in the summer of 1997. The rate design involved three price tiers (peak,

shoulder, and off-peak) and a critical peak price that is only effective for a limited number of

high-cost  summer  hours.  Moreover,  the  pilot  program  tested  the  impacts  from  two  sets  of

alternative rates by allocating treatment customers to two groups and subjecting each group to

one of the two sets. Table 19 shows the control and treatment group rate designs.

 Table 19- Experimental Rate Design

Group Charge Applicable

Control
Standard increasing-block residential tariff:                     

$0.12/kWh if  consumption <=600kWh per month 
$0.153/kWh if consumption >600kWh per month

All hours

Off-peak: $0.065/kWh 1a.m.-8a.m. and 9p.m.-12p.m. weekdays;                                      
All day on weekends and holidays.

Shoulder:$0.175/kWh 9a.m.-2p.m. and 7p.m.-8p.m. weekdays.

Peak:$0.30/kWh 3p.m.-6p.m. weekdays
Critical:$0.50/kWh When called during peak period

Off-peak:$0.09/kWh 1a.m.-8a.m. and 9p.m.-12p.m. weekdays;                                    
All day on weekends and holidays.

Shoulder:$0.125/kWh 9a.m.-2p.m. and 7p.m.-8p.m. weekdays.
Peak:$0.25/kWh 3p.m.-6p.m. weekdays

Critical:$0.50/kWh When called during peak period

Treatment Group 1                
(High shoulder/peak design)

Treatment Group 2                       
(Low shoulder/peak design)

One important  feature of this pilot  is  that  communication equipment was installed in

customer premises allowing them to preset their set points during the critical periods.  Analysis

of the hourly load data for each of the treatment and control group customers collected for the

period  of  June  through  September  1997  revealed  the  following  results.   On  non-critical

weekdays, the largest usage reductions in the average hourly load were observed during the peak

period and averaged to 0.53 KW or 26 percent relative to the control group. Load reductions

were also observed during the late-morning shoulder period, but these reductions were limited

compared to those during the peak period. The treatment group with the high rate design reduced

usage by roughly 50 percent more during each of peak and shoulder periods than the treatment

group with the low-rate design.  On CPP days, the results were similar to those on the non-CPP

weekdays; though larger in magnitude, especially during the peak period. In the first hour of the

peak period, average load reduction was 1.24 KW or a 50 percent reduction compared to the

41  Braithwait (2000).  
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control group. During the next two peak hours, the reduction was around 1 KW, later falling to

0.59 KW on the last peak hour. Also, the treatment group usage was substantially larger than the

control group during the shoulder and off-peak periods following the critical peak hours.

On weekends, average usage was similar for the control and treatment customers, with slightly

lower (though not statistically significant) levels for the treatment customers.  Average usage

over all days by the treatment group decreased compared to the control group, but the result was

not statistically significant. A large portion of these reductions can be attributed to the changes in

the weekday usage. Average daily usage on weekend, weekdays, and all days are presented in

Table 20.

Table 20- Average Daily Usage for Summer 1997 (kWh)

Control Treatment Usage Difference % Difference

Weekdays 30.4 28.3 -2.1 -6.9%
Weekends 34.1 33.7 -0.4 -1.2%
All days 32.5 30.9 -1.6 -4.9%

The data were also used to estimate the elasticity of substitution using two alternative

models: the constant elasticity of substitution (CES) model discussed earlier in this paper and the

more flexible generalized Leontief (GL) model.  The substitution elasticity from the CES model

was estimated to be 0.30. This estimate was larger than the 0.14 value estimated by EPRI in its

analysis of the best five TOU pricing experiments from the late 1970s/early 1980s.  The larger

substitution  elasticity  from  this  pilot  can  be  attributed  to  the  presence  of  interactive

communication  equipment  through  which  the  customers  preset  their  usage  patterns  of  air

conditioning (AC) and other appliances.  The GL model allows substitution elasticity estimates

to vary by time-period. With this model, the substitution elasticity between peak and off-peak

periods  was  estimated  as  0.40,  or  a  third  higher  than  the  estimate  from  the  CES  model.

Substitution elasticities between other time-periods can be seen in Table 21.

33



Table 21- Substitution Elasticities

Month Time Period CES High Rate Tariff Low Rate Tariff

Overall 0.306 - -
Peak-shoulder - 0.155 0.166
Peak-off-peak - 0.395 0.356

Shoulder-off-peak - 0.191 0.187

Overall 0.295 - -
Peak-shoulder - 0.055 0.06
Peak-off-peak - 0.407 0.366

Shoulder-off-peak - 0.178 0.176

2

GL

1

3.11 NEW JERSEY- PSE&G RESIDENTIAL PILOT PROGRAM 42

Public Service Electric and Gas Company (PSE&G) offered a residential TOU/CPP pilot

pricing program in New Jersey during 2006 and 2007.  The PSE&G pilot had two sub-programs.

Under the first sub-program,  myPower Sense, participants were educated about the TOU/CPP

tariff  and were  notified of  the  CPP event  on a  day-ahead basis.   The program assessed the

reduction in energy use when a CPP event was called. Under the second sub-program, myPower

Connection, participants were given a free programmable communicating thermostat (PCT) that

received  price  signals  from  PSE&G  and  adjusted  their  air  conditioning  settings  based  on

previously programmed set points. A total of 1,148 customers participated in the pilot program;

450 in the control group, 379 in  myPower Sense,  and 319 in  myPower Connection.  PSE&G

recruited  the  participants  separately  for  each  group  through  direct  mail  with  follow-up

telemarketing43. Customers didn’t have the opportunity to choose the treatment they would be

receiving. myPower Sense customers received a $25 incentive upon enrollment and another $75

was paid upon the conclusion of the program. myPower Connection participants were provided

free PCTs and received $75 at the end of the program.

