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Executive Summary 

The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was 
co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most 
comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 
16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was 
the only demonstration that included multiple states and cooperation from multiple electric utilities, 
including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 
unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. The local 
objectives for these systems included improved reliability, energy conservation, improved efficiency, and 
demand responsiveness. 

The demonstration developed and deployed an innovative transactive system, unique in the world, 
that coordinated many of the project’s distributed energy resources and demand-responsive components. 
With the transactive system, additional regional objectives were also addressed, including the mitigation 
of renewable energy intermittency and the flattening of system load. Using the transactive system, the 
project coordinated a regional response across the 11 utilities. This region-wide connection from the 
transmission system down to individual premises equipment was one of the major successes of the 
project. The project showed that this can be done and assets at the end points can respond dynamically on 
a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity 
supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities 
among the many distributed smart grid domain members and their smart devices. 

PNWSGD: Assembling the Team and Initial Steps 

The origins of the demonstration project and eventual deployment of the transactive system can be 
traced to a Request for Interest jointly issued by the Bonneville Power Administration (BPA) and Battelle 
Memorial Institute in 2009. Many prospective PNWSGD participants responded to the request, and from 
these, ten distribution utilities and the University of Washington campus were chosen as demonstration 
test sites. Because of the BPA’s interest in this research, the demonstration’s geographical extent naturally 
included much of the Pacific Northwest. The selection of the 11 participant sites extended the region to 
represent five Northwest states—Idaho, Montana, Oregon, Washington, and Wyoming. The PNWSGD 
worked with each of these site owners to understand and document how the smart grid assets to be tested 
at each site were distributed among and monitored within its distribution system. In short, the project was 
one of the first and largest efforts to experiment with how to actually implement a smart grid. 

Five additional organizations that came to be called “project-level infrastructure providers” were 
selected to apply their systems expertise, which was critical to the development of the transactive system. 
3TIER (now Vaisala) offered measurements and predictions for most of the wind generators. Alstom Grid 
helped calculate the transactive signals. International Business Machines Corp. (IBM) was the system’s 
chief architect and simulated transactive system performance. QualityLogic, Inc., offered system testing 
and interoperability expertise. Netezza, which was purchased by IBM during the PNWSGD, offered its 
massively parallel database appliance. During the course of the project, Spirae, Inc., was added to the 
group with the task of supporting the utilities in their deployment and testing of their transactive system 
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components. Battelle Memorial Institute’s Pacific Northwest Division (operator of the Pacific Northwest 
National Laboratory) was asked to be the technical and organizational lead. 

The PNWSGD was accomplished in four phases that were scheduled for the timely installation of 
smart grid hardware and software and the new transactive system. A kickoff meeting was held in 
December 2009 to share and align participants’ expectations for the demonstration. The project followed 
an aggressive schedule to complete its designs and installations by mid-2012, which was planned to allow 
for a two-year data collection window before the end of August 2014. Closeout activities, including the 
drafting of this final technical report, continued into 2015. 

Engaging Electricity Users and New Technologies 

Although all of the PNWSGD partners played pivotal roles in the project, the demonstration test sites, 
and their interfaces with the customers who eventually will use and benefit from smart grid technologies, 
were particularly important elements of the project. One objective of a smart grid is to improve the 
reliability of electric power for its end users. Toward this, PNWSGD utilities automated their distribution 
systems to enable more rapid restoration of customers’ power after outages, including the application of 
fault detection, isolation, and restoration. Several of the project’s utilities took advantage of automated 
power-quality alerts that have become available from advanced premises metering to help them more 
quickly pinpoint and respond to outages, abnormal supply voltages, and other conditions. Still others 
installed batteries and automated distribution switching to define high-reliability zones, including some 
that may separate from the rest of the grid and operate as microgrids when they become threatened by 
power outages. 

Another objective of a smart grid is to conserve energy and improve the system’s overall efficiency. 
One of the simplest means to conserve energy is to replace existing equipment with more energy efficient 
alternatives, as Avista Utilities did when they replaced approximately 800 existing distribution 
transformers with more efficient smart transformers. Others changed and automated their management of 
their distribution systems. Examples include using reduced feeder voltages that reduce the power 
consumed by some end-use loads, correction of power factor that reduces power line losses, or 
coordinated volt and reactive power control that can both reduce power load and reduce system losses. 

Information itself can motivate consumers to conserve energy. Several of the participating utilities 
informed their customers of their historical electricity consumption via web portals or in-home displays. 
The University of Washington campus greatly increased the metering of individual buildings on its 
campus, and it generated new methods to inform building managers and occupants of their historical 
energy practices, either monthly or in real time. A very interesting effort at the campus was to empower 
its students, giving them tools to manage energy in their dormitory rooms and engaging them still further 
via social media. 
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The participating utilities reported a variety of benefits from their participation in the project and the 
smart grid technologies they deployed. Anecdotal reports of their experience have been compiled as “A 
Compilation of Success Stories” by BPA.1  