The TOU/CPP tariff  included a night  discount,  a  base  rate,  an on-peak adder,  and a

critical peak adder for the summer months as shown in Table 22.  

42  PSE&G and Summit Blue Consulting, (2007).
43   PSE&G recruited pilot participants from Cherry Hill and Hamilton towns as they had high

percentages of residents on standard rates and high rates of customer ownership of central air conditioning
systems.
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Table 22- TOU/CPP Rate Design: Summer Months (June to September 2006 and
2007)

Period Charge (June to 
September 2006)

Charge (June to 
September 2007) Applicable

Base Price $0.09/kWh $0.087/kWh All hours
Night Discount -$0.05/kWh -$0.05/kWh 10 p.m.-9 a.m. daily
On Peak Adder $0.08/kWh $0.15/kWh 1 p.m.-6 p.m. weekdays

Critical Peak Adder $0.69/kWh $1.37/kWh 1 p.m.-6 p.m. weekdays when called           
(Added to the base price when called)

PSE&G called two CPP events in Summer 2006 and five CPP events in Summer 2007.

Table 23 summarizes the peak demand impacts on these 7 CPP event days. Results show that:

 myPower Connection customers reduced their peak demand by 21 percent

due to TOU-only pricing. These customers reduced their peak load by an additional 26

percent on CPP event days.

 myPower  Sense customers  with  CAC  ownership  reduced  their  peak

demand  by  three  percent  on  TOU-only  days.  On  CPP event  days,  their  peak  load

reductions  reached 17 percent.  Interestingly,  myPower Sense customers without  CAC

ownership achieved six percent peak reductions on TOU-only days while the reductions

reached 20 percent on CPP event days.

 myPower Connection customers reduced their peak-demand consistently

more than myPower Sense customers because they had the PCT enabling technology.  

Table 23- Estimated Peak Demand Impacts on 2006 and 2007 Summer CPP Event

Days (Average kW per Hour)

kW % kW % kW %

myPower Connection 2.85 -0.59 -21% -0.74 -26% -1.33 -47%
myPower Sense with CAC 2.6 -0.07 -3% -0.36 -14% -0.43 -17%
myPower Sense without CAC 1.61 -0.09 -6% -0.23 -14% -0.32 -20%

CPP  Impact Total ImpactImpact Estimate Base Average Peak 
Consumption (kW)

TOU Impact

Source: Summit Blue Consulting 

Summit Blue also estimated summer substitution elasticities for  myPower Connection

and myPower Sense customers.  Table 24 presents the elasticity estimates and the associated

lower and upper bounds for 90 percent confidence level.
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As expected,  myPower Connection customers have the largest elasticity of substitution,

followed respectively by myPower Sense customers with and without CAC ownership. 

Table 24- Estimated Substitution Elasticity for Summers 2006 and 2007

Impact Estimate Substitution Elasticity  90% Confidence Interval

myPower Connection 0.125 0.12 to 0.131

myPower Sense with CAC 0.069 0.063 to 0.075

myPower Sense without CAC 0.063 0.055 to 0.072

3.12 NEW SOUTH WALES/AUSTRALIA- ENERGY AUSTRALIA’S NETWORK TARIFF REFORM
44

The  TOU  pricing  program  is  the  largest  demand  management  project  by  Energy

Australia.   The price elasticity estimates from the TOU tariffs are presented in Table 25.

Table 25- TOU Price Elasticity Estimates

Type Season Peak Own Price 
Elasticity

Peak to Shoulder 
Cross Price Elasticity

Peak to Off-Peak Cross 
Price Elasticity

Summer 2006 -0.30 to -0.38 -0.07 -0.04
Winter 2006 -0.47 -0.12 -

Summer 2006 -0.16 to -0.18 (ns) -0.03 -
Winter 2006 -0.2 (ns) - -

Summer 2006 -0.03 to -0.13 (ns) - -
Winter 2006 -0.02 to -0.09 (ns) - -

Residential

Business                       
(less than 40 MWh)

Business                       
(40 MWh to 160 MWh)

Note: ns refers to “not statistically significant”

The TOU results show that  slight energy conservation effects resulted from residential

consumption under TOU rates; the conservation effects were larger in winter than in summer for

the residential customers and business customer price elasticities are not statistically significant. 

Energy  Australia started  the  Strategic  Pricing  Study  in  2005  which  included  1,300

voluntary customers (50 percent business, 50 percent residential customers). The study tested

seasonal, dynamic, and information only tariffs and involved the use of in-house displays and
44  Colebourn (2006). 
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online access  to  data.  Study participants  received dynamic peak price  signals  through  Short

Message Service (SMS), telephone, email, or the display unit. 

Preliminary results that are available from three dynamic peak pricing (DPP) events show

that residential customers reduced their dynamic peak consumption by roughly 24 percent for

DPP high  rates  (A$2+/kWh)  and  roughly  20  percent  for  DPP medium  rates  (A$1+/kWh).

Response to the 2nd DPP event was greater than that to the 1st DPP event.  This may be attributed

to the day-ahead notification under the 2nd DPP event (versus day-of notification under the 1st

DPP event) and/or temperature differences.  Response to the 2nd event was also greater than to

the 3rd DPP event. This may be explained by lower temperatures on the 3rd DPP event which may

have led to less discretionary appliances to turn off.

3.13 ONTARIO/CANADA- ONTARIO ENERGY BOARD’S SMART PRICE PILOT45 

The Ontario Energy Board operated the residential  Ontario Smart  Price Pilot  (OSPP)

between August 2006 and March 2007. The OSPP used a sample of Hydro Ottawa residential

customers and tested the impacts from three different price structures:

 The existing Regulated Price Plan (RPP) TOU:  The RPP TOU rates are

shown in Table 26. 