Bringing Transactive Concepts to Life 

The technical centerpiece of the project—the glue that connected the test sites, technologies and 
electricity resources—was the transactive system, which was implemented to dynamically respond to 
emerging conditions in the region’s power grid. The transactive system was distributed, providing a 
means of coordinating behavior of demand-responsive components through a forward-looking incentive 
signal and forward estimates of load behavior. The transactive system produced incentive signals, 
constructed by blending energy costs and conditions of the region’s bulk generation and grid. The 
system’s incentive signals were dynamic in space as well as time, representing variability across 
14 geographic zones within the BPA balancing area based on location of the region’s bulk generation 
resources. The system of incentive signals predicted the delivered costs of energy in the near term and 
several days into the future. Large demand-side resources engaged by the transactive system included 
distributed generation, campus chillers and heating, ventilation, and air conditioning, renewable energy 
generation, and stationary battery energy storage systems. Smaller demand-side resources, often installed 
at residential premises, included sets of communicating thermostats, water heater controllers, and smart 
appliances.  

The region’s bulk generation and a simplified transmission structure were emulated for the project by 
Alstom Grid using their energy-management and market-management system tools. The condition of the 
region’s generation and transmission systems was informed by a combination of actual grid status and 
static, seasonal representations of diurnal patterns. The bulk delivered costs of electricity were also 
estimated from this process, much as is done today in regions where locational marginal pricing is 
practiced. It is the flexibility with which costs and incentives may be dynamically applied in this 
transactive system that may help mitigate challenges of wind intermittency, encourage economic 
efficiency, and flatten system load. 

While the project’s transactive system did not engage demand-side assets as well as had been hoped, 
the project was understood from the beginning to not be large enough to by itself have an impact on the 
grid. A bold step had been taken by the demonstration to launch the transactive system so generally, 
across such a large region, and to include its predictive days-ahead planning horizon. In order for the 
system to have been fully proven, no fewer than eight subsystems would have necessarily been accurately 
and meaningfully deployed. A key result of the project is, however, that much of the transactive system 
worked as intended. Experience with the transactive system helps prepare the region to operate an 
increasingly distributed electric power system making maximum use of its growing renewable energy 
supply and demand-side solutions. The project leaves an updated technical specification for the 
transactive system that leverages the five years of development and deployment experience. The updated 

                                                      
1 Bonneville Power Administration. 2015. Pacific Northwest Smart Grid Demonstration Project: A Compilation of 
Success Stories. Accessed at https://www.bpa.gov/Pages/home.aspx. 

https://www.bpa.gov/Pages/home.aspx
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specification and a corresponding reference implementation provide an important platform for future 
research into transactive energy systems. 

When the project looked at the transactive subsystems (as is done in Chapter 2), about half of the 
subsystems were found to have performed well. Among the successes, wind resources were accurately 
stated and predicted within the region by the demonstration. Unit costs and incentives were indeed 
generated to represent bulk resource costs and the demonstration’s stated operational objectives. The 
incentive signals were meaningfully blended at, and communicated between, the system’s multiple nodes. 
A library of functions was developed that automatically determined times of events to which responsive 
demand-side assets, such as water heaters, battery energy storage, and thermostats, were to respond.  

There is a key observation about the performance of the transactive coordination system as compared 
to conventional demand response.  Even when the responses to the transactive system were automated, 
utilities placed limits on the number of allowed responses. Customer agreements often specified a 
maximum number of allowed events in a month. Conventional demand-response programs, either direct 
load control or otherwise, are generally event-driven and are targeted toward managing few, short-lived 
incidents like critical peaks. Several well-placed asset responses may be adequate for conventional 
demand-response programs. Transactive systems, on the other hand, reveal a continuum of incentives to 
the utilities and asset systems and could engage assets much more dynamically according the each asset’s 
capabilities and the flexibility of the asset’s owner. This granularity of responses by many customers 
enables those customers who are both willing and able to respond (via automated systems) to participate 
according to their preferences rather than having their participation limited according to predetermined 
agreements. 

In addition to the results gained from the deployment of the transactive system, IBM used a model of 
the regional system to assess the impact of a scaled up deployment of the transactive system.  This 
simulation showed that the region’s peak load might be reduced by about 8% if 30% of the region’s loads 
were responding to the transactive system. 

At the end of the project’s data collection period, the transactive system was turned off. The regional 
incentive signals produced using the Alstom tools were not linked to operational needs of the BPA, the 
regional system operator. In the absence of such linkage, there was no basis for continuing to generate the 
signals once the research was completed. There are efforts underway to continue to use a small subset of 
the deployed transactive control system for further regional research. If BPA or other balancing area 
operators in the region define an incentive signal, the PNWSGD utilities could, in principle, resume the 
use of their transactive systems. 