 RPP TOU rates with a CPP component (TOU CPP). The CPP was set at

C$0.30 per kWh based on the average of the 93 highest hourly Ontario electricity prices

in the previous year.   The RPP TOU off-peak price was decreased to C$0.031 (from

C$0.035) per kWh to offset the increase in the critical peak price. The maximum number

of critical day events was set at nine days, however only seven CPP days were called

during the pilot.  

 RPP TOU  rates  with  a  critical  peak  rebate  (TOU  CPR):   The  CPR

provided participants with a C$0.30 per kWh rebate for each kWh of reduction from

estimated  baseline  consumption.  The  CPR baseline  consumption  was  defined  as  the

average usage during the same hours over the participants’ last five non-event weekdays,

increased by 25 percent.

Table 26- Regulated Price Plan (RPP) TOU Rate Design

45  Ontario Energy Board, (2007).
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Season Time Charge Applicable

Summer (Aug 1- Oct 31) Off-peak C$0.035/kWh
10 p.m.- 7 a.m. weekdays;  
all day on weekends and 

holidays

Summer (Aug 1- Oct 31) Mid-peak C$0.075/kWh 7 a.m.- 11 a.m. and 5 p.m.- 
10 p.m. weekdays

Summer (Aug 1- Oct 31) On-peak C$0.105/kWh 11 a.m.- 5 p.m. weekdays

A total of 373 customers participated in the pilot: 124 in TOU-only, 124 in TOU-CPP,

and  125  in  TOU-CPR.  The  control  group  included  125  participants  who  had  smart  meters

installed but continued to pay non-TOU rates.

The OSPP results show that the load shift during the critical hours of the four summer

CPP events ranged between 5.7 percent and 25.4 percent.46  They also showed that the load shift

during the entire peak period of the four summer CPP events ranged between 2.4 percent and

11.9 percent. 

Table 27 shows the shift in load during the summer CPP events as a percentage of the

load in  critical  peak hours  and of  the  entire  peak period.    It  is  important  to  note  that  the

percentage  reductions  for  the  TOU-only  customers  are  not  significant  at  the  90  percent

confidence level.  

Table 27- Percentage Shift in Load during the Four Summer CPP Events 

Period TOU- only TOU- CPP TOU- CPR

Shift as % of critical peak hours 5.7% 25.4% 17.5%

Shift as % of all peak hours 2.4% 11.9% 8.5%

This study also analyzed the total conservation impact during the full pilot period. The

total reduction in electricity consumption due to program impacts is reported in Table 28.  The

average conservation impact across all customers was estimated to be six percent.

Table 28- Total Conservation Effect for the Full Pilot Duration 

46  Under the OSPP, 3 to 4 hours of the peak period were defined as critical on a CPP day.
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Program % Reduction in Total 
Electricity Usage

TOU-only 6.0%

TOU- CPP 4.7% (ns)

TOU- CPR 7.4%

Average Impact 6.0%

3.14  WASHINGTON (SEATTLE SUBURBS)-  PUGET SOUND ENERGY (PSE)’S TOU
PROGRAM47

PSE initiated a TOU program for its residential and small commercial customers in 2001.

The rate design involved four price periods. Prices were most expensive during the morning and

evening periods with mid-day and economy periods following these most expensive periods.

Some 300,000 PSE customers were placed in the program and given the option to go back to the

standard rates if they were not satisfied with the program. The peak price was roughly 15 percent

higher than the average price that prevailed before the program and the off-peak price was 15

percent lower. In 2002, the second year of the program, customers were charged a monthly fee of

$1 per month for meter-reading costs. The results of PSE’s quarterly report revealed that the 94

percent of the customers paid an extra $0.80 (the total of $0.20 power savings and $1 meter

reading costs) by participating in the pilot. This was in contrast with the first year results where

customers were not charged meter reading costs and around 55 percent of them experienced bill

savings. As a result of customer dissatisfaction and negative media coverage, PSE ceased its

TOU program. 

Several lessons can be derived from this experience.  First,  modest price differentials

between peak and off-peak may induce customers to shift their load if they are accompanied with

unusual  circumstances  such as  the  energy crisis  of  2000-2001 in  the  West.  An independent

analysis of the program found that customers lowered peak usage by five percent per month over

a 15 month period, with reductions being slightly higher in the winter months and slightly lower

in the summer months.  It is important to provide the customers with accurate expectations about

their bill savings.  The pilot over-promised savings and when these did not materialize, there was

a significant backlash against the very premises of the program and the intentions of the utility.

Finally, it is essential to offer a pilot program before implementing a full-scale program.

47  Faruqui and George (2003).
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3.15 WASHINGTON- THE OLYMPIC PENINSULA PROJECT48

The Olympic Peninsula Project  was a  component  of  the Pacific  Northwest  GridWise

Testbed Demonstration that  took place in Washington and was led by the Pacific Northwest

National  Laboratory  (PNNL).  The  Peninsula  Project  tested  whether  automated  two-way

communication  systems  between  grid  and  passive  resources  (i.e.,  end  use  loads  and  idle

distributed generation) and the use of price signals as instruments would be effective in reducing

the stress on the system. Our review focuses on the residential response and does not cover the

impacts associated with the distributed generation resources. 

By the end of 2005, the project recruited participants with the assistance of the local

utility  companies.   The  project  received  a  mailing  list  from  the  utilities  of  the  potential

participants  who had high-speed internet,  electric  HVAC systems,  electric  water  heater,  and

electric dryer.  Letters were mailed to these customers to recruit potential participants. At the end

of the recruiting process, 112 homes were installed with the two-way communication equipments

that allowed utilities to send the market price signals to the consumers and allowed consumers to

pre-program their demand response preferences. These residential participants were then evenly

divided into three treatment groups and a control group. Equipment was also installed in the

control group homes but they were given no additional information.   

Each treatment group was assigned to one of the three electricity contracts: Fixed-prices

that were constant across time; time-of-use/critical peak prices (TOU/CPP); and real time prices.

In the last category, participants were able to program their appliance preferences over the web

but they still had the option to override their preferences at any time.

Table 29 shows the prices that prevailed under fixed price and TOU/CPP contracts.

48  Pacific Northwest National Laboratory (2007).
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Table 29- Experimental Rate Design

Contract Season Period Charge Applicable

Off-peak $0.04119/kWh 9 am-6pm and 9pm-6am

On-peak $0.1215/kWh 6am-9am and 6pm-9pm

Critical $0.35/kWh Not called

Off-peak $0.05/kWh 9am-3pm

On-peak $0.135/kWh 3pm-9pm

Critical $0.35/kWh When called

Fixed-Price All seasons All day $0.081/kWh All hours

Time-of-Use/ CPP

Summer (25 Jul- 30 Sep)

Spring ( 1 Apr-24 Jul) and 
Fall/Winter (1 Oct-31 Mar)

The fixed-price group saved two percent on their average monthly bill compared to the

control group; the time-of-use pricing group saved 30 percent and the real time pricing group

saved 27 percent.  Differences in average energy consumption between the contract groups were

small but statistically significant. The time-of-use group consumed 21 percent less energy and

achieved conservation benefits from time-of-use pricing. The real time group consumed as much

as the control  group.  The fixed-price group used four percent  more energy than the control

group. The usage comparison across the contract groups is presented in Table 30.

Table 30- Average Daily Energy Consumption per Home (April 06- December 06)

Contract Type
Average Daily Energy 
Consumption (kWh)

Standard 
Deviation(kWh)

Percentage Difference 
(compared to the control)

Control 47 24 0%
Fixed 49 22 4%
Time-of-Use 39 29 -21%
Real-Time 47 26 0%

Examination of the residential  load shapes by contract and season revealed that the time-of-

use/CPP contract was the most effective design at reducing peak-demand.  On average, the real-

time contract did not bring about the lowest average peak demand.  Preliminary analysis of the

data reveals that peak demand consumption fell by 15-17% for RTP group, while it fell by 20%

for the TOU/CPP group relative to the fixed price group.49 

4.0 CROSS-EXPERIMENTAL ASSESSMENT

49  Kiesling (2008).
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Our review of the 15 pricing experiments reveals that the demand response impacts from

different  pilot  programs vary widely due to the difference in the rate  designs tested,  use of

enabling technologies,  ownership  of  central  air  conditioning and more  generally,  due  to  the

variations in sample design.  Figure 1 presents a summary.
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Notes:

*Percentage reduction in load is defined relative to different bases in different pilots. The following notes
are intended to clarify these different definitions. 

1. TOU with Technology (TOU w/ Tech) and CPP with Technology (CPP w/ Tech) refer to

the pricing programs that had some form of enabling technologies.

2. TOU  program  impacts  are  defined  relative  to  the  usage  during  peak  hours  unless

otherwise noted. 

3. CPP program impacts are defined relative to the usage during peak hours on CPP days

unless otherwise noted.

4. Ontario- 1 refer to the percentage impacts during the critical hours that represent only 3-4

hours of the entire peak period on a CPP day. Ontario- 2 refer to the percentage impacts of the programs

during the entire peak period on a CPP day.

5. TOU impact from the SPP is based on the CPP-F treatment effect for normal weekdays

on which critical prices were not offered.

6. ADRS-  04  and  ADRS-  05  refer  respectively  to  the  2004  and  2005  impacts.  ADRS

impacts on non-event days are represented in the TOU with Technology section.

7. CPP impact for Idaho is derived from the information provided in the reviewed study.

Average of kW consumption per hour during the CPP hours (for all 10 event days) is approximately 2.5 kW

for a control group customer while this value is 1.2 kW for a treatment group customer. Percentage impact

from the CPP treatment is calculated as 50%.

8. Gulf Power-1 refers to the impact during peak hours on non-CPP days and therefore

shown in the TOU with Technology section while Gulf Power- 2 refers to the impact during CPP hours on

CPP days. 

9. Ameren- 04 and Ameren- 05 refer to the impacts respectively from the summers of 2004

and 2005.

10. SPP- A refers to the impacts from the CPP-V program on Track A customers. Two thirds

of Track A customers had some form of enabling technologies.

11. SPP- C refers to the impacts from the CPP-V program on Track C customers. All Track C

customers had smart thermostats.

12. X-CPP program only differentiates  between CPP and non-CPP hours while X-CTOU

program differentiates between CPP, on-peak, and off-peak hours.    
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To synthesize the information from the 15 pricing experiments, we have constructed a

dataset of 28 observations where the impacts are grouped with respect to the rate designs and the

existence of an enabling technology. Table 31 provides the mean impact estimates and the 95%

confidence intervals associated with the mean values from this dataset. 

Table 31- Summary Impacts

Rate Design Number of 
Observations Mean 95% Lower 

Bound
95% Upper 

Bound Min Max

TOU 5 4% 3% 6% 2% 6%

TOU w/ Technology 4 26% 21% 30% 21% 32%

PTR 3 13% 8% 18% 9% 18%

CPP 8 17% 13% 20% 12% 25%

CPP w/ Technology 8 36% 27% 44% 16% 51%

Notes: 

1- Confidence intervals are calculated assuming normal distribution of the impact estimates.