Exploring Data—and Associated Challenges 

Now that the demonstration project has concluded, it leaves behind a rich database—almost 
350 billion data records. Organization of the data is based on the 55 smart grid systems defined by the 
project. An extraordinary effort was needed to accurately specify the many data series that might be used 
to monitor those smart grid systems. The disparity of data sources, databases, intervals, and utility data 
practices that was encountered during the demonstration made the challenge even greater. The transactive 
system featured a predictive time dimension that exponentially increased the volume of data that was 
automatically collected from the transactive system.  
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The project’s experience is an example of dealing with the vast amounts of new data that become 
available in a smart grid. In the demonstration, much of that data was found to be unusable. Data cannot 
be converted into actionable information if its quality is poor or if its units, location, or validity is 
uncertain. Investments should be made to improve the quality of meter data, databases, and smart grid 
data processes at all levels. As a part of these investments, there is a need for better tools to be developed 
for utilities to use in managing the devices and information found in a smart grid. 

Moving Forward 

Along with data challenges, this report addresses the technical performance of all the smart grid asset 
systems that were tested at the PNWSGD sites. It also critiques the performance of the transactive system 
that was featured by the demonstration. After an introductory chapter, the performance of the transactive 
system is discussed. In the three following chapters, the performances of reliability, conservation and 
efficiency, and demand-responsive systems are generalized, referring to the 55 smart grid systems that 
were demonstrated at the PNWSGD sites. The performance of each site owner’s smart grid systems is 
presented in the final 11 chapters. 

At its conclusion, the PNWSGD leaves a legacy of smart grid equipment installed with its site 
owners. Eighty-eight percent of the smart grid assets remain installed and functional after the 
demonstration. The remainder succumbed to the challenges of grid modernization in the early 21st 
century. Some of these systems could not be successfully integrated due to interoperability problems with 
other new and legacy systems with which they needed to interact. Some sets of residential devices were 
removed after having been installed, due to unexpected safety problems or at the request of residential 
customers. Some vendors failed to deliver their smart grid products or went out of business during the 
demonstration. Nine of the removed systems were wind turbines that were taken down at a renewable 
park due to safety concerns after a tower catastrophically failed and a turbine had thrown a blade. These 
are considered learning experiences. The demonstration project facilitated the maturation of the smart grid 
industry, and helped advance our collective thinking about the path forward. Please read further to 
understand why the participants in the PNWSGD remain optimistic about smart electric power grids of 
the future. 
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Acronyms and Abbreviations 

3TIER 3TIER, Inc., now part of Vaisala 
ACS advisory control signal 
AGRS Avista-generated request signal 
AGS Avista-generated signal 
aHLH average heavy-load hour energy 
AMI advanced metering infrastructure 
BPA Bonneville Power Administration 
CAIDI Customer Average Interruption Duration Index 
CPUC California Public Utilities Commission 
CVR conservation voltage reduction 
DA distribution automation 
DDC direct digital control 
DMS distribution management system 
DOE U.S. Department of Energy 
DR demand response 
DRU demand-response unit  
DSG distributed standby generation 
EIOC Electricity Infrastructure Operations Center 
FDIR fault detection, isolation, and restoration 
FEMS facility energy management system 
GE General Electric 
GFA grid friendly appliances 
HAN home area network 
HLH heavy-load hour 
HVAC heating, ventilating, and air conditioning 
IBM International Business Machines Corp. 
iCS Internet-Scale Control System software 
IEEE  Institute of Electrical and Electronics Engineers 
IHD  in-home display 
IM impact metric 
IST interval start time 
IT Information Technology 
IVVC integrated volt/VAr control 
LCM load-control module 
LLH light-load hour 
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LTC load tap changer 
LV prefix for Lower Valley, Wyoming, project tests 
MAIFI Momentary Average Interruption Frequency Index 
MAN  metropolitan area network 
MDM meter data management 
O&M operations and maintenance 
OMS outage management system 
OMT Outage Management Tool 
p.u. per unit 
PCT programmable communicating thermostat 
PHEV plug-in hybrid electric vehicle 
PLC power line carrier 
PNWSGD  Pacific Northwest Smart Grid Demonstration 
PRB Project Review Board 
PUD Public Utility District 
PV photovoltaic 
RTU remote terminal unit 
SAIDI System Average Interruption Duration Index 
SAIFI System Average Interruption Frequency Index 
SCADA supervisory control and data acquisition 
SCL Seattle City Light 
SEL Schweitzer Engineering Laboratories 
SSPP Salem Smart Power Project 
ST field site node (of the transactive coordination system topology) 
STP Smart Thermostat Pilot 
SVC static VAr compensator 
T&D  transmission and distribution 
TFS transactive feedback signal 
TIS transactive incentive signal 
TWACS  Two-Way Automatic Communication System 
TZ transmission zone 
UC unit commitment 
UW University of Washington 
VVO volt/VAr integration and optimization 
WECC Western Electricity Coordinating Council 
WSU Washington State University 
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Units 

$/h dollars per hour 
°C degree(s) Celsius 
F Fahrenheit 
GW gigawatts 
GWh gigawatt-hour(s) 
kV kilovolt(s) 
kVAr kilovolt-ampere(s) reactive 
kW kilowatt(s) 
kWh kilowatt-hour(s) 
kWh/h kilowatt-hour(s) per hour 
m meter(s) 
mph miles per hour 
MW megawatt(s) 
MWh megawatt-hour(s) 
p.u. per unit 
s second(s) 
VAr volt-amperes reactive 
W watt(s) 
y year 
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