2- The pilot results from Xcel Energy are excluded from the summary statistics due to the role of

self-selection bias, as reported in the study, in driving the large demand impacts.

3- The CPP impact for Idaho is also excluded from the summary statistics since it is an outlier. 

On average, TOU programs are associated with a mean reduction of four percent in peak

usage, and a 95 percent confidence interval ranges from three to six percent.  CPP programs

reduce peak usage by 17 percent and a 95 confidence interval ranges from 13 to 20 percent. CPP

programs  supported  with  enabling  technologies  reduce  peak  usage  by  36  percent  and  a  95

confidence  interval  ranges  from  27  to  44  percent.  Impacts  associated  with  PTR  and  TOU

supported with enabling technology programs are also provided in Table 31.  However, all these

results should be interpreted with caution due to the small number of observations underlying the

distributions. Nine out of the twelve impact estimates with enabling technologies are tested on

customers with CAC ownership, so these impacts also capture impacts due to CAC ownership.

Our survey finds that in addition to displaying a wide variation in the size of impact due

to different rate designs, the impacts also vary widely among the experiments using the same rate

design. The residual variation comes from variation in price elasticities and in sample design.

Substitution  elasticities  from the  experiments  range  from 0.07  to  0.40  while  the  own  price

elasticities range from -0.02 to -0.10. Availability of the enabling technologies, ownership of

central air conditioning and the type of the days examined (weekend vs. weekday) are some of

the factors that lead to variations in the elasticities. 
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A question of great interest to policy makers is how the impact estimates vary across

price levels.  To address this question, we have to focus on a single experiment which has a high

quality design and sufficient data to carry out the simulation.  For this purpose, we have focused

on the California SPP experiment data whose results have been codified into a widely available

tool called PRISM (Price Impact Simulation Model).50 

PRISM predicts the changes in electricity usage that are induced by time-varying rates by

utilizing a constant elasticity of substitution (CES) demand system. PRISM has the capability to

predict these changes for peak and off-peak hours for both critical and non-critical peak days.

Moreover, PRISM allows predictions to vary by other exogenous factor such as the saturation of

central air conditioning and variations in climate. The model can be set to demonstrate these

impacts on different customer types. Appendix provides a brief discussion of the PRISM model.

Since we would like to determine how the usage impacts vary as the critical prices are

increased gradually, we have run the PRISM model using a set of prices shown in Table 32. To

clarify how PRISM models the relationship between the prices and the percentage impact on

load in a non-linear fashion, consider the following example. For the average customer, peak

period energy usage decreases by 4% when the peak-price increases from $0.13 per kWh to

$0.23 per kWh. However, peak period energy usage decreases by only 8% when the peak price is

increased from $0.13 per  kWh to  $0.43 per  kWh.  This  example  demonstrates  that  the  load

impact increases by one-fold (rather than two-fold) when the price increases by two-fold. We can

also observe the differences between customer types in their price-responsiveness from these

response curves. For a given price increase, Non-CAC customers (without CAC ownership) are

the  least  responsive  group  while  CAC  customers  (with  CAC  Ownership)  are  the  most

responsive.

50   For model description, see Charles River Associates (2005) and Faruqui-Wood (2008).  The model
can be downloaded from www.eei.org/ami.
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Table 32- PRISM Impact Simulation

Critical Price 
(cents/kWh)

Average 
Customer

Customer w/ 
CAC

Customer w/o 
CAC

0.13 0.0% 0.0% 0.0%
0.23 -3.8% -6.3% -2.3%
0.33 -6.2% -10.2% -3.7%
0.43 -7.9% -13.1% -4.7%
0.53 -9.3% -15.4% -5.5%
0.63 -10.4% -17.3% -6.2%
0.73 -11.4% -18.9% -6.7%
0.83 -12.3% -20.2% -7.2%
0.93 -13.0% -21.5% -7.7%
1.03 -13.7% -22.5% -8.0%
1.13 -14.3% -23.5% -8.4%
1.23 -14.9% -24.4% -8.7%
1.33 -15.4% -25.2% -9.0%
1.43 -15.8% -26.0% -9.3%
1.53 -16.3% -26.7% -9.5%

% Reduction in Quantity

Figure 2- Residential Demand Response Curves on Critical Days
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The response curves in Figure 2 demonstrate how the percent impact on peak period

energy usage varies with the peak-period price on critical days.   These curves show that the

percentage  impact  on  the  peak  period  energy  usage  increases  as  prices  increase,  but  at  a

decreasing rate. This non-linear relation between usage impacts and prices is reflected in the

concave shape of the response curves.

5.0 CONCLUSIONS

This article reviews the most recent empirical evidence on the effectiveness of residential

dynamic pricing programs. We find that demand responses vary from modest to substantial due

to a variety of factors, some of which can be controlled such as electricity prices and whether no

not  enabling technologies are  present,  and some of  which cannot  be controlled,  such as the

design of the experiment and its location.  With those caveats in mind, we find that time-of-use

rates induce a drop in peak demand that ranges between three to six percent and critical-peak

pricing tariffs lead to a drop in peak demand of 13 to 20 percent.  When accompanied with

enabling technologies, the latter set of tariffs lead to a drop in peak demand in the 27 to 44

percent range.  

There is need for further work on the empirical data.  In particular, it would be useful to

identify the best experiments and to pool their data, yielding a unified national model.  However,

even in the absence of a unified model, we can state with confidence that residential dynamic

pricing designs can be very effective in reducing peak demand and lowering energy costs. 

These results have important implications for the reliability and least cost operation of an

electric  power  system facing  ever  increasing  demand for  power  and surging  capacity  costs.

Demand  response  programs  that  blend  together  customer  education  initiatives,  enabling

technology investments, and carefully designed time-varying rates can achieve demand impacts

that can alleviate the pressure on the power system. Uncertainties involving the fuel prices and

the form of a carbon pricing regime that  is  in the horizon emphasize the importance of the

demand-side resources. Dynamic pricing regimes also incorporate some uncertainties such as the

responsiveness  of  customers,  cost  of  implementation  and  revenue  impacts.  However,  these

uncertainties can be addressed to a large extent by implementing pilot programs that can help

guide the full-scale deployment of dynamic pricing rates.  
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APPENDIX- A Primer on PRISM

The Pricing Impact Simulation Model (PRISM) was originally developed using data derived from the
California Statewide Pricing Pilot (SPP) that included some 2,500 residential and small and medium
sized commercial and industrial customers during 2003-2005.51  Although it originated in California,
the basic model has now been adapted to conditions in other parts of North America and the national
version of PRISM is available for use by interested parties. 

The PRISM includes a model  for  estimating “demand response impacts” and another  model  for
estimating “financial benefits” to customers and utilities.   Figure A-1 shows the PRISM Impacts
Model, which is used to estimate the “unit impact” or change in consumption per customer resulting
from dynamic pricing. This is the customer level demand response or the “impact” estimate.

Figure A-1: PRISM Impacts Model- Inputs and Outputs

Default demand curves and price elasticities in PRISM are based on a large data set that includes
responses of approximately 2,500 customers over a two-year period to various forms of dynamic
pricing, a wide variety of weather conditions, and a range of socio-demographic factors. Specifically,
the data set used to estimate the customer demand curves and price elasticities in PRISM is based on
a rigorous experimental design. Nevertheless, these elasticity estimates can easily be replaced with
other elasticity values that a utility has estimated using data on its own customers or by other values
that the utility has borrowed from other utilities.

The purpose of the PRISM Impacts Model is to estimate the change in consumption per customer
resulting from dynamic pricing.  In  addition to  estimating the  impact  for  the  average  residential
customer, PRISM estimates impacts for three subsets of residential customers based on the presence

51  Charles River Associates, “Impact Evaluation of the California Statewide Pricing Pilot,” March 16, 2005.
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of  central  air  conditioning (CAC):  CAC with  no enabling technology (such as  a  price-sensitive
thermostat or direct load control switch), CAC with an enabling technology, and no CAC.

The PRISM Impacts Model consists of four worksheets. The purpose of each worksheet is described
below.

1. PRISM Impacts Inputs
All user-defined inputs to the model are entered into the PRISM Impacts Inputs worksheet.  In the
All-in Rate table, the user enters both the current rate and the dynamic pricing rate that is being
analyzed. These rates are entered as all-in rates. In other words, they incorporate generation charges,
any other variable charges, and any fixed charges on a $/kWh basis.  Default version of the model is
set up to accept load shapes for the average residential customer, the average customer with central
air conditioning (CAC), and the average customer without CAC for a hypothetical LSE. These could
be replaced with other residential customer types. In the CAC Saturation table, the user enters the
CAC saturation for the region.  In the Weather Data table, the user enters the weather conditions for
the region of interest. The weather conditions are based on cooling degree-hours data.

2. Elasticity Estimates
The inputs from the PRISM Impacts Inputs worksheet are used in the Elasticity Estimates worksheet.
This worksheet contains the PRISM model coefficients that were estimated from the data obtained
during the California Statewide Pricing Pilot (SPP). The model coefficients, when combined with the
input parameters, produce elasticity estimates by customer type and day type.  These coefficients can
be easily replaced with some other coefficients if a utility has estimated its own price responsiveness
model or chooses to borrow the coefficients from some other utilities.

3. Impacts-per-Participant
The Impacts per Participant worksheet reads in each customer type’s load shape and rate and, using
the elasticities calculated in the Elasticity Estimates worksheet, calculates the average kWh-per-hour
reduction for each period (i.e., peak period during critical days, off-peak period during non-critical
days, etc). This is also represented as the percent reduction in demand during each period.

4. Impact Summary
The Impact Summary worksheet simply summarizes the output that is calculated in the Impacts-per-
Participant worksheet.  Table A-1 provides an example of the results summary worksheet assuming a
critical peak price of $1.30 per kWh, a peak price of $0.14 per kWh, and an off-peak price of $0.083
per kWh. This worksheet provides two impacts: the change in consumption in the peak and off-peak
periods by day type in terms of kWh per hour, and percentage change from the original load. These
results show that the change in consumption during critical peak hours for the average residential
customer is a reduction of 24 percent.

Table A-1 Example Output from PRISM Impact Summary Worksheet
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Change in Consumption, by Customer Type (kWh per Hour)

Residential
Average CAC No CAC CAC + Tech

Critical Days - Peak -0.65 -0.81 -0.20 -1.06
Critical Days - Off-Peak 0.09 0.10 0.05 0.13
Non-Critical Days - Peak -0.04 -0.05 -0.01 -0.07
Non-Critical Days - Off-Peak 0.04 0.05 0.01 0.07

Change in Consumption, by Customer Type (% of Original Load)

Residential
Average CAC No CAC CAC + Tech

Critical Days - Peak -24.2% -28.4% -10.6% -36.9%
Critical Days - Off-Peak 4.7% 4.8% 4.0% 6.2%
Non-Critical Days - Peak -2.6% -3.1% -1.3% -4.0%
Non-Critical Days - Off-Peak 3.1% 3.7% 1.2% 4.9%

54



BIBLIOGRAPHY

Aubin, Christophe, Denis Fougere, Emmanuel Husson and Marc Ivaldi  (1995).  “Real-Time
Pricing  of  Electricity  for  Residential  Customers:  Econometric  Analysis  of  an  Experiment,”
Journal of Applied Econometrics, 10, S171-191.

Bandt,  William D.,  Tom Campbell,  Carl  Danner,  Harold  Demsetz,  Ahmad Faruqui,  Paul  R.
Kleindorfer,  Robert  Z.  Lawrence,  David  Levine,  Phil  McLeod,  Robert  Michaels,  Shmuel  S.
Oren,  Jim  Ratliff,  John  G.  Riley,  Richard  Rumelt,  Vernon  L.  Smith,  Pablo  Spiller,  James
Sweeney,  David Teece,  Philip Verleger,  Mitch Wilk,  and Oliver Williamson  (2003).   “2003
Manifesto on the California Electricity Crisis.” The manifesto can be accessed at this web site: 
http://www.aei-brookings.org/publications/abstract.php?pid=341. May 2003.

Borenstein, Severin (2002). “The Trouble with Electricity Markets: Understanding California’s
Restructuring Disaster,” Journal of Economic Perspectives, 16:1, 191-211, Winter. 

Borenstein, Severin, Michael Jaske, and Arthur Rosenfeld (2002). “Dynamic Pricing, Advanced
Metering and Demand Response in Electricity Markets.”  Center  for  the Study of  Electricity
Markets, Paper CSEMWP 105, October 31.  

Borenstein,  Severin  (2005).   “The  Long-run  Efficiency  of  Real-Time  Pricing,”  The  Energy
Journal, 26:3, 93-116, 

Braithwait,  S.  D.  (2000).  “Residential  TOU  Price  Response  in  the  Presence  of  Interactive
Communication Equipment.” In Faruqui and Eakin (2000).  

California  Energy  Commission  (2008).  “Proposed  Load  Management  Standards,”  Draft
Committee Report, November, CEC-400-2008-027-CTD.

Caves,  D.  W.,  L.  R.  Christensen,  and  J.  A.  Herriges  (1984).  “Consistency  of  Residential
Customer Response in Time-of-Use Electricity Pricing Experiments.”  Journal of Econometrics
26:179-203.

Chao, Hung-po (1983).  “Peak-Load Pricing and Capacity Planning with Demand and Supply
Uncertainty,” Bell Journal of Economics 14:1, 170-90, Spring.

Chao, Hung-po and Robert Wilson (1987).  “Priority Service: Pricing, Investment and Market
Organization,” American Economic Review 77:5, 899-916.

Charles River Associates (2005). “Impact Evaluation of the California Statewide Pricing Pilot.”
March 16.  The report can be downloaded from:
http://www.calmac.org/publications/2005-03-24_SPP_FINAL_REP.pdf.

Colebourn  H.  (2006).  “Network  Price  Reform.”  presented  at  BCSE  Energy  Infrastructure&
Sustainability Conference. December.

55



Crew, Michael A., Chitru S. Fernando and Paul R. Kleindorfer  (1995). “The Theory of Peak
Load Pricing: A Survey,” Journal of Regulatory Economics, 8:215-248. 

Energy Insights Inc. (2008a). “Xcel Energy TOU Pilot Final Impact Report.” March.

Energy Insights Inc. (2008b). “Experimental Residential Price Response Pilot Program March
2008 Update to the 2007 Final Report.” March. 

Faruqui, Ahmad, Ryan Hledik, Sanem Sergici.  2009.  “Piloting the Smart Grid.”  The Electricity
Journal, Vol. 22, Issue 7: 55-69.

Faruqui, Ahmad and Lisa Wood.  2008.  “Quantifying the Benefits of Dynamic Pricing in the
Mass Market.  Prepared for the Edison Electric Institute.

Faruqui, Ahmad (2007).  “Breaking out of the bubble: using demand response to mitigate rate
shock,” 46-51, Public Utilities Fortnightly, March.   

Faruqui,  Ahmad,  Robert  Earle.   2006.   “Toward  a  New  Paradigm  for  Valuing  Demand
Response.”  The Electricity Journal, Vol. 19, Issue 7: 21-31.

Faruqui,  Ahmad, Hung-po Chao, Victor Niemeyer,  Jeremy Platt  and Karl Stahlkopf (2001a).
“Analyzing California’s power crisis,” The Energy Journal, Vol. 22, No. 4, 29-52.

Faruqui, Ahmad, Hung-po Chao, Victor Niemeyer, Jeremy Platt and Karl Stahlkopf (2001b).
“Getting out of the dark,” Regulation, Fall, 58-62.

Faruqui, Ahmad and B. Kelly Eakin.  2002.  Electricity Pricing in Transition, Kluwer Academic
Publishers, 2002.

Faruqui, Ahmad and B. Kelly Eakin.  2000.  Pricing in Competitive Electricity Markets, Kluwer
Academic Publishers.

Faruqui,  Ahmad  and  Stephen  S.  George.  2002.  “The  Value  of  Dynamic  Pricing  in  Mass
Markets.” The Electricity Journal 15:6, 45-55.

Faruqui,  Ahmad  and  Stephen  S.  George.  2003.  “Demise  of  PSE’s  TOU  Program  Imparts
Lessons.” Electric Light & Power Vol. 81.01:14-15.

Faruqui, Ahmad and Stephen S. George.  2005.  “Quantifying Customer Response to Dynamic
Pricing,” The Electricity Journal, May.

Faruqui, Ahmad, Ryan Hledik, Samuel Newell, and Johannes Pfeifenberger. 2007. “The Power
of Five Percent.” The Electricity Journal Vol. 20, Issue 8:68-77.

Faruqui, Ahmad and J. Robert Malko. 1983. “The Residential Demand for Electricity by Time-
of-Use: A Survey of Twelve Experiments with Peak Load Pricing.” Energy Vol. 8:10.  781-795.

56



Federal Energy Regulatory Commission.  2009.  A National Assessment of Demand Response
Potential.  Staff Report.  Washington, D.C.

Federal  Energy  Regulatory  Commission.   2008.   Assessment  of  Demand  Response  and
Advanced Metering.  Staff Report.  Washington, D. C.

 
Filippini,  Massimo.   1995.   “Swiss  Residential  Demand for  Electricity  by Time-of-Use:  An
Application of the Almost Ideal Demand System,” Energy Journal, 16:1, 27-39.

Giraud,  Denise.   2004.   “The  tempo  tariff,”  Efflocon  Workshop,  June  10.
http://www.efflocom.com/pdf/EDF.pdf.

Giraud, Denise, Christophe Aubin.  1994.  “A New Real-Time Tariff for Residential Customers,”
in Proceedings: 1994 Innovative Electricity Pricing Conference, EPRI TR-103629, February.

Herter, Karen.  2007.  “Residential implementation of critical-peak pricing of electricity,” Energy
Policy, 35:4, April, 2121-2130.

Herter, Karen, Patrick McAuliffe and Arthur Rosenfeld.  2007.  “An exploratory analysis of
California residential  customer response to critical  peak pricing of electricity,”  Energy,  32:1,
January, 25-34.

Idaho Power Company. 2006. “Analysis of the Residential Time-of-Day and Energy Watch Pilot
Programs: Final Report.” December.

Kiesling,  Lynne  (2008).   “Digital  Technology,  Demand  Response,  and  Customer  Choice:
Efficiency Benefits,” NARUC Winter Meetings, Washington, DC, February 18.

Levy, Roger, Ralph Abbott and Stephen Hadden (2002). New Principles for Demand Response
Planning.  EPRI EP-P6035/C3047, March.  

Littlechild,  Stephen C. (2003). “Wholesale Spot Price Pass-Through,”  Journal of  Regulatory
Economics, 23:1, January. 61-91.

Matsukawa, Isamu. (2001).  “Household Response to Optional Peak-Load Pricing of Electricity,”
Journal of Regulatory Economics.  20:3, 249-261.

Morgan, Rick (2009).  “Rethinking dumb rates,” The Public Utilities Fortnightly, March.

Ontario Energy Board. 2007. “Ontario Energy Board Smart Price Pilot Final Report.” Toronto,
Ontario, July.

Pacific  Northwest  National  Laboratory.  2007.  “Pacific  Northwest  GridWise  Testbed
Demonstration Projects Part 1: Olympic Peninsula Project.” Richland, Washington.  October.

57



Pfannenstiel, Jackie and Ahmad Faruqui  (2008). “Mandating Demand Response,”  The Public
Utilities Fortnightly, January.

PSE&G and Summit Blue Consulting (2007). “Final Report for the Mypower Pricing Segments
Evaluation.” Newark, New Jersey.  December.

Reiss, Peter C. and Matthew W. White (2008). “What changes energy consumption?  Prices and
public pressures,” The Rand Journal of Economics, Vol. 39, No. 3, Autumn, 636-663.

RLW Analytics  (2004). “AmerenUE Residential TOU Pilot Study Load Research Analysis: First
Look Results.” February.

Rocky Mountain Institute (2006). “Automated Demand Response System Pilot: Final Report.”
Snowmass, Colorado.  March.

Shadish, William R., Thomas D. Cook and Donald T. Campbell (2002). Experimental and Quasi-
Experimental Designs for Generalized Causal Inference, Houghton Mifflin Company, Boston
and New York.

Summit Blue Consulting, LLC. (2006). “Evaluation of the 2005 Energy-Smart Pricing Plan-Final
Report.” Boulder, Colorado.  August.

Summit Blue Consulting, LLC. (2007). “Evaluation of the 2006 Energy-Smart Pricing Plan-Final
Report.” Boulder, Colorado.  

Taylor, Thomas N., Peter M. Schwarz and James E. Cochell (2005). “24/7 Hourly Response to
Electricity Real-Time Pricing with up to Eight Summers of Experience,” Journal of Regulatory
Economics, 27:3, 235-262. 

U.S.  Demand  Response  Coordinating  Committee  (2008).  “Demand  Response  and  Smart
Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials,”
The National Council on Electricity Policy, Fall.

U.S. Department of Energy (2006). “Benefits of Demand Response in Electricity Markets and
Recommendations for Achieving Them: A Report to the United States Congress Pursuant to
Section 1252 of the Energy Policy Act of 2005.” February.

Vickrey,  W.  S.  (1971).   “Responsive  Pricing  of  Public  Utility  Services,”  Bell  Journal  of
Economics, 2:1, 337-46, Spring.

Voytas,  Rick  (2006).  “AmerenUE  Critical  Peak  Pricing  Pilot.”  presented  at  U.S.  Demand
Response Research Center Conference, Berkeley, California, June.

Wellinghoff,  Jon  and  David  M.  Morenoff  (2007).  “Recognizing  the  importance  of  demand
response:  The second half  of  the  wholesale  electric  market  equation,”  Energy Law Journal,
Volume 28, No. 2.

58



Wolak, Frank A. (2006). “Residential Customer Response to Real-Time Pricing: The Anaheim
Critical-Peak Pricing Experiment.” Available from http://www.stanford.edu/~wolak.

Wolak,  Frank  A.  (2007).   “Managing  Demand-Side  Economic  and  Political  Constraints  on
Electricity Industry Re-structuring Processes.”  Available from http://www.stanford.edu/~wolak.

59


